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Maximal Radon transform

The maximal Radon transform is defined for x ∈ Rd by setting

MP∗ f (x) = sup
t>0

∣∣MPt f (x)
∣∣,

where
MPt f (x) =

1
|Bt|

∫

Bt

f (x− P(y))dy,

Bt = {y ∈ Rk : |y| < t} and

P(y) = (P1(y), . . . ,Pd(y))

is a polynomial mapping, i.e. Pj(y) is a real-valued polynomial on Rk.

I It is very well known that for every p > 1 there is a Cp > 0 such that

‖MP∗ f‖Lp(Rd) ≤ Cp‖f‖Lp(Rd)

for any f ∈ Lp(Rd).
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L2 maximal estimates along the parabola
Consider the maximal functionM∗f (x1, x2) along the parabola, i.e.
corresponding with the averages

Mrf (x1, x2) =
1
2r

∫ r

−r
f (x1 − y, x2 − y2)dt.

Let Φ be a smooth compactly supported function such that
∫
R2 Φ(y)dy = 1

and define Φn(x1, x2) = 2−3nΦ(2−nx1, 2−2nx2). Then it is easy to see that

∥∥M∗f
∥∥

L2 ≤
∥∥ sup

n∈Z
|Φn ∗ f |

∥∥
L2 +

∥∥∥∥
(∑

n∈Z

∣∣M2n f − Φn ∗ f
∣∣2
)1/2

∥∥∥∥
L2

. ‖f‖L2

+
(∑

n∈Z

∥∥M2n f−Φn∗f
∥∥2

L2

)1/2
. ‖f‖L2+ sup

ξ,η∈R

(∑

n∈Z

∣∣m2n(ξ, η)−Φ̂n(ξ, η)
∣∣2
)1/2

where m2n(ξ, η) = 1
2

∫ 1
−1 e−2πi(ξ2ny+η(2ny)2)dy and

∑

n∈Z

∣∣m2n(ξ, η)−Φ̂(2nξ, 22nη)
∣∣ .

∑

n∈Z
min

{
(|2nξ|+|22nη|), (|2nξ|+|22nη|)−1/2} . 1



L2 maximal estimates along the parabola
Consider the maximal functionM∗f (x1, x2) along the parabola, i.e.
corresponding with the averages

Mrf (x1, x2) =
1
2r

∫ r

−r
f (x1 − y, x2 − y2)dt.

Let Φ be a smooth compactly supported function such that
∫
R2 Φ(y)dy = 1

and define Φn(x1, x2) = 2−3nΦ(2−nx1, 2−2nx2). Then it is easy to see that

∥∥M∗f
∥∥

L2 ≤
∥∥ sup

n∈Z
|Φn ∗ f |

∥∥
L2 +

∥∥∥∥
(∑

n∈Z

∣∣M2n f − Φn ∗ f
∣∣2
)1/2

∥∥∥∥
L2

. ‖f‖L2

+
(∑

n∈Z

∥∥M2n f−Φn∗f
∥∥2

L2

)1/2
. ‖f‖L2+ sup

ξ,η∈R

(∑

n∈Z

∣∣m2n(ξ, η)−Φ̂n(ξ, η)
∣∣2
)1/2

where m2n(ξ, η) = 1
2

∫ 1
−1 e−2πi(ξ2ny+η(2ny)2)dy and

∑

n∈Z

∣∣m2n(ξ, η)−Φ̂(2nξ, 22nη)
∣∣ .

∑

n∈Z
min

{
(|2nξ|+|22nη|), (|2nξ|+|22nη|)−1/2} . 1



L2 maximal estimates along the parabola
Consider the maximal functionM∗f (x1, x2) along the parabola, i.e.
corresponding with the averages

Mrf (x1, x2) =
1
2r

∫ r

−r
f (x1 − y, x2 − y2)dt.

