A cone restriction estimate using polynomial partitioning

Yumeng Ou

MIT

Recent developments in harmonic analysis MSRI Workshop May $15\ 2017$

Fourier restriction (extension) estimate

(Restriction) problem

Let S be a smooth compact hypersurface with surface measure $d\sigma$, find the optimal range of (p,q) s.t.

$$\|\hat{f}|_S\|_{L^q(S;d\sigma)} \lesssim \|f\|_{L^p(\mathbb{R}^n)}.$$

(Restriction) problem

Let S be a smooth compact hypersurface with surface measure $d\sigma$, find the optimal range of (p,q) s.t.

$$\|\hat{f}|_S\|_{L^q(S;d\sigma)} \lesssim \|f\|_{L^p(\mathbb{R}^n)}.$$

- $f \in L^1 \implies \hat{f}$ is continuous, bounded \implies all $q \in [1, \infty]$ work.
- $f \in L^2 \implies \hat{f} \in L^2 \implies \text{all } q \in [1, \infty] \text{ fail.}$

(Restriction) problem

Let S be a smooth compact hypersurface with surface measure $d\sigma$, find the optimal range of (p,q) s.t.

$$\|\hat{f}|_S\|_{L^q(S;d\sigma)} \lesssim \|f\|_{L^p(\mathbb{R}^n)}.$$

- $f \in L^1 \implies \hat{f}$ is continuous, bounded \implies all $q \in [1, \infty]$ work.
- $f \in L^2 \implies \hat{f} \in L^2 \implies \text{all } q \in [1, \infty] \text{ fail.}$

What happens if 1 ?

(Restriction) problem

Let S be a smooth compact hypersurface with surface measure $d\sigma$, find the optimal range of (p,q) s.t.

$$\|\hat{f}|_S\|_{L^q(S;d\sigma)} \lesssim \|f\|_{L^p(\mathbb{R}^n)}.$$

- $f \in L^1 \implies \hat{f}$ is continuous, bounded \implies all $q \in [1, \infty]$ work.
- $f \in L^2 \implies \hat{f} \in L^2 \implies \text{all } q \in [1, \infty] \text{ fail.}$

What happens if 1 ?

Equivalent (extension) problem

$$||E_S g||_{L^{p'}(\mathbb{R}^n)} \lesssim ||g||_{L^{q'}(S;d\sigma)}, \quad E_S g(x) := \int_S g(\xi) e^{ix\cdot\xi} d\sigma(\xi).$$

Fourier restriction (extension) estimate

• Related problems: Kakeya conjecture, Bochner-Riesz conjecture, spacetime norms of solution to certain PDE, etc.

- Related problems: Kakeya conjecture, Bochner-Riesz conjecture, spacetime norms of solution to certain PDE, etc.
- ullet N needs to contain sufficient curvature. Prototype examples: compact subsets of sphere, paraboloid, cone:

$$\mathcal{C} := \{ (\xi, \xi_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : \xi_n = |\xi|, \ 1 \leqslant \xi_j \leqslant 2, \forall j \},$$

$$Ef(x) := E_{\mathcal{C}}f = \int_{2B^{n-1} \setminus B^{n-1}} e^{i(x_1 \xi_1 + \dots + x_{n-1} \xi_{n-1} + x_n |\xi|)} f(\xi) \, d\xi.$$

- Related problems: Kakeya conjecture, Bochner-Riesz conjecture, spacetime norms of solution to certain PDE, etc.
- S needs to contain sufficient curvature. Prototype examples: compact subsets of sphere, paraboloid, cone:

$$C := \{ (\xi, \xi_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : \xi_n = |\xi|, \ 1 \leqslant \xi_j \leqslant 2, \forall j \},$$

$$Ef(x) := E_C f = \int_{2B^{n-1} \setminus B^{n-1}} e^{i(x_1 \xi_1 + \dots + x_{n-1} \xi_{n-1} + x_n |\xi|)} f(\xi) \, d\xi.$$

Cone restriction conjecture

For all
$$p > \frac{2(n-1)}{n-2}, q' \leqslant \frac{n-2}{n}p$$
, there holds

$$||Ef||_{L^p(\mathbb{R}^n)} \lesssim ||f||_{L^q(2B^{n-1}\setminus B^{n-1})}.$$

Conjecture:
$$||Ef||_p \lesssim ||f||_q \text{ for } p > \frac{2(n-1)}{n-2}, q' \leqslant \frac{n-2}{n}p$$

The conjecture was solved only in n=3 ([Barcelo '85]) and n=4 ([Wolff '01]).

