Jump inequalities for translation-invariant polynomial averages and singular integrals on \mathbb{Z}^d

Mariusz Mirek joint work with Elias M. Stein and Pavel Zorin–Kranich

Institute for Advanced Study, Princeton

MSRI Recent Developments in Harmonic Analysis May 15, 2017

Maximal Radon transform

The maximal Radon transform is defined for $x \in \mathbb{R}^d$ by setting

$$\mathcal{M}_*^{\mathcal{P}}f(x) = \sup_{t>0} \big| \mathcal{M}_t^{\mathcal{P}}f(x) \big|,$$

where

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

 $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{P}(\mathbf{y}) = (\mathcal{P}_1(\mathbf{y}), \dots, \mathcal{P}_d(\mathbf{y}))$$

is a polynomial mapping, i.e. $\mathcal{P}_j(y)$ is a real-valued polynomial on \mathbb{R}^k .

• It is very well known that for every p > 1 there is a $C_p > 0$ such that

$$\|\mathcal{M}^{\mathcal{P}}_*f\|_{L^p(\mathbb{R}^d)} \le C_p \|f\|_{L^p(\mathbb{R}^d)}$$

for any $f \in L^p(\mathbb{R}^d)$.

Maximal Radon transform

The maximal Radon transform is defined for $x \in \mathbb{R}^d$ by setting

$$\mathcal{M}_*^{\mathcal{P}}f(x) = \sup_{t>0} \big| \mathcal{M}_t^{\mathcal{P}}f(x) \big|,$$

where

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

 $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{P}(\mathbf{y}) = (\mathcal{P}_1(\mathbf{y}), \dots, \mathcal{P}_d(\mathbf{y}))$$

is a polynomial mapping, i.e. $\mathcal{P}_j(y)$ is a real-valued polynomial on \mathbb{R}^k .

• It is very well known that for every p > 1 there is a $C_p > 0$ such that

$$\|\mathcal{M}_*^{\mathcal{P}}f\|_{L^p(\mathbb{R}^d)} \le C_p \|f\|_{L^p(\mathbb{R}^d)}$$

for any $f \in L^p(\mathbb{R}^d)$.

Consider the maximal function $\mathcal{M}_*f(x_1, x_2)$ along the parabola, i.e. corresponding with the averages

$$\mathcal{M}_r f(x_1, x_2) = \frac{1}{2r} \int_{-r}^{r} f(x_1 - y, x_2 - y^2) dt.$$

Let Φ be a smooth compactly supported function such that $\int_{\mathbb{R}^2} \Phi(y) dy = 1$ and define $\Phi_n(x_1, x_2) = 2^{-3n} \Phi(2^{-n}x_1, 2^{-2n}x_2)$. Then it is easy to see that

$$\begin{split} \left\| \mathcal{M}_{*}f \right\|_{L^{2}} &\leq \left\| \sup_{n \in \mathbb{Z}} \left| \Phi_{n} * f \right| \right\|_{L^{2}} + \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right|^{2} \right)^{1/2} \right\|_{L^{2}} \lesssim \|f\|_{L^{2}} \\ &+ \left(\sum_{n \in \mathbb{Z}} \left\| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right\|_{L^{2}}^{2} \right)^{1/2} \lesssim \|f\|_{L^{2}} + \sup_{\xi, \eta \in \mathbb{R}} \left(\sum_{n \in \mathbb{Z}} \left| \mathfrak{m}_{2^{n}}(\xi, \eta) - \widehat{\Phi_{n}}(\xi, \eta) \right|^{2} \right)^{1/2} \end{split}$$

where $\mathfrak{m}_{2^n}(\xi,\eta) = \frac{1}{2} \int_{-1}^1 e^{-2\pi i (\xi 2^n y + \eta (2^n y)^2)} dy$ and

Consider the maximal function $\mathcal{M}_*f(x_1, x_2)$ along the parabola, i.e. corresponding with the averages

$$\mathcal{M}_r f(x_1, x_2) = \frac{1}{2r} \int_{-r}^{r} f(x_1 - y, x_2 - y^2) dt.$$

Let Φ be a smooth compactly supported function such that $\int_{\mathbb{R}^2} \Phi(y) dy = 1$ and define $\Phi_n(x_1, x_2) = 2^{-3n} \Phi(2^{-n}x_1, 2^{-2n}x_2)$. Then it is easy to see that

$$\begin{split} \|\mathcal{M}_{*}f\|_{L^{2}} &\leq \|\sup_{n\in\mathbb{Z}} |\Phi_{n}*f|\|_{L^{2}} + \left\| \left(\sum_{n\in\mathbb{Z}} |\mathcal{M}_{2^{n}}f - \Phi_{n}*f|^{2}\right)^{1/2} \right\|_{L^{2}} \lesssim \|f\|_{L^{2}} \\ &+ \left(\sum_{n\in\mathbb{Z}} \|\mathcal{M}_{2^{n}}f - \Phi_{n}*f\|_{L^{2}}^{2}\right)^{1/2} \lesssim \|f\|_{L^{2}} + \sup_{\xi,\eta\in\mathbb{R}} \left(\sum_{n\in\mathbb{Z}} |\mathfrak{m}_{2^{n}}(\xi,\eta) - \widehat{\Phi_{n}}(\xi,\eta)|^{2}\right)^{1/2} \\ &\text{where } \mathfrak{m}_{2^{n}}(\xi,\eta) = \frac{1}{2} \int_{-1}^{1} e^{-2\pi i (\xi 2^{n}y + \eta (2^{n}y)^{2})} dy \text{ and} \end{split}$$

Consider the maximal function $\mathcal{M}_*f(x_1, x_2)$ along the parabola, i.e. corresponding with the averages

$$\mathcal{M}_r f(x_1, x_2) = \frac{1}{2r} \int_{-r}^{r} f(x_1 - y, x_2 - y^2) dt.$$

Let Φ be a smooth compactly supported function such that $\int_{\mathbb{R}^2} \Phi(y) dy = 1$ and define $\Phi_n(x_1, x_2) = 2^{-3n} \Phi(2^{-n}x_1, 2^{-2n}x_2)$. Then it is easy to see that

$$\begin{split} \left\| \mathcal{M}_{*}f \right\|_{L^{2}} &\leq \left\| \sup_{n \in \mathbb{Z}} \left| \Phi_{n} * f \right| \right\|_{L^{2}} + \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right|^{2} \right)^{1/2} \right\|_{L^{2}} \lesssim \|f\|_{L^{2}} \\ &+ \left(\sum_{n \in \mathbb{Z}} \left\| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right\|_{L^{2}}^{2} \right)^{1/2} \lesssim \|f\|_{L^{2}} + \sup_{\xi, \eta \in \mathbb{R}} \left(\sum_{n \in \mathbb{Z}} \left| \mathfrak{m}_{2^{n}}(\xi, \eta) - \widehat{\Phi_{n}}(\xi, \eta) \right|^{2} \right)^{1/2} \end{split}$$

where $\mathfrak{m}_{2^n}(\xi,\eta) = \frac{1}{2} \int_{-1}^1 e^{-2\pi i (\xi 2^n y + \eta (2^n y)^2)} dy$ and

Consider the maximal function $\mathcal{M}_*f(x_1, x_2)$ along the parabola, i.e. corresponding with the averages

$$\mathcal{M}_r f(x_1, x_2) = \frac{1}{2r} \int_{-r}^{r} f(x_1 - y, x_2 - y^2) dt.$$

Let Φ be a smooth compactly supported function such that $\int_{\mathbb{R}^2} \Phi(y) dy = 1$ and define $\Phi_n(x_1, x_2) = 2^{-3n} \Phi(2^{-n}x_1, 2^{-2n}x_2)$. Then it is easy to see that

$$\begin{split} \left\| \mathcal{M}_{*}f \right\|_{L^{2}} &\leq \left\| \sup_{n \in \mathbb{Z}} \left| \Phi_{n} * f \right| \right\|_{L^{2}} + \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right|^{2} \right)^{1/2} \right\|_{L^{2}} \lesssim \|f\|_{L^{2}} \\ &+ \left(\sum_{n \in \mathbb{Z}} \left\| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right\|_{L^{2}}^{2} \right)^{1/2} \lesssim \|f\|_{L^{2}} + \sup_{\xi, \eta \in \mathbb{R}} \left(\sum_{n \in \mathbb{Z}} \left| \mathfrak{m}_{2^{n}}(\xi, \eta) - \widehat{\Phi_{n}}(\xi, \eta) \right|^{2} \right)^{1/2} \end{split}$$

where $\mathfrak{m}_{2^n}(\xi,\eta) = \frac{1}{2} \int_{-1}^1 e^{-2\pi i (\xi 2^n y + \eta (2^n y)^2)} dy$ and

Consider the maximal function $\mathcal{M}_*f(x_1, x_2)$ along the parabola, i.e. corresponding with the averages

$$\mathcal{M}_r f(x_1, x_2) = \frac{1}{2r} \int_{-r}^{r} f(x_1 - y, x_2 - y^2) dt.$$

Let Φ be a smooth compactly supported function such that $\int_{\mathbb{R}^2} \Phi(y) dy = 1$ and define $\Phi_n(x_1, x_2) = 2^{-3n} \Phi(2^{-n}x_1, 2^{-2n}x_2)$. Then it is easy to see that

$$\begin{split} \left\| \mathcal{M}_{*}f \right\|_{L^{2}} &\leq \left\| \sup_{n \in \mathbb{Z}} \left| \Phi_{n} * f \right| \right\|_{L^{2}} + \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right|^{2} \right)^{1/2} \right\|_{L^{2}} \lesssim \|f\|_{L^{2}} \\ &+ \left(\sum_{n \in \mathbb{Z}} \left\| \mathcal{M}_{2^{n}}f - \Phi_{n} * f \right\|_{L^{2}}^{2} \right)^{1/2} \lesssim \|f\|_{L^{2}} + \sup_{\xi, \eta \in \mathbb{R}} \left(\sum_{n \in \mathbb{Z}} \left| \mathfrak{m}_{2^{n}}(\xi, \eta) - \widehat{\Phi_{n}}(\xi, \eta) \right|^{2} \right)^{1/2} \end{split}$$

where $\mathfrak{m}_{2^n}(\xi,\eta) = \frac{1}{2} \int_{-1}^1 e^{-2\pi i (\xi 2^n y + \eta (2^n y)^2)} dy$ and