Let Φ be a smooth compactly supported function such that
∫
R2 Φ(y)dy = 1

and define Φn(x1, x2) = 2−3nΦ(2−nx1, 2−2nx2). Then it is easy to see that

∥∥M∗f
∥∥

L2 ≤
∥∥ sup

n∈Z
|Φn ∗ f |

∥∥
L2 +

∥∥∥∥
(∑

n∈Z

∣∣M2n f − Φn ∗ f
∣∣2
)1/2

∥∥∥∥
L2

. ‖f‖L2

+
(∑

n∈Z

∥∥M2n f−Φn∗f
∥∥2

L2

)1/2
. ‖f‖L2+ sup

ξ,η∈R

(∑

n∈Z

∣∣m2n(ξ, η)−Φ̂n(ξ, η)
∣∣2
)1/2

where m2n(ξ, η) = 1
2

∫ 1
−1 e−2πi(ξ2ny+η(2ny)2)dy and

∑

n∈Z

∣∣m2n(ξ, η)−Φ̂(2nξ, 22nη)
∣∣ .

∑

n∈Z
min

{
(|2nξ|+|22nη|), (|2nξ|+|22nη|)−1/2} . 1



L2 maximal estimates along the parabola
Consider the maximal functionM∗f (x1, x2) along the parabola, i.e.
corresponding with the averages

Mrf (x1, x2) =
1
2r

∫ r

−r
f (x1 − y, x2 − y2)dt.

Let Φ be a smooth compactly supported function such that
∫
R2 Φ(y)dy = 1

and define Φn(x1, x2) = 2−3nΦ(2−nx1, 2−2nx2). Then it is easy to see that

∥∥M∗f
∥∥

L2 ≤
∥∥ sup

n∈Z
|Φn ∗ f |

∥∥
L2 +

∥∥∥∥
(∑

n∈Z

∣∣M2n f − Φn ∗ f
∣∣2
)1/2

∥∥∥∥
L2

. ‖f‖L2

+
(∑

n∈Z

∥∥M2n f−Φn∗f
∥∥2

L2

)1/2
. ‖f‖L2+ sup

ξ,η∈R

(∑

n∈Z

∣∣m2n(ξ, η)−Φ̂n(ξ, η)
∣∣2
)1/2

where m2n(ξ, η) = 1
2

∫ 1
−1 e−2πi(ξ2ny+η(2ny)2)dy and

∑

n∈Z

∣∣m2n(ξ, η)−Φ̂(2nξ, 22nη)
∣∣ .

∑

n∈Z
min

{
(|2nξ|+|22nη|), (|2nξ|+|22nη|)−1/2} . 1



L2 maximal estimates along the parabola
Consider the maximal functionM∗f (x1, x2) along the parabola, i.e.
corresponding with the averages

Mrf (x1, x2) =
1
2r

∫ r

−r
f (x1 − y, x2 − y2)dt.

Let Φ be a smooth compactly supported function such that
∫
R2 Φ(y)dy = 1

and define Φn(x1, x2) = 2−3nΦ(2−nx1, 2−2nx2). Then it is easy to see that

∥∥M∗f
∥∥

L2 ≤
∥∥ sup

n∈Z
|Φn ∗ f |

∥∥
L2 +

∥∥∥∥
(∑

n∈Z

∣∣M2n f − Φn ∗ f
∣∣2
)1/2

∥∥∥∥
L2

. ‖f‖L2

+
(∑

n∈Z

∥∥M2n f−Φn∗f
∥∥2

L2

)1/2
. ‖f‖L2+ sup

ξ,η∈R

(∑

n∈Z

∣∣m2n(ξ, η)−Φ̂n(ξ, η)
∣∣2
)1/2

where m2n(ξ, η) = 1
2

∫ 1
−1 e−2πi(ξ2ny+η(2ny)2)dy and

∑

n∈Z

∣∣m2n(ξ, η)−Φ̂(2nξ, 22nη)
∣∣ .

∑

n∈Z
min

{
(|2nξ|+|22nη|), (|2nξ|+|22nη|)−1/2} . 1



Lp maximal estimates along the parabola
Let us consider a partition of unity (φn : n ∈ Z) such that

∑

n∈Z
φn(ξ) = 1 for every ξ ∈ R2 \ {0}

where supp φn ⊆ {(ξ, η) ∈ R2 : |2nξ|+ |22nη| ' 1} and

f =
∑

k∈Z
F−1(φn f̂ ).

Now it suffices to show that for every p > 1
∑

k∈Z

∥∥∥∥
(∑

n∈Z

∣∣M2n

(
F−1(φn+k f̂

))
− Φn ∗

(
F−1(φn+k f̂

))∣∣2
)1/2

∥∥∥∥
Lp

. ‖f‖Lp .