Conjecture:
$$||Ef||_p \lesssim ||f||_q \text{ for } p > \frac{2(n-1)}{n-2}, q' \leqslant \frac{n-2}{n}p$$

The conjecture was solved only in n = 3 ([Barcelo '85]) and n = 4 ([Wolff '01]).

Theorem (O-Wang '17)

For n = 5, the cone restriction estimate holds in the full conjectured range $p > \frac{8}{3}$, $q' \leq \frac{3}{5}p$.

Conjecture:
$$||Ef||_p \leq ||f||_q \text{ for } p > \frac{2(n-1)}{n-2}, q' \leq \frac{n-2}{n}p$$

The conjecture was solved only in n = 3 ([Barcelo '85]) and n = 4 ([Wolff '01]).

Theorem (O-Wang '17)

For n = 5, the cone restriction estimate holds in the full conjectured range $p > \frac{8}{3}$, $q' \leq \frac{3}{5}p$.

Theorem (O-Wang '17)

For $n \geq 3$, there holds $||Ef||_{L^p(\mathbb{R}^n)} \lesssim ||f||_{L^p(2B^{n-1}\setminus B^{n-1})}$ whenever

$$p > \begin{cases} 4 & \text{if } n = 3, \\ 2 \cdot \frac{3n+1}{3n-3} & \text{if } n > 3 \text{ odd,} \\ 2 \cdot \frac{3n}{3n-4} & \text{if } n > 3 \text{ even.} \end{cases}$$

Reduce to "k-broad" restriction estimate

By " ϵ -removal", it suffices to prove the localized version

$$||Ef||_{L^p(B_R)} \lesssim R^{\epsilon} ||f||_{L^q(2B^{n-1}\setminus B^{n-1})}.$$

By " ϵ -removal", it suffices to prove the localized version

$$||Ef||_{L^p(B_R)} \lesssim R^{\epsilon} ||f||_{L^q(2B^{n-1}\setminus B^{n-1})}.$$

Decomposing cone \mathcal{C} into strips τ with radius K^{-1} yields

$$Ef = \sum_{\tau} Ef_{\tau}, \quad \#\{\tau\} \lesssim K^{n-2} \quad (K < R^{\epsilon}).$$

- Frequency: τ is contained in a rectangular box of sidelengths $1 \times K^{-1} \times \cdots \times K^{-1} \times K^{-2}$;
- Space: Ef_{τ} is essentially supported and constant in its dual tubes of sidelengths $1 \times K \times \cdots \times K \times K^2$. $G(\tau)$: long direction of the tubes.

Decompose B_R into small balls B_{K^2} . For each B_{K^2} , let $V \subset \mathbb{R}^n$: (k-1) dim subspace $(2 \le k \le n)$.

$$||Ef||_{L^p(B_{K^2})} \lesssim ||\sum_{\text{``} \tau \in V"} Ef_{\tau}||_{L^p(B_{K^2})} + ||\sum_{\text{``} \tau \notin V"} Ef_{\tau}||_{L^p(B_{K^2})}.$$
Narrow
Broad

" $\tau \in V$ ": $G(\tau)$ is close to V up to angle K^{-1} .

Decompose B_R into small balls B_{K^2} . For each B_{K^2} , let $V \subset \mathbb{R}^n$: (k-1) dim subspace $(2 \le k \le n)$.

$$||Ef||_{L^p(B_{K^2})} \lesssim ||\sum_{\text{``} \tau \in V"} Ef_{\tau}||_{L^p(B_{K^2})} + ||\sum_{\text{``} \tau \notin V"} Ef_{\tau}||_{L^p(B_{K^2})}.$$
Narrow

" $\tau \in V$ ": $G(\tau)$ is close to V up to angle K^{-1} .