Let us consider a partition of unity $(\phi_n : n \in \mathbb{Z})$ such that

$$\sum_{n \in \mathbb{Z}} \phi_n(\xi) = 1 \quad \text{for every} \quad \xi \in \mathbb{R}^2 \setminus \{0\}$$

where supp $\phi_n \subseteq \{(\xi, \eta) \in \mathbb{R}^2 : |2^n \xi| + |2^{2n} \eta| \simeq 1\}$ and

$$f=\sum_{k\in\mathbb{Z}}\mathcal{F}^{-1}(\phi_n\widehat{f}).$$

Now it suffices to show that for every p > 1

$$\sum_{k\in\mathbb{Z}}\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{M}_{2^{n}}\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)-\Phi_{n}*\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)\right|^{2}\right)^{1/2}\right\|_{L^{p}}\lesssim\|f\|_{L^{p}}.$$

Indeed, for p > 1 and each $k \in \mathbb{Z}$ by the Littlewood–Paley theory we have

$$\left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\left(\mathfrak{m}_{2^n} - \widehat{\Phi_n} \right) \phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^p} \lesssim \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}.$$

$$\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{F}^{-1}\left((\mathfrak{m}_{2^{n}}-\widehat{\Phi_{n}})\phi_{n+k}\widehat{f}\right)\right|^{2}\right)^{1/2}\right\|_{L^{2}} \lesssim 2^{-\delta|k|}\|f\|_{L^{2}}.$$

Let us consider a partition of unity $(\phi_n : n \in \mathbb{Z})$ such that

$$\sum_{n \in \mathbb{Z}} \phi_n(\xi) = 1 \quad \text{for every} \quad \xi \in \mathbb{R}^2 \setminus \{0\}$$

where supp $\phi_n \subseteq \{(\xi, \eta) \in \mathbb{R}^2 : |2^n \xi| + |2^{2n} \eta| \simeq 1\}$ and

$$f=\sum_{k\in\mathbb{Z}}\mathcal{F}^{-1}(\phi_n\widehat{f}).$$

Now it suffices to show that for every p > 1

$$\sum_{k\in\mathbb{Z}}\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{M}_{2^{n}}\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)-\Phi_{n}*\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)\right|^{2}\right)^{1/2}\right\|_{L^{p}}\lesssim\|f\|_{L^{p}}.$$

Indeed, for p > 1 and each $k \in \mathbb{Z}$ by the Littlewood–Paley theory we have

$$\left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\left(\mathfrak{m}_{2^n} - \widehat{\Phi_n} \right) \phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^p} \lesssim \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}$$

$$\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{F}^{-1}\left((\mathfrak{m}_{2^{n}}-\widehat{\Phi_{n}})\phi_{n+k}\widehat{f}\right)\right|^{2}\right)^{1/2}\right\|_{L^{2}} \lesssim 2^{-\delta|k|}\|f\|_{L^{2}}.$$

Let us consider a partition of unity $(\phi_n : n \in \mathbb{Z})$ such that

$$\sum_{n \in \mathbb{Z}} \phi_n(\xi) = 1 \quad \text{for every} \quad \xi \in \mathbb{R}^2 \setminus \{0\}$$

where supp $\phi_n \subseteq \{(\xi, \eta) \in \mathbb{R}^2 : |2^n \xi| + |2^{2n} \eta| \simeq 1\}$ and

$$f=\sum_{k\in\mathbb{Z}}\mathcal{F}^{-1}(\phi_n\widehat{f}).$$

Now it suffices to show that for every p > 1

$$\sum_{k\in\mathbb{Z}}\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{M}_{2^{n}}\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)-\Phi_{n}*\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)\right|^{2}\right)^{1/2}\right\|_{L^{p}}\lesssim\|f\|_{L^{p}}.$$

Indeed, for p > 1 and each $k \in \mathbb{Z}$ by the Littlewood–Paley theory we have

$$\left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\left(\mathfrak{m}_{2^n} - \widehat{\Phi_n} \right) \phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^p} \lesssim \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}.$$

$$\left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left((\mathfrak{m}_{2^n} - \widehat{\Phi_n}) \phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^2} \lesssim 2^{-\delta|k|} \|f\|_{L^2}$$

Let us consider a partition of unity $(\phi_n : n \in \mathbb{Z})$ such that

$$\sum_{n \in \mathbb{Z}} \phi_n(\xi) = 1 \quad \text{for every} \quad \xi \in \mathbb{R}^2 \setminus \{0\}$$

where supp $\phi_n \subseteq \{(\xi, \eta) \in \mathbb{R}^2 : |2^n \xi| + |2^{2n} \eta| \simeq 1\}$ and

$$f = \sum_{k \in \mathbb{Z}} \mathcal{F}^{-1}(\phi_n \widehat{f}).$$

Now it suffices to show that for every p > 1

$$\sum_{k\in\mathbb{Z}}\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{M}_{2^{n}}\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)-\Phi_{n}*\left(\mathcal{F}^{-1}\left(\phi_{n+k}\widehat{f}\right)\right)\right|^{2}\right)^{1/2}\right\|_{L^{p}}\lesssim\|f\|_{L^{p}}.$$

Indeed, for p > 1 and each $k \in \mathbb{Z}$ by the Littlewood–Paley theory we have

$$\left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\left(\mathfrak{m}_{2^{n}} - \widehat{\Phi_{n}} \right) \phi_{n+k} \widehat{f} \right) \right|^{2} \right)^{1/2} \right\|_{L^{p}} \lesssim \left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left(\phi_{n+k} \widehat{f} \right) \right|^{2} \right)^{1/2} \right\|_{L^{p}} \lesssim \|f\|_{L^{p}}$$

$$\left\| \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{F}^{-1} \left((\mathfrak{m}_{2^n} - \widehat{\Phi_n}) \phi_{n+k} \widehat{f} \right) \right|^2 \right)^{1/2} \right\|_{L^2} \lesssim 2^{-\delta|k|} \|f\|_{L^2}$$

Discrete maximal Radon transform

The discrete maximal Radon transform is defined for $x \in \mathbb{Z}^d$ by setting

$$M_*^{\mathcal{P}}f(x) = \sup_{N \in \mathbb{N}} \left| \mathcal{M}_N^{\mathcal{P}}f(x) \right|,$$

where

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

 $\mathbb{B}_N = \{y \in \mathbb{Z}^k : |y| \le N\}$ and

$$\mathcal{P}(y) = (\mathcal{P}_1(y), \dots, \mathcal{P}_d(y))$$

where each $\mathcal{P}_j(y)$ is a polynomial on \mathbb{Z}^k with integer coefficients.

• We also know that for every p > 1 there is a $C_p > 0$ such that

 $\|M^{\mathcal{P}}_*f\|_{\ell^p(\mathbb{Z}^d)} \leq C_p \|f\|_{\ell^p(\mathbb{Z}^d)}$

for any $f \in \ell^p(\mathbb{Z}^d)$.

Discrete maximal Radon transform

The discrete maximal Radon transform is defined for $x \in \mathbb{Z}^d$ by setting

$$M_*^{\mathcal{P}}f(x) = \sup_{N \in \mathbb{N}} \left| \mathcal{M}_N^{\mathcal{P}}f(x) \right|,$$

where

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

 $\mathbb{B}_N = \{y \in \mathbb{Z}^k : |y| \le N\}$ and

$$\mathcal{P}(\mathbf{y}) = (\mathcal{P}_1(\mathbf{y}), \dots, \mathcal{P}_d(\mathbf{y}))$$

where each $\mathcal{P}_j(y)$ is a polynomial on \mathbb{Z}^k with integer coefficients.

• We also know that for every p > 1 there is a $C_p > 0$ such that

$$\|M^{\mathcal{P}}_*f\|_{\ell^p(\mathbb{Z}^d)} \leq C_p \|f\|_{\ell^p(\mathbb{Z}^d)}$$

for any $f \in \ell^p(\mathbb{Z}^d)$.

Bourgain's ergodic theorem

Let (X, \mathcal{B}, μ) be a σ -finite measure space with an invertible measure-preserving transformation $T : X \to X$.

In the mid 1980's Bourgain extended Birkhoff's ergodic theorem and showed that for every $f \in L^p(X, \mu)$ with p > 1 there is a function $f^* \in L^p(X, \mu)$ such that

$$\lim_{N\to\infty}A_Nf(x)=f^*(x)$$

 μ -almost everywhere on X for the averages

$$A_N^P f(x) = \frac{1}{N} \sum_{n=1}^N f(T^{P(n)} x)$$

defined along any polynomial P with integer coefficients.

Bourgain's ergodic theorem

Let (X, \mathcal{B}, μ) be a σ -finite measure space with an invertible measure-preserving transformation $T : X \to X$.

In the mid 1980's Bourgain extended Birkhoff's ergodic theorem and showed that for every $f \in L^p(X, \mu)$ with p > 1 there is a function $f^* \in L^p(X, \mu)$ such that

$$\lim_{N\to\infty}A_Nf(x)=f^*(x)$$

 μ -almost everywhere on X for the averages

$$A_N^P f(x) = \frac{1}{N} \sum_{n=1}^N f(T^{P(n)} x)$$

defined along any polynomial P with integer coefficients.

Pointwise convergence

Although, for Birkhoff's averaging operator, it was not very difficult to find a dense class of functions (say on $L^2(X, \mu)$) for which pointwise convergence holds, for Bourgain's averaging operator

$$A_N^P f(x) = \frac{1}{N} \sum_{n=1}^N f(T^{P(n)} x)$$

along the polynomials *P* of degree > 1, it is a hard problem. Even for $P(n) = n^2$, since $(n + 1)^2 - n^2 = 2n + 1$.