Indeed, for p > 1 and each k ∈ Z by the Littlewood–Paley theory we have
∥∥∥∥
(∑

n∈Z

∣∣F−1((m2n−Φ̂n)φn+k f̂
)∣∣2
)1/2

∥∥∥∥
Lp

.
∥∥∥∥
(∑

n∈Z

∣∣F−1(φn+k f̂
)∣∣2
)1/2

∥∥∥∥
Lp

. ‖f‖Lp .

For p = 2 there is δ > 0 such that for each k ∈ Z we have
∥∥∥∥
(∑

n∈Z

∣∣F−1((m2n − Φ̂n)φn+k f̂
)∣∣2
)1/2

∥∥∥∥
L2

. 2−δ|k|‖f‖L2 .
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Discrete maximal Radon transform

The discrete maximal Radon transform is defined for x ∈ Zd by setting

MP∗ f (x) = sup
N∈N

∣∣MPN f (x)
∣∣,

where
MPN f (x) =

1
|BN |

∑

y∈BN

f (x− P(y)),

BN = {y ∈ Zk : |y| ≤ N} and

P(y) = (P1(y), . . . ,Pd(y))

where each Pj(y) is a polynomial on Zk with integer coefficients.

I We also know that for every p > 1 there is a Cp > 0 such that

‖MP∗ f‖`p(Zd) ≤ Cp‖f‖`p(Zd)

for any f ∈ `p(Zd).
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Bourgain’s ergodic theorem

Let (X,B, µ) be a σ-finite measure space with an invertible
measure-preserving transformation T : X → X.

In the mid 1980’s Bourgain extended Birkhoff’s ergodic theorem and
showed that for every f ∈ Lp(X, µ) with p > 1 there is a function
f ∗ ∈ Lp(X, µ) such that

lim
N→∞

AN f (x) = f ∗(x)

µ-almost everywhere on X for the averages

AP
N f (x) =

1
N

N∑

n=1

f (TP(n)x)

defined along any polynomial P with integer coefficients.
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Pointwise convergence
Although, for Birkhoff’s averaging operator, it was not very difficult to find a
dense class of functions (say on L2(X, µ)) for which pointwise convergence
holds, for Bourgain’s averaging operator

AP
N f (x) =

1
N

N∑

n=1

f (TP(n)x)

along the polynomials P of degree > 1, it is a hard problem. Even for
P(n) = n2, since (n + 1)2 − n2 = 2n + 1.

For overcoming the lack of dense class, Bourgain showed
I Lp boundedness of the maximal function,
I Given a lacunary sequence (Nj : j ∈ N), for each J > 0 there is C > 0

such that

( J∑

j=0

∥∥ sup
N∈[Nj,Nj+1)

∣∣AP
N f − AP

Nj
f
∣∣∥∥2

L2

)1/2
≤ CJc‖f‖L2

for some c < 1/2.
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Variational seminorm

For any complex-valued functions (at(x) : t > 0) and r ≥ 1 the variational
seminorm is

Vr(at(x) : t > 0) = sup
t0<t1<...<tJ

tj>0

( J−1∑

j=0

|atj+1(x)− atj(x)|r
)1/r

.

Observe that
I Vr(at(x) : t > 0) <∞ implies (at(x) : t > 0) is a Cauchy sequence.
I Moreover, we have

sup
t>0
|at(x)| ≤ Vr(at(x) : t > 0) + |at0(x)|

where t0 is an arbitrary element of (0,∞).

In fact there is a simpler object to control r-variations.
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Jump function
For any complex-valued functions (at(x) : t > 0) and any λ > 0 we define
λ-jump function

Nλ(at(x) : t > 0) = sup
{

J ∈ N0 : ∃ 0<t1<...<tJ min
1≤j<J

|atj+1(x)− atj(x)| > λ
}
.

I The jumps Nλ(at(x) : t > 0) are pointwisely comparable with the
r-variation. Namely we have a uniform in λ > 0 bound

λ
[
Nλ(at(x) : t > 0)

]1/r ≤ Vr(at(x) : t > 0).