1). Narrow part: decoupling + Hölder's inequality

$$\| \sum_{\text{``} \tau \in V\text{'''}} E f_{\tau} \|_{L^{p}(B_{K^{2}})}^{p} \lesssim K^{\delta} \left(\sum_{\text{``} \tau \in V\text{'''}} \| E f_{\tau} \|_{L^{p}(B_{K^{2}})}^{2} \right)^{p/2}$$

$$\leq K^{C(\delta,k,p)} \sum_{\text{``} \tau \in V\text{'''}} \| E f_{\tau} \|_{L^{p}(B_{K^{2}})}^{p}.$$

Sum over B_{K^2} :

$$\| \sum_{\text{``} \tau \in V\text{'''}} E f_{\tau} \|_{L^{p}(B_{R})}^{p} \lesssim K^{C(\delta,k,p)} \sum_{\tau} \| E f_{\tau} \|_{L^{p}(B_{R})}^{p}.$$

- Lorentz rescaling: blow up the scale of τ , shrink the scale of B_R .
- 2 Induct on R: induction closes when $p > p_1(k, n)$.

Sum over B_{K^2} :

$$\| \sum_{\text{``} \tau \in V"} E f_{\tau} \|_{L^{p}(B_{R})}^{p} \lesssim K^{C(\delta,k,p)} \sum_{\tau} \| E f_{\tau} \|_{L^{p}(B_{R})}^{p}.$$

- Lorentz rescaling: blow up the scale of τ , shrink the scale of B_R .
- 2 Induct on R: induction closes when $p > p_1(k, n)$.
- 2) Broad part: "k-broad" restriction estimate for $p > p_2(k, n)$

$$\begin{split} \sum_{B_{K^2} \subset B_R} \| \sum_{\text{``} \tau \notin V\text{''}} Ef_{\tau} \|_{L^p(B_{K^2})}^p \lesssim & \sum_{B_{K^2} \subset B_R} K^{O(1)} \max_{\text{``} \tau \notin V\text{''}} \| Ef_{\tau} \|_{L^p(B_{K^2})}^p \\ \lesssim & C(K, \epsilon) R^{p\epsilon} \| f \|_{L^q}^p. \end{split}$$

Sum over B_{K^2} :

$$\| \sum_{\text{``} \tau \in V"} E f_{\tau} \|_{L^{p}(B_{R})}^{p} \lesssim K^{C(\delta,k,p)} \sum_{\tau} \| E f_{\tau} \|_{L^{p}(B_{R})}^{p}.$$

- Lorentz rescaling: blow up the scale of τ , shrink the scale of B_R .
- 2 Induct on R: induction closes when $p > p_1(k, n)$.
- 2) Broad part: "k-broad" restriction estimate for $p > p_2(k, n)$

$$\begin{split} \sum_{B_{K^2} \subset B_R} \| \sum_{\text{``} \tau \notin V\text{''}} Ef_\tau \|_{L^p(B_{K^2})}^p \lesssim & \sum_{B_{K^2} \subset B_R} K^{O(1)} \max_{\text{``} \tau \notin V\text{''}} \| Ef_\tau \|_{L^p(B_{K^2})}^p \\ \lesssim & C(K, \epsilon) R^{p\epsilon} \| f \|_{L^q}^p. \end{split}$$

3) Find the best k that balances $p_1(k, n), p_2(k, n)$.

k-broad norm

$$\mu_{Ef}(B_{K^2}) := \min_{V_1, \dots, V_A(k-1) \text{ -subspace of } \mathbb{R}^n} \left(\max_{\tau \notin V_a, \forall a} \|Ef_\tau\|_{L^p(B_{K^2})}^p \right)$$

gives rise to a measure on any open set U

$$||Ef||_{BL_{k,A}^p(U)}^p := \mu_{Ef}(U) := \sum_{B_{K^2} \subset U} \mu_{Ef}(B_{K^2}).$$

Theorem (O-Wang '17)

For any $2 \le k \le n$, $\epsilon > 0$, there is a large constant A s.t.

$$||Ef||_{BL_{k-A}^p(B_R)} \lesssim_{K,\epsilon} R^{\epsilon} ||f||_{L^2(2B^{n-1}\setminus B^{n-1})}$$

holds for all K and $p \ge \bar{p}(k, n) = 2 \cdot \frac{n+k}{n+k-2}$.

Why need so many (k-1)-subspace V_1, \ldots, V_A ?