For overcoming the lack of dense class, Bourgain showed

- ► *L^p* boundedness of the maximal function,
- Given a lacunary sequence $(N_j : j \in \mathbb{N})$, for each J > 0 there is C > 0 such that

$$\left(\sum_{j=0}^{J} \left\|\sup_{N\in[N_{j},N_{j+1})} \left|A_{N}^{P}f-A_{N_{j}}^{P}f\right|\right\|_{L^{2}}^{2}\right)^{1/2} \leq CJ^{c}\|f\|_{L^{2}}$$

for some c < 1/2.

Pointwise convergence

Although, for Birkhoff's averaging operator, it was not very difficult to find a dense class of functions (say on $L^2(X, \mu)$) for which pointwise convergence holds, for Bourgain's averaging operator

$$A_N^P f(x) = \frac{1}{N} \sum_{n=1}^N f(T^{P(n)} x)$$

along the polynomials *P* of degree > 1, it is a hard problem. Even for $P(n) = n^2$, since $(n + 1)^2 - n^2 = 2n + 1$.

For overcoming the lack of dense class, Bourgain showed

- ► *L^p* boundedness of the maximal function,
- ▶ Given a lacunary sequence (N_j : j ∈ N), for each J > 0 there is C > 0 such that

$$\left(\sum_{j=0}^{J} \left\|\sup_{N\in[N_{j},N_{j+1})} \left|A_{N}^{P}f-A_{N_{j}}^{P}f\right|\right\|_{L^{2}}^{2}\right)^{1/2} \leq CJ^{c}\|f\|_{L^{2}}$$

for some c < 1/2.

For any complex-valued functions $(a_t(x) : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t(x):t>0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}}(x) - a_{t_j}(x)|^r\right)^{1/r}.$$

Observe that

- ► $V_r(a_t(x) : t > 0) < \infty$ implies $(a_t(x) : t > 0)$ is a Cauchy sequence.
- ► Moreover, we have

$$\sup_{t>0} |a_t(x)| \le V_r(a_t(x):t>0) + |a_{t_0}(x)|$$

where t_0 is an arbitrary element of $(0, \infty)$.

For any complex-valued functions $(a_t(x) : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t(x):t>0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}}(x) - a_{t_j}(x)|^r \right)^{1/r}.$$

Observe that

- ► $V_r(a_t(x) : t > 0) < \infty$ implies $(a_t(x) : t > 0)$ is a Cauchy sequence.
- ► Moreover, we have

$$\sup_{t>0} |a_t(x)| \le V_r(a_t(x):t>0) + |a_{t_0}(x)|$$

where t_0 is an arbitrary element of $(0, \infty)$.

For any complex-valued functions $(a_t(x) : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t(x):t>0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}}(x) - a_{t_j}(x)|^r\right)^{1/r}.$$

Observe that

- ► $V_r(a_t(x) : t > 0) < \infty$ implies $(a_t(x) : t > 0)$ is a Cauchy sequence.
- ► Moreover, we have

$$\sup_{t>0} |a_t(x)| \le V_r(a_t(x):t>0) + |a_{t_0}(x)|$$

where t_0 is an arbitrary element of $(0, \infty)$.

For any complex-valued functions $(a_t(x) : t > 0)$ and $r \ge 1$ the variational seminorm is

$$V_r(a_t(x):t>0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |a_{t_{j+1}}(x) - a_{t_j}(x)|^r\right)^{1/r}.$$

Observe that

- ► $V_r(a_t(x) : t > 0) < \infty$ implies $(a_t(x) : t > 0)$ is a Cauchy sequence.
- ► Moreover, we have

$$\sup_{t>0} |a_t(x)| \le V_r(a_t(x):t>0) + |a_{t_0}(x)|$$

where t_0 is an arbitrary element of $(0, \infty)$.

Jump function

For any complex-valued functions $(a_t(x) : t > 0)$ and any $\lambda > 0$ we define λ -jump function

 $N_{\lambda}(a_{t}(x):t>0) = \sup \{J \in \mathbb{N}_{0}: \exists \ _{0 < t_{1} < \ldots < t_{J}} \ \min_{1 \le j < J} |a_{t_{j+1}}(x) - a_{t_{j}}(x)| > \lambda \}.$

The jumps N_λ(a_t(x) : t > 0) are pointwisely comparable with the *r*-variation. Namely we have a uniform in λ > 0 bound

$$\lambda \big[N_\lambda(a_t(x):t>0) \big]^{1/r} \le V_r(a_t(x):t>0).$$

► The advantage of N_λ(a_t(x) : t > 0) is that we have a reverse inequality in the following sense:

Lemma

Let $1 \le p \le \infty$ *and* $1 \le \rho < r \le \infty$ *then*

$$\left\| V_r(a_t:t>0) \right\|_{L^p} \lesssim_{p,\rho} \left(\frac{r}{r-\rho} \right)^{\max\{1/p,1/\rho\}} \sup_{\lambda>0} \left\| \lambda \left[N_\lambda(a_t(x):t>0) \right]^{1/\rho} \right\|_{L^p}$$

This inequality can be extended to $L^{p,\infty}$ spaces as well.

Variational estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and recall that

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P}: \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$V_r(\mathcal{M}_t^{\mathcal{P}} f(x): t > 0) = \sup_{\substack{t_0 < t_1 < \dots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}} f(x) - \mathcal{M}_{t_j}^{\mathcal{P}} f(x)|^r \right)^{1/r}.$$

Theorem (Jones, Seeger and Wright)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\left\| V_r \left(\mathcal{M}_t^{\mathcal{P}} f : t > 0 \right) \right\|_{L^p} \le C_p \frac{r}{r-2} \|f\|_{L^p}$$

Variational estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and recall that

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P} : \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$V_r(\mathcal{M}_t^{\mathcal{P}}f(x):t>0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}}f(x) - \mathcal{M}_{t_j}^{\mathcal{P}}f(x)|^r\right)^{1/r}.$$

Theorem (Jones, Seeger and Wright)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\left\|V_r\left(\mathcal{M}_t^{\mathcal{P}}f:t>0\right)\right\|_{L^p} \le C_p \frac{r}{r-2} \|f\|_{L^p}$$

Variational estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and recall that

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P} : \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$V_r(\mathcal{M}_t^{\mathcal{P}} f(x): t > 0) = \sup_{\substack{t_0 < t_1 < \ldots < t_J \\ t_j > 0}} \left(\sum_{j=0}^{J-1} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}} f(x) - \mathcal{M}_{t_j}^{\mathcal{P}} f(x)|^r \right)^{1/r}.$$

Theorem (Jones, Seeger and Wright)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\left\|V_r\left(\mathcal{M}_t^{\mathcal{P}}f:t>0\right)\right\|_{L^p} \leq C_p rac{r}{r-2} \|f\|_{L^p}$$

Jump function estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P}: \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$N_{\lambda}(\mathcal{M}_{t}^{\mathcal{P}}f(x):t>0)$$

= sup { $J \in \mathbb{N}_{0}: \exists \ _{0 < t_{1} < \ldots < t_{J}} \ \min_{1 < j < J} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}}f(x) - \mathcal{M}_{t_{j}}^{\mathcal{P}}f(x)| > \lambda$ }.

Theorem (Jones, Seeger and Wright) For every $p \in (1, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\sup_{\lambda} \left\| \lambda \left[N_{\lambda} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t > 0 \right) \right]^{1/2} \right\|_{L^{p}} \leq C_{p} \|f\|_{L^{p}}$$

Jump function estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P}: \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$N_{\lambda}(\mathcal{M}_{t}^{\mathcal{P}}f(x):t>0)$$

= sup { $J \in \mathbb{N}_{0}: \exists 0 < t_{1} < \ldots < t_{J} \min_{1 \le j \le J} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}}f(x) - \mathcal{M}_{t_{j}}^{\mathcal{P}}f(x)| > \lambda$ }.

Theorem (Jones, Seeger and Wright) For every $p \in (1, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\sup_{\lambda} \left\| \lambda \left[N_{\lambda} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t > 0 \right) \right]^{1/2} \right\|_{L^{p}} \leq C_{p} \|f\|_{L^{p}}$$

Jump function estimates in the continuous setup Let $B_t = \{y \in \mathbb{R}^k : |y| < t\}$ and

$$\mathcal{M}_t^{\mathcal{P}} f(x) = \frac{1}{|B_t|} \int_{B_t} f(x - \mathcal{P}(y)) dy,$$

where $\mathcal{P} : \mathbb{R}^k \to \mathbb{R}^d$ is a polynomial mapping.

$$N_{\lambda}(\mathcal{M}_{t}^{\mathcal{P}}f(x):t>0)$$

= sup { $J \in \mathbb{N}_{0}: \exists \ _{0 < t_{1} < \ldots < t_{J}} \ \min_{1 \le j < J} |\mathcal{M}_{t_{j+1}}^{\mathcal{P}}f(x) - \mathcal{M}_{t_{j}}^{\mathcal{P}}f(x)| > \lambda$ }.