I The advantage of Nλ(at(x) : t > 0) is that we have a reverse inequality
in the following sense:

Lemma
Let 1 ≤ p ≤ ∞ and 1 ≤ ρ < r ≤ ∞ then

∥∥Vr(at : t > 0)
∥∥

Lp .p,ρ

(
r

r − ρ

)max{1/p,1/ρ}
sup
λ>0

∥∥λ
[
Nλ(at(x) : t > 0)

]1/ρ∥∥
Lp .

This inequality can be extended to Lp,∞ spaces as well.



Variational estimates in the continuous setup
Let Bt = {y ∈ Rk : |y| < t} and recall that

MPt f (x) =
1
|Bt|

∫

Bt

f (x− P(y))dy,

where P : Rk → Rd is a polynomial mapping.

Vr(MPt f (x) : t > 0) = sup
t0<t1<...<tJ

tj>0

( J−1∑

j=0

|MPtj+1
f (x)−MPtj f (x)|r

)1/r

.

Theorem (Jones, Seeger and Wright)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that for all
f ∈ Lp

(
Rd
)

∥∥Vr
(
MPt f : t > 0

)∥∥
Lp ≤ Cp

r
r − 2

‖f‖Lp .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .
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The strategy in Jones, Seeger and Wright’s proof
We have for any r ≥ 2 that

Vr
(
MPt f : t > 0

)
.r Vr

(
MP2n f : n ∈ Z

)
+
(∑

n∈Z
V2
(
MPt f : t ∈ [2n, 2n+1)

)2
)1/2

.

For the jump function we also have for every λ > 0

λ
[
Nλ
(
MPt f : t > 0

)]1/2 . λ
[
Nλ
(
MP2n f : n ∈ Z

)]1/2

+
(∑

n∈Z
V2
(
MPt f : t ∈ [2n, 2n+1)

)2
)1/2

.

I The Lp(Rd) estimates for short variations
∥∥∥∥
(∑

n∈Z
V2
(
MPt f : t ∈ [2n, 2n+1)

)2
)1/2

∥∥∥∥
Lp

. ‖f‖Lp

follow from the Littlewood–Paley theory.

I The long Vr
(
MP2n f : n ∈ Z

)
and jumps λ

[
Nλ
(
MP2n f : n ∈ Z

)]1/2
have

a different nature!
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Martingales inequalities
One of the main ingredients in the proof was Lépingle’s inequality which
says that for a general bounded martingale (fn : n ∈ Z) we have

Theorem (Lépingle)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that

∥∥Vr
(
fn : n ∈ N

)∥∥
Lp ≤ Cp

r
r − 2

‖f∞‖Lp .

Moreover, at the endpoint for p = 1 we have weak-type (1, 1) inequality.

I However, for r = 2 we have that
∥∥Vr
(
fn : n ∈ N

)∥∥
Lp =∞!

Theorem (Pisier and Xu/Bourgain)
For every p ∈ (1,∞) there is Cp > 0 such that

sup
λ>0

∥∥λ
[
Nλ
(
fn : n ∈ N

)]1/2∥∥
Lp ≤ Cp‖f∞‖Lp .

Moreover, at the endpoint for p = 1 we have weak-type (1, 1) inequality.
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Long variations and jumps

Now we apply the inequalities from the last display for dyadic matringales
(fn : n ∈ Z) taken with respect to Christ’s cubes which correspond to the
nonisotropic dilations determined by the underlying polynomial mapping P .

I Then we have

Vr
(
MP2n f − fn : n ∈ Z

)
+ λ
[
Nλ
(
MP2n f − fn : n ∈ Z

)]1/2

.
(∑

n∈Z

∣∣MP2n f − fn
∣∣2
)1/2

I Moreover, for every 1 < p <∞ and every f ∈ Lp(Rd) we have
∥∥∥∥
(∑

n∈Z

∣∣MP2n f − fn
∣∣2
)1/2
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Lp

. ‖f‖Lp .

And we are done!
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Variational estimates in the discrete setup

Let P = (P1, . . . ,Pd) : Zk → Zd be a polynomial mapping with integer
coefficients. Define Radon averages

MPN f (x) =
1
|BN |

∑

y∈BN

f (x− P(y)),

where BN = {y ∈ Zk : |y| ≤ N}. Then

Theorem (M., E.M. Stein and B. Trojan)
For every p ∈ (1,∞) and r ∈ (2,∞) there is Cp > 0 such that for all
f ∈ `p

(
Zd
)

∥∥Vr
(
MPN f : N ∈ N

)∥∥
`p ≤ Cp

(
r

r − 2

)max{1/2,1/p}
‖f‖`p .