Unlike L^p , $||Ef||_{BL_{k,A}^p(U)}$ is not literally a norm. But for A sufficiently large, it satisfies for all $A = A_1 + A_2$

• Triangle inequality

$$||E(f_1+f_2)||_{BL_{k,A}^p(U)} \lesssim ||Ef_1||_{BL_{k,A_1}^p(U)} + ||Ef_2||_{BL_{k,A_2}^p(U)}.$$

• Hölder's inequality

$$||Ef||_{BL_{k,A}^{p}(U)} \leq ||Ef||_{BL_{k,A_{1}}^{p_{1}}(U)}^{\alpha} ||Ef||_{BL_{k,A_{2}}^{p_{2}}(U)}^{1-\alpha},$$

where $1 \le p, p_1, p_2 < \infty, \ 0 \le \alpha \le 1, \ \frac{1}{p} = \frac{\alpha}{p_1} + \frac{1-\alpha}{p_2}$.

k-linear restriction conjecture

If f_j is supported in U_j , $1 \le j \le k$, where $U_1, \ldots, U_k \subset 2B^{n-1} \setminus B^{n-1}$ are transversal, i.e. $|G(U_1) \wedge \cdots \wedge G(U_k)| \gtrsim 1$, then

$$\left\| \prod_{j=1}^{k} |Ef_j|^{1/k} \right\|_{L^p(B_R)} \lesssim R^{\epsilon} \prod_{j=1}^{k} \|f_j\|_{L^2(2B^{n-1}\setminus B^{n-1})}^{1/k}$$

whenver $p \geqslant \bar{p}(k,n) := 2 \cdot \frac{n+k}{n+k-2}$.

k-linear restriction conjecture

If f_j is supported in U_j , $1 \le j \le k$, where $U_1, \ldots, U_k \subset 2B^{n-1} \setminus B^{n-1}$ are transversal, i.e. $|G(U_1) \wedge \cdots \wedge G(U_k)| \gtrsim 1$, then

$$\left\| \prod_{j=1}^{k} |Ef_j|^{1/k} \right\|_{L^p(B_R)} \lesssim R^{\epsilon} \prod_{j=1}^{k} \|f_j\|_{L^2(2B^{n-1}\setminus B^{n-1})}^{1/k}$$

whenver $p \ge \bar{p}(k,n) := 2 \cdot \frac{n+k}{n+k-2}$.

• Only known for k = 2, n ([Wolff '01], [Bennett-Carbery-Tao '06]).

k-linear restriction conjecture

If f_j is supported in U_j , $1 \le j \le k$, where $U_1, \ldots, U_k \subset 2B^{n-1} \setminus B^{n-1}$ are transversal, i.e. $|G(U_1) \wedge \cdots \wedge G(U_k)| \gtrsim 1$, then

$$\left\| \prod_{j=1}^{k} |Ef_j|^{1/k} \right\|_{L^p(B_R)} \lesssim R^{\epsilon} \prod_{j=1}^{k} \|f_j\|_{L^2(2B^{n-1}\setminus B^{n-1})}^{1/k}$$

whenver $p \geqslant \bar{p}(k,n) := 2 \cdot \frac{n+k}{n+k-2}$.

- Only known for k = 2, n ([Wolff '01], [Bennett-Carbery-Tao '06]).
- k-broad estimate is a weaker substitute for this.

k-linear restriction conjecture

If f_j is supported in U_j , $1 \le j \le k$, where $U_1, \ldots, U_k \subset 2B^{n-1} \setminus B^{n-1}$ are transversal, i.e. $|G(U_1) \wedge \cdots \wedge G(U_k)| \gtrsim 1$, then

$$\left\| \prod_{j=1}^{k} |Ef_j|^{1/k} \right\|_{L^p(B_R)} \lesssim R^{\epsilon} \prod_{j=1}^{k} \|f_j\|_{L^2(2B^{n-1}\setminus B^{n-1})}^{1/k}$$

whenver $p \geqslant \bar{p}(k,n) := 2 \cdot \frac{n+k}{n+k-2}$.

- Only known for k = 2, n ([Wolff '01], [Bennett-Carbery-Tao '06]).
- k-broad estimate is a weaker substitute for this.
- Some schemes of using bilinear/multilinear restriction to prove linear restriction: [Wolff '01], [Tao '02], [Bourgain-Guth '11].

