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Geometric Radon Operators

Fundamental Objects

• XL – A subset of Rn or a manifold; comes with a measure.

• XR – A subset of Rm or a manifold, also equipped with measure.
Usually XL = XR but not always.

• {ΣxR}xR∈XR
– Some smoothly-varying family of submanifolds of

XL parametrized by points of XR ; equipped with measure.

• T – An averaging operator sending a priori continuous functions
on XL to continuous functions on XR by integrating:

Tf (xR) :=

∫

ΣxR

f dµΣxR
.

Basic Question

For which pairs ( 1
p ,

1
q ) is there a finite constant C such that

||Tf ||Lq(XR) ≤ C ||f ||Lp(XL) for all f ∈ C (XR)?
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Background and Basic Information

• Famous examples of geometric averaging operators are the X-ray
transform and spherical averages.

• Relating to Singular Integrals: Fabes (1966); Stein and
Wainger (1970); Nagel, Riviere, and Wainger (1974, 1976);
Müller (1984, 1985); Christ (1985); Ricci and Stein (1988);
Phong and Stein (1991, 1993); Christ, Nagel, Stein, and
Wainger (1999); Stein and Street (2011, 2012)

• Relating to FIOs/Oscillatory Integrals: Greenleaf and Seeger
(1994, 1998, 1999); Ricci (1997); Seeger (1998); Comech and
Cuccagna (2003)

• Combinatorial Approaches: Littman (1971); Fefferman (1970);
Zygmund (1974); Oberlin and Stein (1982); D. Oberlin (1987,
1997, 1999); Drury (1983, 1984, 1990); Christ (1984, 1998);
Iosevich and Sawyer (1996); Tao and Wright (2003); Dendrinos,
Laghi and Wright (2009); R. Oberlin and Erdogan (2010);
Stovall (2010, 2011)
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Lp-Improving: Present Landscape

• The case of averages over curves is now well-understood (with
the exception of endpoints in some cases).

• Averages over nondegenerate families of hypersurfaces are also
well-understood. Many cases of degenerate families of
hypersurfaces have been studied, but no complete picture has
emerged.

• Aside from curves and hypersurfaces, work is sparse and
frequently tied to specific examples with very nice properties.
This is in part due to combinatorial limitations of
refinement/expansion methods. It is also in part due to the fact
that the associated FIOs are generally more degenerate than
expected even in very low codimension.
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Goals

• Make inroads on the problem of intermediate dimension. This is
difficult because there are occasionally strange things that
happen here and there’s no obvious way to quantify exactly what
“well-curved” means here.

• Move away from the usual limitations of refinements (i.e., avoid
having to make explicit algebraic constraints on dimension and
codimension; alternately, find a way to refine/inflate that doesn’t
change dramatically as dimension and codimension change).

• As much as possible, establish results which are stable under
suitably small perturbations of the geometry.

Philip T. Gressman Geometry in Harmonic Analysis 5 / 23



Hyperinflation and TT ∗T

• For convolution with the standard measure on the
submanifold (t1, t2) 7→ (t1, t2, t

2
1 , t

2
2 , t1t2), naive inflation

doesn’t work because 5 is odd. No number of copies of the
two-dimensional map can combine to give a nondegenerate map
into R5. There are more sophisticated ways to inflate, but none
of these seem to be productive either.

• For (t1, t2, t3) 7→ (t1, t2, t3, t
2
1 , t

2
2 , t

2
3 , t1t2, t2t3, t1t3), inflation

doesn’t work because the Jacobian vanishes identically.
Adding three copies of this map, though the dimensions are
favorable, doesn’t work because the Jacobian is identically zero.
Three copies of this map don’t actually fill R9.

• It turns out that results are possible by over-inflating.

• The operator TT ∗T is superior to TT ∗ in this case because
it is more similar to T geometrically.
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Refinements Refined I

The general approach is a TT ∗T version of refinements:

Lemma (Generalized TT ∗T )

Suppose T is a positive linear operator which maps L2(XL) to
L2(XR). For any measurable sets F and G in XL and XR with
finite, nonzero measure, let

F ′ :=

{
x ∈ F

∣∣∣∣ T ∗χG (x) ≥
∫
G TχF

3|F |

}
and

G ′ :=

{
y ∈ G

∣∣∣∣ TχF (y) ≥
∫
G TχF

3|G |

}
.