Moreover, the constant Cp is independent of coefficients of the polynomial
mapping P .
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Jump function estimates in the discrete setup

Let
MPN f (x) =

1
|BN |

∑

y∈BN

f (x− P(y)),

be the Radon averages as before, where

BN = {y ∈ Zk : |y| ≤ N}.

Then our main result is the following:

Theorem (M., E.M. Stein and P. Zorin–Kranich)
For every p ∈ (1,∞) there is Cp > 0 such that for all f ∈ `p

(
Zd
)

sup
λ>0

∥∥λ
[
Nλ
(
MPN f : N ∈ N

)]1/2∥∥
`p ≤ Cp‖f‖`p .
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mapping P .
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Jump estimates for truncated Radon transform
Suppose that K ∈ C1

(
Rk \ {0}

)
is a Calderón–Zygmund kernel obeying

|y|k|K(y)|+ |y|k+1|∇K(y)| ≤ 1

for all y ∈ Rk \ {0} and a cancellation condition
∫

λ1≤|y|≤λ2

K(y)dy = 0

for all λ1 < λ2. Define truncated Radon transform

TPN f (x) =
∑

y∈BN\{0}
f
(
x− P(y)

)
K(y)

where BN = {x ∈ Zk : |x| ≤ N}.
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Proof of the variational estimates
To simplify arguments let us consider that P(x) = xd and d ≥ 2. We prove
that for any r > 2

∥∥Vr(MP2n f : n ∈ N0)
∥∥
`2(Z) ≤ C

r
r − 2

‖f‖`2(Z).

Let

KN(x) =
1
N

N∑

k=1

δP(k)(x),

then
MPN f (x) = KN ∗ f (x).

For f ∈ `1(Z) let
f̂ (ξ) =

∑

k∈Z
e2πiξkf (k)

and observe that

mN(ξ) = K̂N(ξ) =
1
N

N∑

k=1

e2πiξkd
(ξ ∈ T).



Some heuristics
I First of all we have to understand the behaviour of

mN(ξ) =
1
N

N∑

k=1

e2πiξkd
.

I We see that if ξ is an integer, then

mN(ξ) = 1. There is no decay at infinity like . |Nξ|−1/d!

I Now we would like to replace mN(ξ) with the integral

ΦN(ξ) =

∫ 1

0
e2πiξ(Nx)d

dx.

I However, we can not do this naively, since the derivative of the phase
function kdξ arising in the exponential sum is equal to dkd−1ξ and may
be large. Thus in general we have no control over the error term

mN(ξ)− ΦN(ξ).
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Gaussian sums

If ξ = a/q and (a, q) = 1 then we see that mN(a/q) behaves like a complete
Gaussian sum

G(a/q) =
1
q

q∑

r=1

e2πi a
q rd

.

Indeed,

mN(a/q) =
1
N

N∑

k=1

e2πi a
q kd

=
1
N

q∑

r=1

∑

− r
q<k≤ N−r

q

e2πi a
q (qk+r)d ' 1

q

q∑

r=1

e2πi a
q rd

.

This suggests that the asymptotics for mN should be concentrated in some
neighbourhoods of Diophantine approximations of ξ with small
denominators.
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Small denominators - asymptotic formula for mN(ξ)
From Dirichlet’s principle for any ξ ∈ [0, 1] and we can always find
a/q ∈ [0, 1) such that 1 ≤ q ≤ Nd(log N)−β , (a, q) = 1 and

∣∣∣∣ξ −
a
q

∣∣∣∣ ≤
(log N)β

qNd

for any β > 0. If 1 ≤ q ≤ (log N)β

mN(ξ) =
1
N

N∑

k=1

e2πiξ·kd
=

1
N

q∑

r=1

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

e2πi a
q (qn+r)d

=
1

qN

q∑

r=1

e2πi a
q rd · q

N

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

=

(
1
q

q∑

r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)

+O(N−1/2).