Theorem (Jones, Seeger and Wright) For every $p \in (1, \infty)$ there is $C_p > 0$ such that for all $f \in L^p(\mathbb{R}^d)$

$$\sup_{\lambda} \left\|\lambda \left[N_{\lambda} \left(\mathcal{M}^{\mathcal{P}}_{t} f: t > 0\right)\right]^{1/2}\right\|_{L^{p}} \leq C_{p} \|f\|_{L^{p}}.$$

$$V_r\big(\mathcal{M}_t^{\mathcal{P}}f:t>0\big) \lesssim_r V_r\big(\mathcal{M}_{2^n}^{\mathcal{P}}f:n\in\mathbb{Z}\big) + \Big(\sum_{n\in\mathbb{Z}}V_2\big(\mathcal{M}_t^{\mathcal{P}}f:t\in[2^n,2^{n+1})\big)^2\Big)^{1/2}$$

For the jump function we also have for every $\lambda > 0$

$$\lambda \left[N_{\lambda} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t > 0 \right) \right]^{1/2} \lesssim \lambda \left[N_{\lambda} \left(\mathcal{M}_{2^{n}}^{\mathcal{P}} f : n \in \mathbb{Z} \right) \right]^{1/2} + \left(\sum_{n \in \mathbb{Z}} V_{2} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t \in [2^{n}, 2^{n+1}) \right)^{2} \right)^{1/2}.$$

• The $L^p(\mathbb{R}^d)$ estimates for short variations

$$\left\| \left(\sum_{n \in \mathbb{Z}} V_2 \left(\mathcal{M}_t^{\mathcal{P}} f : t \in [2^n, 2^{n+1}) \right)^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}$$

follow from the Littlewood–Paley theory.

$$V_r\big(\mathcal{M}_t^{\mathcal{P}}f:t>0\big) \lesssim_r V_r\big(\mathcal{M}_{2^n}^{\mathcal{P}}f:n\in\mathbb{Z}\big) + \Big(\sum_{n\in\mathbb{Z}}V_2\big(\mathcal{M}_t^{\mathcal{P}}f:t\in[2^n,2^{n+1})\big)^2\Big)^{1/2}$$

For the jump function we also have for every $\lambda > 0$

$$\lambda \left[N_{\lambda} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t > 0 \right) \right]^{1/2} \lesssim \lambda \left[N_{\lambda} \left(\mathcal{M}_{2^{n}}^{\mathcal{P}} f : n \in \mathbb{Z} \right) \right]^{1/2} + \left(\sum_{n \in \mathbb{Z}} V_{2} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t \in [2^{n}, 2^{n+1}) \right)^{2} \right)^{1/2}.$$

• The $L^p(\mathbb{R}^d)$ estimates for short variations

$$\left\| \left(\sum_{n \in \mathbb{Z}} V_2 \left(\mathcal{M}_t^{\mathcal{P}} f : t \in [2^n, 2^{n+1}) \right)^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}$$

follow from the Littlewood–Paley theory.

$$V_r\big(\mathcal{M}_t^{\mathcal{P}}f:t>0\big) \lesssim_r V_r\big(\mathcal{M}_{2^n}^{\mathcal{P}}f:n\in\mathbb{Z}\big) + \Big(\sum_{n\in\mathbb{Z}}V_2\big(\mathcal{M}_t^{\mathcal{P}}f:t\in[2^n,2^{n+1})\big)^2\Big)^{1/2}$$

For the jump function we also have for every $\lambda > 0$

$$\lambda \left[N_{\lambda} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t > 0 \right) \right]^{1/2} \lesssim \lambda \left[N_{\lambda} \left(\mathcal{M}_{2^{n}}^{\mathcal{P}} f : n \in \mathbb{Z} \right) \right]^{1/2} + \left(\sum_{n \in \mathbb{Z}} V_{2} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t \in [2^{n}, 2^{n+1}) \right)^{2} \right)^{1/2}.$$

• The $L^p(\mathbb{R}^d)$ estimates for short variations

$$\left\| \Big(\sum_{n \in \mathbb{Z}} V_2 \big(\mathcal{M}_t^{\mathcal{P}} f : t \in [2^n, 2^{n+1}) \big)^2 \Big)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}$$

follow from the Littlewood–Paley theory.

$$V_r\big(\mathcal{M}_t^{\mathcal{P}}f:t>0\big) \lesssim_r V_r\big(\mathcal{M}_{2^n}^{\mathcal{P}}f:n\in\mathbb{Z}\big) + \Big(\sum_{n\in\mathbb{Z}}V_2\big(\mathcal{M}_t^{\mathcal{P}}f:t\in[2^n,2^{n+1})\big)^2\Big)^{1/2}$$

For the jump function we also have for every $\lambda > 0$

$$\lambda \left[N_{\lambda} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t > 0 \right) \right]^{1/2} \lesssim \lambda \left[N_{\lambda} \left(\mathcal{M}_{2^{n}}^{\mathcal{P}} f : n \in \mathbb{Z} \right) \right]^{1/2} + \left(\sum_{n \in \mathbb{Z}} V_{2} \left(\mathcal{M}_{t}^{\mathcal{P}} f : t \in [2^{n}, 2^{n+1}) \right)^{2} \right)^{1/2}.$$

• The $L^p(\mathbb{R}^d)$ estimates for short variations

$$\left\| \Big(\sum_{n \in \mathbb{Z}} V_2 \big(\mathcal{M}_t^{\mathcal{P}} f : t \in [2^n, 2^{n+1}) \big)^2 \Big)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}$$

follow from the Littlewood–Paley theory.

Martingales inequalities

One of the main ingredients in the proof was Lépingle's inequality which says that for a general bounded martingale $(f_n : n \in \mathbb{Z})$ we have

Theorem (Lépingle)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that

$$\left\|V_r(\mathfrak{f}_n:n\in\mathbb{N})\right\|_{L^p}\leq C_prac{r}{r-2}\|\mathfrak{f}_\infty\|_{L^p}$$

Moreover, at the endpoint for p = 1 *we have weak-type* (1, 1) *inequality.*

• However, for r = 2 we have that

$$\left\|V_r(\mathfrak{f}_n:n\in\mathbb{N})\right\|_{L^p}=\infty$$

Theorem (Pisier and Xu/Bourgain) For every $p \in (1, \infty)$ there is $C_p > 0$ such that

$$\sup_{\lambda>0} \left\|\lambda \left[N_\lambda ig(\mathfrak{f}_n:n\in\mathbb{N}ig)
ight]^{1/2}
ight\|_{L^p} \leq C_p\|\mathfrak{f}_\infty\|_{L^p}.$$

Moreover, at the endpoint for p = 1 *we have weak-type* (1, 1) *inequality.*

Martingales inequalities

One of the main ingredients in the proof was Lépingle's inequality which says that for a general bounded martingale $(f_n : n \in \mathbb{Z})$ we have

Theorem (Lépingle)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that

$$\left\|V_r\left(\mathfrak{f}_n:n\in\mathbb{N}
ight)
ight\|_{L^p}\leq C_prac{r}{r-2}\|\mathfrak{f}_\infty\|_{L^p}.$$

Moreover, at the endpoint for p = 1 *we have weak-type* (1, 1) *inequality.*

• However, for r = 2 we have that

$$\left\|V_r(\mathfrak{f}_n:n\in\mathbb{N})\right\|_{L^p}=\infty!$$

Theorem (Pisier and Xu/Bourgain) For every $p \in (1, \infty)$ there is $C_p > 0$ such that

$$\sup_{\lambda>0} \left\|\lambda \left[N_\lambda ig(\mathfrak{f}_n:n\in\mathbb{N}ig)
ight]^{1/2}
ight\|_{L^p} \leq C_p\|\mathfrak{f}_\infty\|_{L^p}.$$

Moreover, at the endpoint for p = 1 *we have weak-type* (1, 1) *inequality.*

Martingales inequalities

One of the main ingredients in the proof was Lépingle's inequality which says that for a general bounded martingale $(f_n : n \in \mathbb{Z})$ we have

Theorem (Lépingle)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that

$$\left\|V_r(\mathfrak{f}_n:n\in\mathbb{N})\right\|_{L^p}\leq C_prac{r}{r-2}\|\mathfrak{f}_\infty\|_{L^p}$$

Moreover, at the endpoint for p = 1 we have weak-type (1, 1) inequality.

• However, for r = 2 we have that

$$\left\|V_r(\mathfrak{f}_n:n\in\mathbb{N})\right\|_{L^p}=\infty!$$

Theorem (Pisier and Xu/Bourgain) For every $p \in (1, \infty)$ there is $C_p > 0$ such that

$$\sup_{\lambda>0} \left\|\lambda \left[N_{\lambda} \left(\mathfrak{f}_{n}: n \in \mathbb{N}\right)\right]^{1/2}\right\|_{L^{p}} \leq C_{p} \|\mathfrak{f}_{\infty}\|_{L^{p}}.$$

Moreover, at the endpoint for p = 1 we have weak-type (1, 1) inequality.
Long variations and jumps

Now we apply the inequalities from the last display for dyadic matringales $(f_n : n \in \mathbb{Z})$ taken with respect to Christ's cubes which correspond to the nonisotropic dilations determined by the underlying polynomial mapping \mathcal{P} .

► Then we have

$$V_r \left(\mathcal{M}_{2^n}^{\mathcal{P}} f - \mathfrak{f}_n : n \in \mathbb{Z}
ight) + \lambda \left[N_\lambda \left(\mathcal{M}_{2^n}^{\mathcal{P}} f - \mathfrak{f}_n : n \in \mathbb{Z}
ight)
ight]^{1/2}$$

 $\lesssim \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{M}_{2^n}^{\mathcal{P}} f - \mathfrak{f}_n \right|^2
ight)^{1/2}$

• Moreover, for every $1 and every <math>f \in L^p(\mathbb{R}^d)$ we have

$$\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{M}_{2^{n}}^{\mathcal{P}}f-\mathfrak{f}_{n}\right|^{2}\right)^{1/2}\right\|_{L^{p}}\lesssim\|f\|_{L^{p}}.$$

And we are done!

Long variations and jumps

Now we apply the inequalities from the last display for dyadic matringales $(f_n : n \in \mathbb{Z})$ taken with respect to Christ's cubes which correspond to the nonisotropic dilations determined by the underlying polynomial mapping \mathcal{P} .

► Then we have

$$V_r \left(\mathcal{M}_{2^n}^{\mathcal{P}} f - \mathfrak{f}_n : n \in \mathbb{Z} \right) + \lambda \left[N_\lambda \left(\mathcal{M}_{2^n}^{\mathcal{P}} f - \mathfrak{f}_n : n \in \mathbb{Z} \right) \right]^{1/2} \\ \lesssim \left(\sum_{n \in \mathbb{Z}} \left| \mathcal{M}_{2^n}^{\mathcal{P}} f - \mathfrak{f}_n \right|^2 \right)^{1/2}$$

▶ Moreover, for every $1 and every <math>f \in L^p(\mathbb{R}^d)$ we have

$$\left\|\left(\sum_{n\in\mathbb{Z}}\left|\mathcal{M}_{2^n}^\mathcal{P}f-\mathfrak{f}_n
ight|^2
ight)^{1/2}
ight\|_{L^p}\lesssim\|f\|_{L^p}.$$

And we are done!