Wave packet decomposition

Wave packet decomposition: $f = \sum_{\theta,v} f_{\theta,v} + \text{RapDec}(R) ||f||_{L^2}$.

- supp $f_{\theta,v} \subset \theta$, $Ef_{\theta,v}$ is essentially supported and constant on $T_{\theta,v}$.
- Orthogonality: $\left\| \sum_{\theta, v} f_{\theta, v} \right\|_{L^2}^2 \approx \sum_{\theta, v} \| f_{\theta, v} \|_{L^2}^2$.

Polynomial partitioning

Theorem (Guth '16)

Fix constant D, there exists a polynomial P on \mathbb{R}^n with $\deg(P) \leq D$ s.t. Z(P) divides $\mathbb{R}^n \backslash Z(P)$ into disjoint union of $\sim D^n$ open sets O_i with equal measure $\mu_{Ef}(O_i)$, where μ_{Ef} is the measure determined by

$$\mu_{Ef}(B_{K^2}) = \min_{V_1, \dots, V_A(k-1) \text{-subspace of } \mathbb{R}^n} \left(\max_{\tau \notin V_a, \forall a} \|Ef_{\tau}\|_{L^p(B_{K^2})}^p \right).$$

Polynomial partitioning

Theorem (Guth '16)

Fix constant D, there exists a polynomial P on \mathbb{R}^n with $\deg(P) \leq D$ s.t. Z(P) divides $\mathbb{R}^n \backslash Z(P)$ into disjoint union of $\sim D^n$ open sets O_i with equal measure $\mu_{Ef}(O_i)$, where μ_{Ef} is the measure determined by

$$\mu_{Ef}(B_{K^2}) = \min_{V_1, \dots, V_A(k-1) \text{ -subspace of } \mathbb{R}^n} \left(\max_{\tau \notin V_a, \forall a} \|Ef_{\tau}\|_{L^p(B_{K^2})}^p \right).$$

• Property: a straight line (not contained in Z(P)) can cross Z(P) at most D times.

Polynomial partitioning

Theorem (Guth '16)

Fix constant D, there exists a polynomial P on \mathbb{R}^n with $\deg(P) \leq D$ s.t. Z(P) divides $\mathbb{R}^n \backslash Z(P)$ into disjoint union of $\sim D^n$ open sets O_i with equal measure $\mu_{Ef}(O_i)$, where μ_{Ef} is the measure determined by

$$\mu_{Ef}(B_{K^2}) = \min_{V_1, \dots, V_A(k-1) \text{ -subspace of } \mathbb{R}^n} \left(\max_{\tau \notin V_a, \forall a} \|Ef_\tau\|_{L^p(B_{K^2})}^p \right).$$

- Property: a straight line (not contained in Z(P)) can cross Z(P) at most D times.
- Fatten up Z(P) to wall $W = N_{R^{1/2}}(Z(P))$: make sure that each $T_{\theta,v}$ can intersect at most D cells $\widetilde{O}_i := O_i \backslash W$.

Three cases

Which part of B_R and f makes the most contribution to $\mu_{Ef}(B_R)$?

- $\sum_{i} \mu_{Ef}(\widetilde{O}_{i})$ (Cellular case)
- $\mu_{Ef_{\text{trans}}}(W)$ where f_{trans} concentrates on the wave packets cutting cross Z (Transversal case)
- $\mu_{Ef_{\rm tang}}(W)$ where $f_{\rm tang}$ concentrates on the wave packets tangential to Z (Tangential case)

Prove k-broad using polynomial partitioning

Cellular case $\sum_{i} \mu_{Ef}(\widetilde{O}_{i})$: induct on # of wave packets

Recall
$$\#\{\widetilde{O}_i\} \sim D^n$$
. $f_i := \sum_{T_{\theta,v} \cap \widetilde{O}_i \neq \emptyset} f_{\theta,v} \implies \mu_{Ef}(\widetilde{O}_i) = \mu_{Ef_i}(\widetilde{O}_i)$.

Cellular case $\sum_{i} \mu_{Ef}(\widetilde{O}_{i})$: induct on # of wave packets

Recall
$$\#\{\widetilde{O}_i\} \sim D^n$$
. $f_i := \sum_{T_{\theta,v} \cap \widetilde{O}_i \neq \emptyset} f_{\theta,v} \implies \mu_{Ef}(\widetilde{O}_i) = \mu_{Ef_i}(\widetilde{O}_i)$.