Therefore, if ξ is in the neighbourhood of a/q as above, we have

mN(ξ) = G(a/q) · ΦN(ξ − a/q) +O(N−1/2).



Small denominators - asymptotic formula for mN(ξ)
From Dirichlet’s principle for any ξ ∈ [0, 1] and we can always find
a/q ∈ [0, 1) such that 1 ≤ q ≤ Nd(log N)−β , (a, q) = 1 and

∣∣∣∣ξ −
a
q

∣∣∣∣ ≤
(log N)β

qNd

for any β > 0. If 1 ≤ q ≤ (log N)β

mN(ξ) =
1
N

N∑

k=1

e2πiξ·kd
=

1
N

q∑

r=1

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

e2πi a
q (qn+r)d

=
1

qN

q∑

r=1

e2πi a
q rd · q

N

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

=

(
1
q

q∑

r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)

+O(N−1/2).

Therefore, if ξ is in the neighbourhood of a/q as above, we have

mN(ξ) = G(a/q) · ΦN(ξ − a/q) +O(N−1/2).



Small denominators - asymptotic formula for mN(ξ)
From Dirichlet’s principle for any ξ ∈ [0, 1] and we can always find
a/q ∈ [0, 1) such that 1 ≤ q ≤ Nd(log N)−β , (a, q) = 1 and

∣∣∣∣ξ −
a
q

∣∣∣∣ ≤
(log N)β

qNd

for any β > 0. If 1 ≤ q ≤ (log N)β

mN(ξ) =
1
N

N∑

k=1

e2πiξ·kd
=

1
N

q∑

r=1

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

e2πi a
q (qn+r)d

=
1

qN

q∑

r=1

e2πi a
q rd · q

N

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

=

(
1
q

q∑

r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)

+O(N−1/2).

Therefore, if ξ is in the neighbourhood of a/q as above, we have

mN(ξ) = G(a/q) · ΦN(ξ − a/q) +O(N−1/2).



Small denominators - asymptotic formula for mN(ξ)
From Dirichlet’s principle for any ξ ∈ [0, 1] and we can always find
a/q ∈ [0, 1) such that 1 ≤ q ≤ Nd(log N)−β , (a, q) = 1 and

∣∣∣∣ξ −
a
q

∣∣∣∣ ≤
(log N)β

qNd

for any β > 0. If 1 ≤ q ≤ (log N)β

mN(ξ) =
1
N

N∑

k=1

e2πiξ·kd
=

1
N

q∑

r=1

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

e2πi a
q (qn+r)d

=
1

qN

q∑

r=1

e2πi a
q rd · q

N

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

=

(
1
q

q∑

r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)

+O(N−1/2).

Therefore, if ξ is in the neighbourhood of a/q as above, we have

mN(ξ) = G(a/q) · ΦN(ξ − a/q) +O(N−1/2).



Small denominators - asymptotic formula for mN(ξ)
From Dirichlet’s principle for any ξ ∈ [0, 1] and we can always find
a/q ∈ [0, 1) such that 1 ≤ q ≤ Nd(log N)−β , (a, q) = 1 and

∣∣∣∣ξ −
a
q

∣∣∣∣ ≤
(log N)β

qNd

for any β > 0. If 1 ≤ q ≤ (log N)β

mN(ξ) =
1
N

N∑

k=1

e2πiξ·kd
=

1
N

q∑

r=1

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

e2πi a
q (qn+r)d

=
1

qN

q∑

r=1

e2πi a
q rd · q

N

∑

− r
q<n≤ N−r

q

e2πi(ξ− a
q )(qn+r)d

=

(
1
q

q∑

r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(Nx)d

dx
)

+O(N−1/2).

Therefore, if ξ is in the neighbourhood of a/q as above, we have

mN(ξ) = G(a/q) · ΦN(ξ − a/q) +O(N−1/2).



Large denominators - Weyl’s inequality
It was observed by Hardy and Littlewood that if |ξ − a/q| ≤ (log N)β

qNd ≤ q−2

and (a, q) = 1 and (log N)β ≤ q ≤ Nd(log N)−β then

|mN(ξ)| =
∣∣∣ 1
N

N∑

k=1

e2πiξkd
∣∣∣ . (log N)−α

for any α > αβ . This follows from the following variant of Weyl’s
inequality.