Variational estimates in the discrete setup

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_d) : \mathbb{Z}^k \to \mathbb{Z}^d$ be a polynomial mapping with integer coefficients. Define Radon averages

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

where $\mathbb{B}_N = \{y \in \mathbb{Z}^k : |y| \le N\}$. Then **Theorem (M., E.M. Stein and B. Trojan)** *For every* $p \in (1, \infty)$ *and* $r \in (2, \infty)$ *there is* $C_p > 0$ *such that for all* $f \in \ell^p(\mathbb{Z}^d)$

$$\left\|V_r\left(M_N^{\mathcal{P}}f:N\in\mathbb{N}
ight)
ight\|_{\ell^p}\leq C_p\left(rac{r}{r-2}
ight)^{\max\{1/2,1/p\}}\|f\|_{\ell^p}.$$

Variational estimates in the discrete setup

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_d) : \mathbb{Z}^k \to \mathbb{Z}^d$ be a polynomial mapping with integer coefficients. Define Radon averages

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

where $\mathbb{B}_N = \{y \in \mathbb{Z}^k : |y| \le N\}$. Then

Theorem (M., E.M. Stein and B. Trojan)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\left\| V_r \left(M_N^{\mathcal{P}} f : N \in \mathbb{N} \right) \right\|_{\ell^p} \le C_p \left(\frac{r}{r-2} \right)^{\max\{1/2, 1/p\}} \|f\|_{\ell^p}.$$

Variational estimates in the discrete setup

Let $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_d) : \mathbb{Z}^k \to \mathbb{Z}^d$ be a polynomial mapping with integer coefficients. Define Radon averages

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

where $\mathbb{B}_N = \{y \in \mathbb{Z}^k : |y| \le N\}$. Then Theorem (M., E.M. Stein and B. Trojan)

For every $p \in (1, \infty)$ and $r \in (2, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\left\| V_r \left(M_N^{\mathcal{P}} f : N \in \mathbb{N} \right) \right\|_{\ell^p} \leq C_p \left(\frac{r}{r-2} \right)^{\max\{1/2, 1/p\}} \|f\|_{\ell^p}.$$

Jump function estimates in the discrete setup

Let

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

be the Radon averages as before, where

$$\mathbb{B}_N = \{ y \in \mathbb{Z}^k : |y| \le N \}.$$

Then our main result is the following:

Theorem (M., E.M. Stein and P. Zorin–Kranich) For every $p \in (1, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\sup_{\lambda>0} \left\|\lambda \left[N_{\lambda} \left(M_{N}^{\mathcal{P}} f: N \in \mathbb{N}\right)\right]^{1/2}\right\|_{\ell^{p}} \leq C_{p} \|f\|_{\ell^{p}}$$

Jump function estimates in the discrete setup

Let

$$M_N^{\mathcal{P}}f(x) = \frac{1}{|\mathbb{B}_N|} \sum_{y \in \mathbb{B}_N} f(x - \mathcal{P}(y)),$$

be the Radon averages as before, where

$$\mathbb{B}_N = \{ y \in \mathbb{Z}^k : |y| \le N \}.$$

Then our main result is the following:

Theorem (M., E.M. Stein and P. Zorin–Kranich) For every $p \in (1, \infty)$ there is $C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\sup_{\lambda>0} ig\|\lambdaig[N_\lambdaig(M_N^\mathcal{P}f:N\in\mathbb{N}ig)ig]^{1/2}ig\|_{\ell^p} \leq C_p\|f\|_{\ell^p}$$

Jump estimates for truncated Radon transform Suppose that $K \in C^1(\mathbb{R}^k \setminus \{0\})$ is a Calderón–Zygmund kernel obeying

$$|y|^{k}|K(y)| + |y|^{k+1}|\nabla K(y)| \le 1$$

for all $y \in \mathbb{R}^k \setminus \{0\}$ and a cancellation condition

$$\int_{\lambda_1 \le |y| \le \lambda_2} K(y) \mathrm{d}y = 0$$

for all $\lambda_1 < \lambda_2$. Define truncated Radon transform

$$T_N^{\mathcal{P}}f(x) = \sum_{y \in \mathbb{B}_N \setminus \{0\}} f(x - \mathcal{P}(y)) K(y)$$

where $\mathbb{B}_N = \{x \in \mathbb{Z}^k : |x| \leq N\}.$

Theorem (M., E.M. Stein and P. Zorin–Kranich)

For every $1 there is <math>C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\sup_{\lambda>0} \left\|\lambda \left[N_{\lambda} \left(T_{N}^{\mathcal{P}} f: N \in \mathbb{N}\right)\right]^{1/2}\right\|_{\ell^{p}} \leq C_{p} \|f\|_{\ell^{p}}.$$

Jump estimates for truncated Radon transform

Suppose that $K \in C^1(\mathbb{R}^k \setminus \{0\})$ is a Calderón–Zygmund kernel obeying

$$|y|^{k}|K(y)| + |y|^{k+1}|\nabla K(y)| \le 1$$

for all $y \in \mathbb{R}^k \setminus \{0\}$ and a cancellation condition

$$\int_{\lambda_1 \le |y| \le \lambda_2} K(y) \mathrm{d} y = 0$$

for all $\lambda_1 < \lambda_2$. Define truncated Radon transform

$$T_N^{\mathcal{P}}f(x) = \sum_{y \in \mathbb{B}_N \setminus \{0\}} f(x - \mathcal{P}(y)) K(y)$$

where $\mathbb{B}_N = \{x \in \mathbb{Z}^k : |x| \leq N\}.$

Theorem (M., E.M. Stein and P. Zorin–Kranich) For every $1 there is <math>C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\sup_{\lambda>0} \left\|\lambda \left[N_\lambda ig(T_N^\mathcal{P} f:N\in\mathbb{N}ig)
ight]^{1/2}
ight\|_{\ell^p} \leq C_p \|f\|_{\ell^p}.$$

Jump estimates for truncated Radon transform

Suppose that $K \in C^1(\mathbb{R}^k \setminus \{0\})$ is a Calderón–Zygmund kernel obeying

$$|y|^{k}|K(y)| + |y|^{k+1}|\nabla K(y)| \le 1$$

for all $y \in \mathbb{R}^k \setminus \{0\}$ and a cancellation condition

$$\int_{\lambda_1 \le |y| \le \lambda_2} K(y) \mathrm{d}y = 0$$

for all $\lambda_1 < \lambda_2$. Define truncated Radon transform

$$T_N^{\mathcal{P}}f(x) = \sum_{y \in \mathbb{B}_N \setminus \{0\}} f(x - \mathcal{P}(y)) K(y)$$

where $\mathbb{B}_N = \{x \in \mathbb{Z}^k : |x| \leq N\}.$

Theorem (M., E.M. Stein and P. Zorin–Kranich) For every $1 there is <math>C_p > 0$ such that for all $f \in \ell^p(\mathbb{Z}^d)$

$$\sup_{\lambda>0} \left\|\lambda \left[N_{\lambda} \left(T_{N}^{\mathcal{P}} f: N \in \mathbb{N}\right)\right]^{1/2}\right\|_{\ell^{p}} \leq C_{p} \|f\|_{\ell^{p}}.$$

Proof of the variational estimates

To simplify arguments let us consider that $\mathcal{P}(x) = x^d$ and $d \ge 2$. We prove that for any r > 2

$$\left\| V_r(M_{2^n}^{\mathcal{P}}f:n\in\mathbb{N}_0) \right\|_{\ell^2(\mathbb{Z})} \leq C \frac{r}{r-2} \|f\|_{\ell^2(\mathbb{Z})}.$$

Let

$$K_N(x) = \frac{1}{N} \sum_{k=1}^N \delta_{\mathcal{P}(k)}(x),$$

then

$$M_N^{\mathcal{P}}f(x)=K_N*f(x).$$

For $f \in \ell^1(\mathbb{Z})$ let

$$\widehat{f}(\xi) = \sum_{k \in \mathbb{Z}} e^{2\pi i \xi k} f(k)$$

and observe that

$$m_N(\xi) = \widehat{K}_N(\xi) = rac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d} \quad (\xi \in \mathbb{T}).$$

First of all we have to understand the behaviour of

$$m_N(\xi) = rac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d}.$$

• We see that if ξ is an integer, then

 $m_N(\xi) = 1.$ There is no decay at infinity like $\leq |N\xi|^{-1/d}!$

• Now we would like to replace $m_N(\xi)$ with the integral

$$\Phi_N(\xi) = \int_0^1 e^{2\pi i \xi(Nx)^d} dx.$$

$$m_N(\xi) - \Phi_N(\xi).$$

First of all we have to understand the behaviour of

$$m_N(\xi) = \frac{1}{N} \sum_{k=1}^N e^{2\pi i \xi k^d}.$$

• We see that if ξ is an integer, then

 $m_N(\xi) = 1.$ There is no decay at infinity like $\leq |N\xi|^{-1/d}!$

▶ Now we would like to replace $m_N(\xi)$ with the integral

$$\Phi_N(\xi) = \int_0^1 e^{2\pi i \xi(Nx)^d} dx.$$

$$m_N(\xi) - \Phi_N(\xi).$$

First of all we have to understand the behaviour of

$$m_N(\xi) = rac{1}{N}\sum_{k=1}^N e^{2\pi i \xi k^d}.$$

• We see that if ξ is an integer, then

 $m_N(\xi) = 1.$ There is no decay at infinity like $\leq |N\xi|^{-1/d}!$

▶ Now we would like to replace $m_N(\xi)$ with the integral

$$\Phi_N(\xi) = \int_0^1 e^{2\pi i \xi(Nx)^d} dx.$$

$$m_N(\xi) - \Phi_N(\xi).$$

First of all we have to understand the behaviour of

$$m_N(\xi) = rac{1}{N}\sum_{k=1}^N e^{2\pi i \xi k^d}.$$

• We see that if ξ is an integer, then

 $m_N(\xi) = 1.$ There is no decay at infinity like $\leq |N\xi|^{-1/d}!$

▶ Now we would like to replace $m_N(\xi)$ with the integral

$$\Phi_N(\xi) = \int_0^1 e^{2\pi i \xi (Nx)^d} dx.$$

$$m_N(\xi) - \Phi_N(\xi).$$

First of all we have to understand the behaviour of

$$m_N(\xi) = rac{1}{N}\sum_{k=1}^N e^{2\pi i \xi k^d}.$$

• We see that if ξ is an integer, then

 $m_N(\xi) = 1.$ There is no decay at infinity like $\leq |N\xi|^{-1/d}!$

▶ Now we would like to replace $m_N(\xi)$ with the integral

$$\Phi_N(\xi) = \int_0^1 e^{2\pi i \xi(Nx)^d} dx.$$

$$m_N(\xi) - \Phi_N(\xi).$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

Indeed,

$$m_N(a/q) = \frac{1}{N} \sum_{k=1}^N e^{2\pi i \frac{a}{q}k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{-\frac{r}{q} < k \le \frac{N-r}{q}} e^{2\pi i \frac{a}{q}(qk+r)^d} \simeq \frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}.$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^{d}}.$$