• $\sum_{i} \mu_{Ef}(\widetilde{O}_i) \gtrsim \mu_{Ef}(B_R)$

$$\implies$$
 most i satisfies $\mu_{Ef}(\widetilde{O}_i) \gtrsim D^{-n} \mu_{Ef}(B_R)$. (3.1)

• Each $T_{\theta,v}$ intersects $\lesssim D$ different \widetilde{O}_i 's $\Longrightarrow \sum_i \|f_i\|_{L^2}^2 \lesssim D\|f\|_{L^2}^2$

$$\implies$$
 most i satisfies $||f_i||_{L^2}^2 \lesssim D^{1-n} ||f||_{L^2}^2$. (3.2)

Cellular case $\sum_{i} \mu_{Ef}(\widetilde{O}_{i})$: induct on # of wave packets

Recall
$$\#\{\widetilde{O}_i\} \sim D^n$$
. $f_i := \sum_{T_{\theta,v} \cap \widetilde{O}_i \neq \emptyset} f_{\theta,v} \implies \mu_{Ef}(\widetilde{O}_i) = \mu_{Ef_i}(\widetilde{O}_i)$.

• $\sum_{i} \mu_{Ef}(\widetilde{O}_i) \gtrsim \mu_{Ef}(B_R)$

$$\implies$$
 most i satisfies $\mu_{Ef}(\tilde{O}_i) \gtrsim D^{-n}\mu_{Ef}(B_R)$. (3.1)

• Each $T_{\theta,v}$ intersects $\lesssim D$ different \widetilde{O}_i 's $\Longrightarrow \sum_i ||f_i||_{L^2}^2 \lesssim D||f||_{L^2}^2$

$$\implies$$
 most *i* satisfies $||f_i||_{L^2}^2 \lesssim D^{1-n} ||f||_{L^2}^2$. (3.2)

Fix i satisfying both, then

$$\mu_{Ef}(B_R) \overset{\text{(3.1)}}{\lesssim} D^n \mu_{Ef_i}(\widetilde{O}_i) \overset{*}{\lesssim} D^n R^{\epsilon p} \|f_i\|_{L^2}^p \overset{\text{(3.2)}}{\lesssim} R^{\epsilon p} D^n D^{(1-n)p/2} \|f\|_{L^2}^p.$$

*: Induction hypothesis. Induction closes when $n + (1 - n)p/2 \le 0$.

Transversal case $\mu_{Ef_{\text{trans}}}(W)$: induct on R

Cover W with balls $\{B_j\}$ of radius $\rho = R^{1-\delta}$. $f_j := \sum_{T_{\theta,v} \cap B_j \neq \emptyset} f_{\theta,v}$.

Transversal case $\mu_{Ef_{\text{trans}}}(W)$: induct on R

Cover W with balls $\{B_j\}$ of radius $\rho = R^{1-\delta}$. $f_j := \sum_{T_{\theta,v} \cap B_j \neq \emptyset} f_{\theta,v}$.

$$\mu_{Ef_{\text{trans}}}(W)$$

$$\leq \sum_{j} \mu_{Ef_{j}}(B_{j} \cap W)$$

$$\stackrel{*}{\lesssim} \sum_{j} \rho^{\epsilon p} \|f_{j}\|_{L^{2}}^{p} \leqslant \rho^{\epsilon p} \left(\sum_{j} \|f_{j}\|_{L^{2}}^{2} \right)^{p/2}$$

$$\stackrel{**}{\lesssim} \rho^{\epsilon p} D^{np/2} ||f||_{L^2}^p \leqslant R^{\epsilon p} ||f||_{L^2}^p.$$

(*: Induction hypothesis. **: Each $T_{\theta,v}$ can transversely cut through at most D^n B_i 's.)

Tangential case $\mu_{Ef_{\text{tang}}}(W)$: reduce dimension

This essentially becomes a restriction problem in \mathbb{R}^{n-1} , on which we perform another polynomial partitioning.

Tangential case $\mu_{Ef_{\text{tang}}}(W)$: reduce dimension

This essentially becomes a restriction problem in \mathbb{R}^{n-1} , on which we perform another polynomial partitioning.