Lemma (Weyl’s inequality)
Let P(x) = adxd + . . .+ a1x. Suppose there are (a, q) = 1 such that
|ad − a/q| ≤ q−2. Then there is C > 0 such that

1
N

∣∣∣∣
N∑

m=1

e2πiP(m)

∣∣∣∣ ≤ C log N
(

1
q

+
1
N

+
q

Nd

)1/2d−1

uniformly in N and q.

Weyl’s inequality is usually formulated with Nε loss instead of log N.
However for our purposes we need a more subtle variant with logarithmic
loss.
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Projections Ξnl(ξ)

For an integer l ∈ N and χ > 0 let us define the following projections

Ξnl(ξ) =
∑

a/q∈Unl

η(2n(d−χ)(ξ − a/q))

with a smooth cuf-off function η and

Unl = {a/q ∈ T : (a, q) = 1 and q ∈ Pnl},

where the denominators q ∈ Pnl have appropriate limitation in terms of their
prime power factorization.

Since
m2n(ξ) = m2n(ξ)(1− Ξnl(ξ)) + m2n(ξ)Ξnl(ξ),

the first term is supported in the regime where Weyl’s inequality is efficient.
The second we approximate by the integral.
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The highly oscillatory part m2n(1− Ξnl)

Form Weyl’s inequality we have

|m2n(ξ)| =
∣∣∣ 1
2n

2n∑

k=1

e2πiξkd
∣∣∣ . (n + 1)−α

for a large α > 0, provided that 1− Ξnl(ξ) 6= 0. Therefore, by Plancherel’s
theorem
∥∥Vr
(
F−1(m2n(1− Ξnl)f̂

)
: n ∈ N0

)∥∥
`2 ≤

∥∥V1
(
F−1(m2n(1− Ξnl)f̂

)
: n ∈ N0

)∥∥
`2

≤
∑

n∈N0

∥∥F−1(m2n(1− Ξnl)f̂
)∥∥
`2

.
∑

n∈N0

(n + 1)−2‖f‖`2 . ‖f‖`2 .



The asymptotic part m2nΞnl

Recall that if a/q ∈ Unl then we have

m2n(ξ) ' G(a/q)·Φ2n(ξ−a/q) =

(
1
q

q∑

r=1

e2πi a
q rd
)
·
(∫ 1

0
e2πi(ξ− a

q )(2nx)d

dx
)
.

Therefore,
m2n(ξ)Ξn(ξ) '

∑

s≥0

ms
2n(ξ)

where

ms
2n(ξ) =

∑

a/q∈Wsl

G(a/q)Φ2n(ξ − a/q)η
(
2s(d−χ)(ξ − a/q)

)
,

with Wsl ⊆ Unl and has the property that if q ∈ Wsl then q ≥ sl.

The task now is to show that for any s ≥ 0 we have
∥∥Vr
(
F−1(ms

2n f̂
)

: n ∈ N0
)∥∥
`2 ≤ C(s + 1)−δl+1‖f‖`2

for every f ∈ `2(Z), where δ > 0 comes from the estimate
|G(a/q)| ≤ Cq−δ .
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The case 0 ≤ n ≤ 2s

Simple numerical inequality
For any sequence (aj : 0 ≤ j ≤ 2s) ⊆ C, for s ∈ N ∪ {0} and r > 2, we have

Vr(an : 0 ≤ n ≤ 2s) ≤
√

2
s∑

i=0

( 2s−i−1∑

j=0

|a(j+1)2i − aj2i |2
)1/2

Hence by Plancherel’s theorem we obtain

∥∥Vr(F−1(ms
2n f̂
)

: 0 ≤ n ≤ 2s)
∥∥
`2

.
∥∥∥∥

s∑

i=0

( 2s−i−1∑

j=0

( (j+1)2i−1∑

k=j2i

F−1((ms
2k+1 − ms

2k )f̂
))2
)1/2∥∥∥∥

`2

.
s∑

i=0

( 2s−i−1∑

j=0

∥∥∥
(j+1)2i−1∑

k=j2i

(ms
2k+1 − ms

2k )f̂
∥∥∥

2

L2

)1/2

. s(s + 1)−δl‖f‖`2 .
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The case n ≥ 2s

For the second part we show that

∥∥Vr(F−1(ms
2n f̂
)

: n ≥ 2s)
∥∥
`2(Z)

. (s + 1)−δl+1 sup
‖g‖L2(R)=1

∥∥Vr(F−1(ΦN
)
∗ g : N ∈ N)

∥∥
L2(R)‖f‖`2(Z)

which by Jones, Seeger and Wright theorem one can conclude that for any
r > 2 and p ∈ (1,∞)

∥∥Vr(F−1(ΦN
)
∗ g : N ∈ N)

∥∥
Lp(R) . ‖g‖Lp(R).
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Where are the difficulties?