Then
(

1

3

∫

G
TχF

)3

≤ |F ||G |
∫

G
T (χF ′T

∗(χG ′TχF )).

This lemma stops just short of making refinements a black box.
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Refinements Refined II

Proof

Let
δF :=

1

3|F |

∫

G
TχF and δG :=

1

3|G |

∫

G
TχF .

It follows that∫

G
TGFT

∗
G ′F ′TGFχF =

∫

F ′
(T ∗χG ) (T ∗G ′F ′TGFχF )

≥ δF
∫

F ′
(T ∗G ′F ′TGFχF )

= δF

∫

G ′
(TG ′F ′χF ′) (TχF ) ≥ δF δG

∫

G ′
TχF ′

and ∫

G ′
TχF ′ =

∫

G
TχF −

∫

G\G ′
TχF −

∫

F\F ′
T ∗χG ′

≥
∫

G
TχF − δG |G | − δF |F | ≥

1

3

∫

G
TχF .
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Iterated Incidence Manifold

The operator TT ∗T is naturally connected to a submanifold M(3)

of XR × XL × XR × XL:

M(3) :=
{

(y (2), x (2), y (1), x (1))
∣∣∣ x (2) ∈ Σy (2) ; x (1), x (2) ∈ Σy (1)

}
.

In this notation, the quantity that must be estimated is

∫

M(3)
χG (y (2))χF ′(x

(2))χG ′(y
(1))χF (x (1))dµ

where µ is some measure of smooth density on M(3).

Main Dimensional Constraint

The proof needs dimM(3) ≥ dimXL + dimXR , which corresponds
to averages over submanifolds of dimension at least 1/3 the
ambient dimension.
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Application of Coarea Formula

Assuming the dimensional constraint, we Fubinate inside the
TT ∗T object to integrate over the inner variables first. In other
words, write

∫

M(3)
χG (y (2))χF ′(x

(2))χG ′(y
(1))χF (x (1))dµ

=

∫

XR×XL

χG (y)χF (x)By ,x(χF ′ , χG ′)dµR(y)dµL(x),

where

By ,x(χF ′ , χG ′) :=

∫

x ,x(2)∈Σ
y(1) ;x(2)∈Σy

χF ′(x
(2))χG ′(y

(1))
dHk

J

comes from the coarea formula. Unlike the previous integrals, the
geometric structure and associated measure inside B are both very
bad, especially when x ∈ Σy .
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Example: Convolution with Nondegenerate 2-surface in R5

• Consider the convolution operator given by

γ(t1, t2) := (t1, t2, t
2
1 , t1t2, t

2
2 ) and Tf (y) :=

∫

R2

f (y + γ(t))dt.

• Fix any x = (x1, x2, x11, x12, x22) in R5; similarly for y . Define

δij := xij − yij − (xi − yi )(xj − yj), M :=

[
δ22 −δ12

−δ12 δ11

]
.

• Solve
[
u1 u2

v1 v2

]
M

[
u1 v1

u2 v2

]
=

[
0 detM

detM 0

]
.

• Up to symmetry in u and v ,

By ,x(χF ′ , χG ′) =

∫
χF ′(y+γ(su+x−y))χG ′(x−γ(s−1v+x−y))

ds

s
.
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The Road So Far

Recall

1

27|F ||G |

∫

G
TχF ≤

∫

M(3)
χG (y (2))χF ′(x

(2))χG ′(y
(1))χF (x (1))dµ

≤
∫

XR×XL

χG (y)χF (x) [By ,x(χF ′ , χG ′)] dµR(y)dµL(x)

where

By ,x(χF ′ , χG ′) :=

∫

x ,x(2)∈Σ
y(1) ;x(2)∈Σy

χF ′(x
(2))χG ′(y

(1))
dHk

J

Major Obstacles Ahead:

• One can say essentially nothing about the submanifolds over
which the integral in B is taken.

• Rough estimation of J is possible, but can say essentially nothing
about how it varies inside the integral.
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General Fiber Integrals I

• Assuming that S is some general k-dimensional submanifold of
Euclidean space (e.g., no control on geometric quantities like
curvature and possibly even topological quantities like number of
connected components), what can we say about k-dimensional
Hausdorff measure on S?

• This is the analogous problem to counting solutions of systems
of equations (for which Bézout’s Theorem or similar tools are
frequently used).