Indeed,

$$m_N(a/q) = \frac{1}{N} \sum_{k=1}^N e^{2\pi i \frac{a}{q} k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{-\frac{r}{q} < k \le \frac{N-r}{q}} e^{2\pi i \frac{a}{q} (qk+r)^d} \simeq \frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q} r^d}.$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

Indeed,

$$m_N(a/q) = \frac{1}{N} \sum_{k=1}^N e^{2\pi i \frac{a}{q}k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{-\frac{r}{q} < k \le \frac{N-r}{q}} e^{2\pi i \frac{a}{q}(qk+r)^d} \simeq \frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}.$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

Indeed,

$$m_N(a/q) = \frac{1}{N} \sum_{k=1}^N e^{2\pi i \frac{a}{q}k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{-\frac{r}{q} < k \le \frac{N-r}{q}} e^{2\pi i \frac{a}{q}(qk+r)^d} \simeq \frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}.$$

If $\xi = a/q$ and (a,q) = 1 then we see that $m_N(a/q)$ behaves like a complete Gaussian sum

$$G(a/q) = \frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q} r^d}.$$

Indeed,

$$m_N(a/q) = \frac{1}{N} \sum_{k=1}^N e^{2\pi i \frac{a}{q}k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{-\frac{r}{q} < k \le \frac{N-r}{q}} e^{2\pi i \frac{a}{q}(qk+r)^d} \simeq \frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}.$$

$$\left|\xi - \frac{a}{q}\right| \le \frac{(\log N)^{\beta}}{qN^d}$$

for any $\beta > 0$. If $1 \le q \le (\log N)^{\beta}$

$$m_{N}(\xi) = \frac{1}{N} \sum_{k=1}^{N} e^{2\pi i \xi \cdot k^{d}} = \frac{1}{N} \sum_{r=1}^{q} \sum_{-\frac{r}{q} < n \leq \frac{N-r}{q}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^{d}} e^{2\pi i \frac{a}{q}(qn+r)^{d}}$$
$$= \frac{1}{qN} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q}r^{d}} \cdot \frac{q}{N} \sum_{-\frac{r}{q} < n \leq \frac{N-r}{q}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^{d}}$$
$$= \left(\frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q}r^{d}}\right) \cdot \left(\int_{0}^{1} e^{2\pi i (\xi - \frac{a}{q})(Nx)^{d}} dx\right) + \mathcal{O}(N^{-1/2}).$$

$$m_N(\xi) = G(a/q) \cdot \Phi_N(\xi - a/q) + \mathcal{O}(N^{-1/2}).$$

$$\left|\xi - \frac{a}{q}\right| \le \frac{(\log N)^{\beta}}{qN^d}$$

for any $\beta > 0$. If $1 \le q \le (\log N)^{\beta}$

$$\begin{split} m_N(\xi) &= \frac{1}{N} \sum_{k=1}^N e^{2\pi i \xi \cdot k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^d} e^{2\pi i \frac{a}{q}(qn+r)^d} \\ &= \frac{1}{qN} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d} \cdot \frac{q}{N} \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^d} \\ &= \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q})(Nx)^d} dx\right) + \mathcal{O}(N^{-1/2}). \end{split}$$

$$m_N(\xi) = G(a/q) \cdot \Phi_N(\xi - a/q) + \mathcal{O}(N^{-1/2}).$$

$$\left|\xi - \frac{a}{q}\right| \le \frac{(\log N)^{\beta}}{qN^d}$$

for any $\beta > 0$. If $1 \le q \le (\log N)^{\beta}$

$$\begin{split} m_N(\xi) &= \frac{1}{N} \sum_{k=1}^N e^{2\pi i \xi \cdot k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q}) (qn+r)^d} e^{2\pi i \frac{a}{q} (qn+r)^d} \\ &= \frac{1}{qN} \sum_{r=1}^q e^{2\pi i \frac{a}{q} r^d} \cdot \frac{q}{N} \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q}) (qn+r)^d} \\ &= \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q} r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q}) (Nx)^d} dx\right) + \mathcal{O}(N^{-1/2}). \end{split}$$

$$m_N(\xi) = G(a/q) \cdot \Phi_N(\xi - a/q) + \mathcal{O}(N^{-1/2}).$$

$$\left|\xi - \frac{a}{q}\right| \le \frac{(\log N)^{\beta}}{qN^d}$$

for any $\beta > 0$. If $1 \le q \le (\log N)^{\beta}$

$$\begin{split} m_N(\xi) &= \frac{1}{N} \sum_{k=1}^N e^{2\pi i \xi \cdot k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^d} e^{2\pi i \frac{a}{q}(qn+r)^d} \\ &= \frac{1}{qN} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d} \cdot \frac{q}{N} \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^d} \\ &= \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q})(Nx)^d} dx\right) + \mathcal{O}(N^{-1/2}). \end{split}$$

$$m_N(\xi) = G(a/q) \cdot \Phi_N(\xi - a/q) + \mathcal{O}(N^{-1/2}).$$

$$\left|\xi - \frac{a}{q}\right| \le \frac{(\log N)^{\beta}}{qN^d}$$

for any $\beta > 0$. If $1 \le q \le (\log N)^{\beta}$

$$\begin{split} m_N(\xi) &= \frac{1}{N} \sum_{k=1}^N e^{2\pi i \xi \cdot k^d} = \frac{1}{N} \sum_{r=1}^q \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^d} e^{2\pi i \frac{a}{q}(qn+r)^d} \\ &= \frac{1}{qN} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d} \cdot \frac{q}{N} \sum_{\substack{-\frac{r}{q} < n \le \frac{N-r}{q}}} e^{2\pi i (\xi - \frac{a}{q})(qn+r)^d} \\ &= \left(\frac{1}{q} \sum_{r=1}^q e^{2\pi i \frac{a}{q}r^d}\right) \cdot \left(\int_0^1 e^{2\pi i (\xi - \frac{a}{q})(Nx)^d} dx\right) + \mathcal{O}(N^{-1/2}). \end{split}$$

$$m_N(\xi) = G(a/q) \cdot \Phi_N(\xi - a/q) + \mathcal{O}(N^{-1/2}).$$

Large denominators - Weyl's inequality

It was observed by Hardy and Littlewood that if $|\xi - a/q| \le \frac{(\log N)^{\beta}}{qN^d} \le q^{-2}$ and (a,q) = 1 and $(\log N)^{\beta} \le q \le N^d (\log N)^{-\beta}$ then

$$|m_N(\xi)| = \left|\frac{1}{N}\sum_{k=1}^N e^{2\pi i\xi k^d}\right| \lesssim (\log N)^{-lpha}$$

for any $\alpha > \alpha_{\beta}$. This follows from the following variant of Weyl's inequality.

Lemma (Weyl's inequality)

Let $P(x) = a_d x^d + \ldots + a_1 x$. Suppose there are (a, q) = 1 such that $|a_d - a/q| \le q^{-2}$. Then there is C > 0 such that

$$\frac{1}{N} \left| \sum_{m=1}^{N} e^{2\pi i P(m)} \right| \le C \log N \left(\frac{1}{q} + \frac{1}{N} + \frac{q}{N^d} \right)^{1/2^{d-1}}$$

uniformly in N and q.

Weyl's inequality is usually formulated with N^{ε} loss instead of log N. However for our purposes we need a more subtle variant with logarithmic loss.

Large denominators - Weyl's inequality

It was observed by Hardy and Littlewood that if $|\xi - a/q| \le \frac{(\log N)^{\beta}}{qN^d} \le q^{-2}$ and (a,q) = 1 and $(\log N)^{\beta} \le q \le N^d (\log N)^{-\beta}$ then

$$|m_N(\xi)| = \left|\frac{1}{N}\sum_{k=1}^N e^{2\pi i\xi k^d}\right| \lesssim (\log N)^{-lpha}$$

for any $\alpha > \alpha_{\beta}$. This follows from the following variant of Weyl's inequality.

Lemma (Weyl's inequality)

Let $P(x) = a_d x^d + \ldots + a_1 x$. Suppose there are (a, q) = 1 such that $|a_d - a/q| \le q^{-2}$. Then there is C > 0 such that

$$\frac{1}{N} \left| \sum_{m=1}^{N} e^{2\pi i P(m)} \right| \le C \log N \left(\frac{1}{q} + \frac{1}{N} + \frac{q}{N^d} \right)^{1/2^{d-1}}$$

uniformly in N and q.

Weyl's inequality is usually formulated with N^{ε} loss instead of log N. However for our purposes we need a more subtle variant with logarithmic loss.