One of the major obstacle in the discrete theory is the following inequality

Nλ(Ft + Gt : t > 0)(x) ≤ Nλ/2(Ft : t > 0)(x) + Nλ/2(Gt : t > 0)(x).

Therefore, with this definition of jumps we cannot justify that

∥∥λ
[
Nλ(F−1(ms

2n f̂
)

: n ≥ 2s)
]1/2∥∥

`2(Z)

. (s+1)−δl+1 sup
‖g‖L2(R)=1

∥∥λ
[
Nλ(F−1(ΦN

)
∗g : N ∈ N)

]1/2∥∥
L2(R)‖f‖`2(Z).

However, the real interpolation turned out to be useful!
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Real interpolation K-method

I Let (A0,A1) be a compatible couple of normed vector spaces (this
means that they are both contained in some ambient topological vector
space and the intersection A0 ∩ A1 is dense both in A0 and in A1).

I For a ∈ A0 + A1 the K-functional is defined

K(t, a,A1,A2) = inf
a=a1+a2

(
‖a0‖A0 + t‖a1‖A1

)

I For θ ∈ (0, 1) and 1 ≤ r ≤ ∞ we define real interpolation space

[A0,A1]θ,r =
{

a ∈ A0 + A1 :

∫ ∞

0

(
t−θK(t, a,A1,A2)

)r dt
t
<∞

}
.

I [A0,A1]θ,r is equipped with the norm

‖a‖[A0,A1]θ,r =

(∫ ∞

0

(
t−θK(t, a,A1,A2)

)r dt
t

)1/r

.

I If r =∞ we have ‖a‖[A0,A1]θ,r = supt>0 t−θK(t, a,A1,A2).



Example

I Let (X,B, µ) be a measure space. For any measurable function
f : X → C we define its decreasing rearrangement by setting

f ∗(t) = inf
{
λ > 0 : µ({x ∈ X : |f (x)| > λ) ≤ t

}
.

I The Lorentz space Lp,q(X, µ) for 0 < p, q <∞ is defined as a space of
those measurable functions f : X → C for which

‖f‖Lp,q =

(∫ ∞

0

(
t1/pf ∗(t)

)q dt
t

)1/q

<∞

and for p = q we have Lp,q(X, µ) = Lp(X, µ).
I For q =∞ we have weak Lp space and

‖f‖Lp,∞ = sup
t>0

t1/pf ∗(t).



Example

I If f ∈ L1(X, µ) + L∞(X, µ) then

K(t, f ,L1,L∞) =

∫ t

0
f ∗(t)dt.

I Consequently for 0 < p <∞ and 1 ≤ q ≤ ∞

[L1,L∞]θ,q = Lp,q(X, µ),

where
1
p

=
1− θ

1
+

θ

∞ .



Real interpolation for the jump function

Theorem
Let (X,B, µ) be a measure space. Then for every 0 < p <∞ and
0 < q ≤ ∞ there are constants 0 < cp,q ≤ Cp,q such that for every
measurable function f : (0,∞)× X → C we have

cp,q sup
λ>0

∥∥λ
[
Nλ(f (t, x) : t > 0)

]1/2∥∥
Lp,q(X,dµ(x))

≤
[
L∞(V∞),Lp/2,q/2(V1)

]
1/2,∞(f )

≤ Cp,q sup
λ>0

∥∥λ
[
Nλ(f (t, x) : t > 0)

]1/2∥∥
Lp,q(X,dµ(x)).

Therefore, if 1 < p = q <∞ the space
[
L∞(V∞),Lp/2,q/2(V1)

]
1/2,∞

is a Banach space.
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Thank You!