- Cellular case
- Tangential case: induct on dimension m of the variety Z. (Base case: m = k 1, $\mu_{Ef}(B_{K^2}) = 0$, $\forall B_{K^2}$.)

Tangential case $\mu_{Ef_{\text{tang}}}(W)$: reduce dimension

This essentially becomes a restriction problem in \mathbb{R}^{n-1} , on which we perform another polynomial partitioning.

- Cellular case
- Tangential case: induct on dimension m of the variety Z. (Base case: m = k 1, $\mu_{Ef}(B_{K^2}) = 0$, $\forall B_{K^2}$.)
- Transversal case: the hard part!

- Cover $W = N_{R^{1/2}}(Z^{n-1}) \subset \mathbb{R}^n$ with balls $\{B_j\}$ of radius $\rho < R$.
- Induct on R: for $\rho < R$, need new (smaller) wave packets $f = \sum_{\tilde{\theta}, \tilde{v}} f_{\tilde{\theta}, \tilde{v}} + \text{RapDec}(\rho) \|f\|_{L^2}$ (strips $\tilde{\theta}$ of radius $\rho^{-1/2}$).
- $f_{\theta,v}$ concentrates on small wave packets that are roughly inside $T_{\theta,v}$ with angle $\lesssim \rho^{-1/2}$.

- The large and small wave packets are connected via medium tubes of sidelength $1 \times R^{1/2} \times \cdots \times R^{1/2} \times \rho$. (Locally, mini directions are roughly the same.)
- Induction hypothesis: if $\operatorname{supp} f \in N_{\rho^{1/2}}(Z^n) \text{ whose wave}$ packets $T_{\tilde{\theta},\tilde{v}}$ are tangent to Z^n (Angle $< \rho^{-1/2}, \, T_{\tilde{\theta},\tilde{v}} \subset N_{\rho^{1/2}}(Z)$) and transversal to Z^{n-1} , then $\|Ef\|_{BL^p_{k,A}(B_j)} \lesssim \rho^{\epsilon} \|f\|_{L^2}.$
- Angle condition is satisfied, but distance condition is not.

Solution: divide $W = N_{R^{1/2}}(Z)$ into layers $\{\Sigma_b\}$ of thickness $\rho^{1/2}$.

Solution: divide $W = N_{R^{1/2}}(Z)$ into layers $\{\Sigma_b\}$ of thickness $\rho^{1/2}$.

- Use transversal information to estimate contribution from each layer Σ_b (induct on R).
- Use tangential information to sum up layers: $||f_{ess}||_{L^2}$ is equidistributed across different layers.

Transverse equidistribution estimate: Z hyperplane

Lemma

Either a) supp $f \subset$ finitely many sectors τ (of radius K^{-1}) or b) Z is transversal to the orthogonal complement of Z_0 .

- Case a): zero (by k-broad norm definition).
- Case b): supp f is contained in $N_{R^{-1/2}}(Z_0) \cap \mathcal{C} \Longrightarrow Ef$ is locally constant along Z_0^{\perp} for $R^{1/2}$, hence $||Ef||_{L^2}$ is equidistributed across the layers. Then by Plancherel, $||f||_{L^2}$ is also equidistributed.

Transverse equidistribution estimate: general case

- Run the argument locally inside each small ball $B = B_{R^{1/2}}$, which determines a tangent space V to Z.
- Divide the balls into two groups: whether V is in case a) or b). The wave packets that are covered by balls in group a) make zero contribution.
- Reduce to f_{ess} that concentrates on medium wave packets which intersect at least one ball B in group b).
- $||Ef_{ess}||_{L^2}$ is equidistributed across the layers. Same for $||f_{ess}||_{L^2}$.

Transverse equidistribution estimate: general case

- Run the argument locally inside each small ball $B = B_{R^{1/2}}$, which determines a tangent space V to Z.
- Divide the balls into two groups: whether V is in case a) or b). The wave packets that are covered by balls in group a) make zero contribution.
- Reduce to f_{ess} that concentrates on medium wave packets which intersect at least one ball B in group b).
- $||Ef_{ess}||_{L^2}$ is equidistributed across the layers. Same for $||f_{ess}||_{L^2}$.

Thank you for your attention!