Large denominators - Weyl's inequality

It was observed by Hardy and Littlewood that if $|\xi - a/q| \le \frac{(\log N)^{\beta}}{qN^d} \le q^{-2}$ and (a,q) = 1 and $(\log N)^{\beta} \le q \le N^d (\log N)^{-\beta}$ then

$$|m_N(\xi)| = \left|\frac{1}{N}\sum_{k=1}^N e^{2\pi i\xi k^d}\right| \lesssim (\log N)^{-lpha}$$

for any $\alpha > \alpha_{\beta}$. This follows from the following variant of Weyl's inequality.

Lemma (Weyl's inequality)

Let $P(x) = a_d x^d + \ldots + a_1 x$. Suppose there are (a, q) = 1 such that $|a_d - a/q| \le q^{-2}$. Then there is C > 0 such that

$$\frac{1}{N} \left| \sum_{m=1}^{N} e^{2\pi i P(m)} \right| \le C \log N \left(\frac{1}{q} + \frac{1}{N} + \frac{q}{N^d} \right)^{1/2^{d-1}}$$

uniformly in N and q.

Weyl's inequality is usually formulated with N^{ε} loss instead of log N. However for our purposes we need a more subtle variant with logarithmic loss.

Projections $\Xi_{n^l}(\xi)$

For an integer $l \in \mathbb{N}$ and $\chi > 0$ let us define the following projections

$$\Xi_{n^l}(\xi) = \sum_{a/q \in \mathscr{U}_{n^l}} \eta(2^{n(d-\chi)}(\xi - a/q))$$

with a smooth cuf-off function η and

$$\mathscr{U}_{n^l}=\{a/q\in\mathbb{T}:\;(a,q)=1\; ext{and}\;q\in\mathbf{P}_{n^l}\},$$

where the denominators $q \in \mathbf{P}_{n^l}$ have appropriate limitation in terms of their prime power factorization.

Since

$$m_{2^n}(\xi) = m_{2^n}(\xi)(1 - \Xi_{n^l}(\xi)) + m_{2^n}(\xi)\Xi_{n^l}(\xi),$$

the first term is supported in the regime where Weyl's inequality is efficient. The second we approximate by the integral.

Projections $\Xi_{n^l}(\xi)$

For an integer $l \in \mathbb{N}$ and $\chi > 0$ let us define the following projections

$$\Xi_{n^l}(\xi) = \sum_{a/q \in \mathscr{U}_{n^l}} \eta(2^{n(d-\chi)}(\xi - a/q))$$

with a smooth cuf-off function η and

$$\mathscr{U}_{n^l} = \{a/q \in \mathbb{T} : (a,q) = 1 \text{ and } q \in \mathbf{P}_{n^l}\},$$

where the denominators $q \in \mathbf{P}_{n^l}$ have appropriate limitation in terms of their prime power factorization.

Since

$$m_{2^n}(\xi) = m_{2^n}(\xi)(1 - \Xi_{n^l}(\xi)) + m_{2^n}(\xi)\Xi_{n^l}(\xi),$$

the first term is supported in the regime where Weyl's inequality is efficient. The second we approximate by the integral.

The highly oscillatory part $m_{2^n}(1 - \Xi_{n^l})$

Form Weyl's inequality we have

$$|m_{2^n}(\xi)| = \left|\frac{1}{2^n}\sum_{k=1}^{2^n} e^{2\pi i\xi k^d}\right| \lesssim (n+1)^{-\alpha}$$

for a large $\alpha > 0$, provided that $1 - \Xi_{n^l}(\xi) \neq 0$. Therefore, by Plancherel's theorem

$$\begin{split} \|V_r \big(\mathcal{F}^{-1} \big(m_{2^n} (1 - \Xi_{n^l}) \hat{f} \big) : n \in \mathbb{N}_0 \big) \|_{\ell^2} &\leq \|V_1 \big(\mathcal{F}^{-1} \big(m_{2^n} (1 - \Xi_{n^l}) \hat{f} \big) : n \in \mathbb{N}_0 \big) \|_{\ell^2} \\ &\leq \sum_{n \in \mathbb{N}_0} \left\| \mathcal{F}^{-1} \big(m_{2^n} (1 - \Xi_{n^l}) \hat{f} \big) \right\|_{\ell^2} \\ &\lesssim \sum_{n \in \mathbb{N}_0} (n + 1)^{-2} \|f\|_{\ell^2} \lesssim \|f\|_{\ell^2}. \end{split}$$

The asymptotic part $m_{2^n} \Xi_{n^l}$

Recall that if $a/q \in \mathscr{U}_{n^l}$ then we have

$$m_{2^{n}}(\xi) \simeq G(a/q) \cdot \Phi_{2^{n}}(\xi - a/q) = \left(\frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q}r^{d}}\right) \cdot \left(\int_{0}^{1} e^{2\pi i (\xi - \frac{a}{q})(2^{n}x)^{d}} dx\right).$$

Therefore,

$$m_{2^n}(\xi)\Xi_n(\xi)\simeq\sum_{s\geq 0}m_{2^n}^s(\xi)$$

where

$$m_{2^n}^s(\xi) = \sum_{a/q \in \mathscr{W}_{s^l}} G(a/q) \Phi_{2^n}(\xi - a/q) \eta (2^{s(d-\chi)}(\xi - a/q)),$$

with $\mathscr{W}_{s^l} \subseteq \mathscr{U}_{n^l}$ and has the property that if $q \in \mathscr{W}_{s^l}$ then $q \ge s^l$.

The task now is to show that for any $s \ge 0$ we have

$$\left\| V_r \left(\mathcal{F}^{-1} \left(m_{2^n}^s \hat{f} \right) : n \in \mathbb{N}_0 \right) \right\|_{\ell^2} \le C(s+1)^{-\delta l+1} \|f\|_{\ell^2}$$

for every $f \in \ell^2(\mathbb{Z})$, where $\delta > 0$ comes from the estimate $|G(a/q)| \leq Cq^{-\delta}$.

The asymptotic part $m_{2^n} \Xi_{n^l}$

Recall that if $a/q \in \mathscr{U}_{n^l}$ then we have

$$m_{2^{n}}(\xi) \simeq G(a/q) \cdot \Phi_{2^{n}}(\xi - a/q) = \left(\frac{1}{q} \sum_{r=1}^{q} e^{2\pi i \frac{a}{q}r^{d}}\right) \cdot \left(\int_{0}^{1} e^{2\pi i (\xi - \frac{a}{q})(2^{n}x)^{d}} dx\right).$$

Therefore,

$$m_{2^n}(\xi) \Xi_n(\xi) \simeq \sum_{s \ge 0} m_{2^n}^s(\xi)$$

where

$$m_{2^n}^s(\xi) = \sum_{a/q \in \mathscr{W}_{s^l}} G(a/q) \Phi_{2^n}(\xi - a/q) \eta \big(2^{s(d-\chi)}(\xi - a/q) \big),$$

with $\mathscr{W}_{s^l} \subseteq \mathscr{U}_{n^l}$ and has the property that if $q \in \mathscr{W}_{s^l}$ then $q \ge s^l$. The task now is to show that for any $s \ge 0$ we have

$$\|V_r(\mathcal{F}^{-1}(m_{2^n}^s\hat{f}):n\in\mathbb{N}_0)\|_{\ell^2}\leq C(s+1)^{-\delta l+1}\|f\|_{\ell^2}$$

for every $f \in \ell^2(\mathbb{Z})$, where $\delta > 0$ comes from the estimate $|G(a/q)| \leq Cq^{-\delta}$.

The case
$$0 \le n \le 2^s$$

Simple numerical inequality

For any sequence $(a_j : 0 \le j \le 2^s) \subseteq \mathbb{C}$, for $s \in \mathbb{N} \cup \{0\}$ and r > 2, we have

$$V_r(a_n: 0 \le n \le 2^s) \le \sqrt{2} \sum_{i=0}^s \left(\sum_{j=0}^{2^{s-i}-1} |a_{(j+1)2^i} - a_{j2^i}|^2 \right)^{1/2}$$

Hence by Plancherel's theorem we obtain

$$\begin{split} \left\| V_r(\mathcal{F}^{-1}(m_{2^n}^s \hat{f}) : 0 \leq n \leq 2^s) \right\|_{\ell^2} \\ \lesssim \left\| \sum_{i=0}^s \left(\sum_{j=0}^{2^{s-i}-1} \left(\sum_{k=j2^i}^{(j+1)2^i-1} \mathcal{F}^{-1}((m_{2^{k+1}}^s - m_{2^k}^s)\hat{f}) \right)^2 \right)^{1/2} \right\|_{\ell^2} \\ \lesssim \sum_{i=0}^s \left(\sum_{j=0}^{2^{s-i}-1} \left\| \sum_{k=j2^i}^{(j+1)2^i-1} (m_{2^{k+1}}^s - m_{2^k}^s)\hat{f} \right\|_{L^2}^2 \right)^{1/2} \lesssim s(s+1)^{-\delta l} \|f\|_{\ell^2}. \end{split}$$

The case
$$0 \le n \le 2^s$$

Simple numerical inequality

For any sequence $(a_j : 0 \le j \le 2^s) \subseteq \mathbb{C}$, for $s \in \mathbb{N} \cup \{0\}$ and r > 2, we have

$$V_r(a_n: 0 \le n \le 2^s) \le \sqrt{2} \sum_{i=0}^s \left(\sum_{j=0}^{2^{s-i}-1} |a_{(j+1)2^i} - a_{j2^i}|^2 \right)^{1/2}$$

Hence by Plancherel's theorem we obtain

$$\begin{split} \left\| V_r(\mathcal{F}^{-1}(m_{2^n}^s \hat{f}) : 0 \le n \le 2^s) \right\|_{\ell^2} \\ \lesssim \left\| \sum_{i=0}^s \left(\sum_{j=0}^{2^{s-i}-1} \left(\sum_{k=j2^i}^{(j+1)2^i-1} \mathcal{F}^{-1}((m_{2^{k+1}}^s - m_{2^k}^s) \hat{f}) \right)^2 \right)^{1/2} \right\|_{\ell^2} \\ \lesssim \sum_{i=0}^s \left(\sum_{j=0}^{2^{s-i}-1} \left\| \sum_{k=j2^i}^{(j+1)2^i-1} (m_{2^{k+1}}^s - m_{2^k}^s) \hat{f} \right\|_{L^2}^2 \right)^{1/2} \lesssim s(s+1)^{-\delta l} \|f\|_{\ell^2}. \end{split}$$
The case $n \ge 2^s$

For the second part we show that

$$\begin{split} \|V_r(\mathcal{F}^{-1}(m_{2^n}^s\hat{f}):n\geq 2^s)\|_{\ell^2(\mathbb{Z})} \\ \lesssim (s+1)^{-\delta l+1} \sup_{\|g\|_{L^2(\mathbb{R})}=1} \|V_r(\mathcal{F}^{-1}(\Phi_N)*g:N\in\mathbb{N})\|_{L^2(\mathbb{R})} \|f\|_{\ell^2(\mathbb{Z})} \end{split}$$

which by Jones, Seeger and Wright theorem one can conclude that for any r > 2 and $p \in (1, \infty)$

$$\left\|V_r(\mathcal{F}^{-1}(\Phi_N) * g : N \in \mathbb{N})\right\|_{L^p(\mathbb{R})} \lesssim \|g\|_{L^p(\mathbb{R})}.$$

The case $n \ge 2^s$

For the second part we show that

$$\begin{split} \|V_r(\mathcal{F}^{-1}(m_{2^n}^s\hat{f}):n\geq 2^s)\|_{\ell^2(\mathbb{Z})} \\ \lesssim (s+1)^{-\delta l+1} \sup_{\|g\|_{L^2(\mathbb{R})}=1} \|V_r(\mathcal{F}^{-1}(\Phi_N)*g:N\in\mathbb{N})\|_{L^2(\mathbb{R})} \|f\|_{\ell^2(\mathbb{Z})} \end{split}$$

which by Jones, Seeger and Wright theorem one can conclude that for any r>2 and $p\in(1,\infty)$

$$\left\|V_r(\mathcal{F}^{-1}(\Phi_N) * g : N \in \mathbb{N})\right\|_{L^p(\mathbb{R})} \lesssim \|g\|_{L^p(\mathbb{R})}.$$

Where are the difficulties?

One of the major obstacle in the discrete theory is the following inequality

 $N_{\lambda}(F_t + G_t : t > 0)(x) \le N_{\lambda/2}(F_t : t > 0)(x) + N_{\lambda/2}(G_t : t > 0)(x).$

Therefore, with this definition of jumps we cannot justify that

 $ig\|\lambdaig[N_\lambda(\mathcal{F}^{-1}ig(m_{2^n}^s\widehat{f}ig):n\geq 2^s)ig]^{1/2}ig\|_{\ell^2(\mathbb{Z})} \lesssim (s\!+\!1)^{-\delta l+1}\sup_{\|g\|_{L^2(\mathbb{R})}=1}ig\|\lambdaig[N_\lambda(\mathcal{F}^{-1}ig(\Phi_Nig)*g:N\in\mathbb{N})ig]^{1/2}ig\|_{L^2(\mathbb{R})}\|f\|_{\ell^2(\mathbb{Z})}.$

However, the real interpolation turned out to be useful!

Where are the difficulties?

One of the major obstacle in the discrete theory is the following inequality

 $N_{\lambda}(F_t + G_t : t > 0)(x) \le N_{\lambda/2}(F_t : t > 0)(x) + N_{\lambda/2}(G_t : t > 0)(x).$

Therefore, with this definition of jumps we cannot justify that

$$\begin{split} & \left\|\lambda \left[N_{\lambda}(\mathcal{F}^{-1}\left(m_{2^{n}}^{s}\widehat{f}\right):n\geq 2^{s})\right]^{1/2}\right\|_{\ell^{2}(\mathbb{Z})}\\ &\lesssim (s+1)^{-\delta l+1}\sup_{\|g\|_{L^{2}(\mathbb{R})}=1}\left\|\lambda \left[N_{\lambda}(\mathcal{F}^{-1}\left(\Phi_{N}\right)\ast g:N\in\mathbb{N})\right]^{1/2}\right\|_{L^{2}(\mathbb{R})}\|f\|_{\ell^{2}(\mathbb{Z})}. \end{split}$$

However, the real interpolation turned out to be useful!

Where are the difficulties?

One of the major obstacle in the discrete theory is the following inequality

 $N_{\lambda}(F_t + G_t : t > 0)(x) \le N_{\lambda/2}(F_t : t > 0)(x) + N_{\lambda/2}(G_t : t > 0)(x).$

Therefore, with this definition of jumps we cannot justify that

$$\begin{split} & \left\|\lambda \left[N_{\lambda}(\mathcal{F}^{-1}\left(m_{2^{n}}^{s}\widehat{f}\right):n\geq 2^{s})\right]^{1/2}\right\|_{\ell^{2}(\mathbb{Z})}\\ &\lesssim (s+1)^{-\delta l+1}\sup_{\|g\|_{L^{2}(\mathbb{R})}=1}\left\|\lambda \left[N_{\lambda}(\mathcal{F}^{-1}\left(\Phi_{N}\right)\ast g:N\in\mathbb{N})\right]^{1/2}\right\|_{L^{2}(\mathbb{R})}\|f\|_{\ell^{2}(\mathbb{Z})}. \end{split}$$

However, the real interpolation turned out to be useful!

Real interpolation K-method

- Let (A₀, A₁) be a compatible couple of normed vector spaces (this means that they are both contained in some ambient topological vector space and the intersection A₀ ∩ A₁ is dense both in A₀ and in A₁).
- For $a \in A_0 + A_1$ the *K*-functional is defined

$$K(t, a, A_1, A_2) = \inf_{a=a_1+a_2} \left(\|a_0\|_{A_0} + t \|a_1\|_{A_1} \right)$$

For $\theta \in (0, 1)$ and $1 \le r \le \infty$ we define real interpolation space

$$[A_0, A_1]_{\theta, r} = \Big\{ a \in A_0 + A_1 : \int_0^\infty \big(t^{-\theta} K(t, a, A_1, A_2) \big)^r \frac{dt}{t} < \infty \Big\}.$$

• $[A_0, A_1]_{\theta, r}$ is equipped with the norm

$$||a||_{[A_0,A_1]_{\theta,r}} = \left(\int_0^\infty \left(t^{-\theta}K(t,a,A_1,A_2)\right)^r \frac{dt}{t}\right)^{1/r}$$

• If $r = \infty$ we have $||a||_{[A_0,A_1]_{\theta,r}} = \sup_{t>0} t^{-\theta} K(t,a,A_1,A_2).$

Example

Let (X, B, μ) be a measure space. For any measurable function f : X → C we define its decreasing rearrangement by setting

$$f^*(t) = \inf \{\lambda > 0 : \mu(\{x \in X : |f(x)| > \lambda) \le t\}.$$

The Lorentz space L^{p,q}(X, µ) for 0 < p,q < ∞ is defined as a space of those measurable functions f : X → C for which</p>

$$\|f\|_{L^{p,q}} = \left(\int_0^\infty \left(t^{1/p} f^*(t)\right)^q \frac{dt}{t}\right)^{1/q} < \infty$$

and for p = q we have $L^{p,q}(X, \mu) = L^p(X, \mu)$.

For $q = \infty$ we have weak L^p space and

$$||f||_{L^{p,\infty}} = \sup_{t>0} t^{1/p} f^*(t).$$

Example

• If
$$f \in L^1(X, \mu) + L^{\infty}(X, \mu)$$
 then

$$K(t,f,L^1,L^\infty) = \int_0^t f^*(t)dt.$$

• Consequently for $0 and <math>1 \le q \le \infty$

$$[L^1, L^\infty]_{\theta,q} = L^{p,q}(X, \mu),$$

where

$$\frac{1}{p} = \frac{1-\theta}{1} + \frac{\theta}{\infty}.$$

Real interpolation for the jump function

Theorem

Let (X, \mathcal{B}, μ) be a measure space. Then for every $0 and <math>0 < q \le \infty$ there are constants $0 < c_{p,q} \le C_{p,q}$ such that for every measurable function $f : (0, \infty) \times X \to \mathbb{C}$ we have

$$\begin{split} c_{p,q} \sup_{\lambda>0} \|\lambda \big[N_{\lambda}(f(t,x):t>0) \big]^{1/2} \|_{L^{p,q}(X,d\mu(x))} \\ &\leq \big[L^{\infty}(V_{\infty}), L^{p/2,q/2}(V_{1}) \big]_{1/2,\infty}(f) \\ &\leq C_{p,q} \sup_{\lambda>0} \|\lambda \big[N_{\lambda}(f(t,x):t>0) \big]^{1/2} \|_{L^{p,q}(X,d\mu(x))}. \end{split}$$

Therefore, if 1 the space

$$\left[L^{\infty}(V_{\infty}),L^{p/2,q/2}(V_1)
ight]_{1/2,\infty}$$

is a Banach space.

Real interpolation for the jump function

Theorem

Let (X, \mathcal{B}, μ) be a measure space. Then for every $0 and <math>0 < q \le \infty$ there are constants $0 < c_{p,q} \le C_{p,q}$ such that for every measurable function $f : (0, \infty) \times X \to \mathbb{C}$ we have

$$\begin{split} c_{p,q} \sup_{\lambda>0} \|\lambda \big[N_{\lambda}(f(t,x):t>0) \big]^{1/2} \|_{L^{p,q}(X,d\mu(x))} \\ &\leq \big[L^{\infty}(V_{\infty}), L^{p/2,q/2}(V_{1}) \big]_{1/2,\infty}(f) \\ &\leq C_{p,q} \sup_{\lambda>0} \|\lambda \big[N_{\lambda}(f(t,x):t>0) \big]^{1/2} \|_{L^{p,q}(X,d\mu(x))}. \end{split}$$

Therefore, if 1 the space

$$\left[L^{\infty}(V_{\infty}),L^{p/2,q/2}(V_1)
ight]_{1/2,\infty}$$

is a Banach space.

Thank You!