• It turns out that the right thing to study is the regularity of Hk ,
i.e., to establish that

Hk(S ∩ Br (x)) . rk ∀(x , r) ∈ Rn × (0,∞).

Of course, the bad news is that this inequality is not necessarily
true. What we want is a qualitative condition on S which
guarantees this quantitative result.
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General Fiber Integrals II

Regularity of the measure on the fibers happens exactly when a
Bézout-type finiteness condition on systems of equations can be
shown to hold:

Lemma

If S is any k-dimensional immersed submanifold in Rd (not
necessarily connected or compact) such that S transversely
intersects any affine (d − k)-dimensional subspace at most m
times, then

Hk(S ∩ Br (x)) ≤ Ck,dmrk .

H1(S ∩ Br (x)) ≤ 5πr

In other words, wadding / winding / folding are the only ways to
fit a long rope or a large map in a small box.
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General Fiber Integrals III

Proof Part I

Suppose γ : U → Rd parametrizes a piece of S . Then

Hk(γ(S)) =

∫

U

∣∣∣∣
∣∣∣∣
∂γ

∂t

∣∣∣∣
∣∣∣∣ dt

=

∫

U
sup
||ωi ||≤1

i=1,...,d−k

∣∣∣∣det

[
∂γ

∂t1
, . . . ,

∂γ

∂tk
, ω1, . . . , ωd−k

]∣∣∣∣ dt

= Cd ,k

∫

O(d)

[∫

U

∣∣∣∣det

[
∂γ

∂t1
, . . . ,

∂γ

∂tk
, ω1, . . . , ωd−k

]∣∣∣∣ dt
]
dσ(ω)

= Cd ,k

∫

O(d)

[∫

U

∣∣∣∣det
∂Pωγ

∂t

∣∣∣∣ dt
]
dσ(ω)

where Pω is orthogonal projection onto the final k columns of
ω ∈ O(d).
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General Fiber Integrals IV

Proof Part II

Hk(γ(S)) = Cd ,k

∫

O(d)

[∫

U

∣∣∣∣det
∂Pωγ

∂t

∣∣∣∣ dt
]
dσ(ω)

Using a partition of unity, the change of variables formula and
summing,

Hk(S) = Cd ,k

∫

O(d)

[∫

Pω(S)
Nω(x)dx

]
dσ(ω),

where Nω(x) is the number of transverse intersections of S with
the affine subspace

{
y ∈ Rd | 〈ωd−k+j , y〉 = xj , j = 1, . . . , k

}

If Nω(x) ≤ m and S ⊂ Br (x), then Hk(S) ≤ Cd ,kmrk as desired.
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Back to the Main Estimates

Recall

1

27|F ||G |

∫

G
TχF ≤

∫

M(3)
χG (y (2))χF ′(x

(2))χG ′(y
(1))χF (x (1))dµ

≤
∫

XR×XL

χG (y)χF (x) [By ,x(χF ′ , χG ′)] dµR(y)dµL(x)

where

By ,x(χF ′ , χG ′) :=

∫

x ,x(2)∈Σ
y(1) ;x(2)∈Σy

χF ′(x
(2))χG ′(y

(1))
dHk

J

What we can say: If D is distance from (y , x) to (y (1), x (2)), then
∫

x ,x(2)∈Σ
y(1) ;x(2)∈Σy

χF ′(x
(2))χG ′(y

(1))
dHk

Dk
. 1

uniformly in (y , x). [This is a small lie which ignores logarithmic
growth as (y , x) approaches the set where x ∈ Σy .]
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Reduction to Sublevel Set Estimates I

If we let M(3)
α be the (bad) subset of M(3) on which J ≤ αDk ,

∫

M(3)\M(3)
α

χG (y (2))χF ′(x
(2))χG ′(y

(1))χF (x (1))dµ . α−1|G ||F |.

For the integral on the bad set M(3)
α , we regard (x (2), y (1)) as

fixed and think of the object as a sublevel set operator:

Wx(2),y (1)(χG , χF ) :=
∫

y (2)∈Σ∗
x(2)

∫

x(1)∈Σ
y(1)

χ J

Dk ≤α
χG (y (2))χF (x (1))dσ∗(y (2))dσ(x (1)).

Notice also that
∫

y (2)∈Σ∗
x(2)

χG (y (2))dσ(y (2)) = T ∗χG (x (2))

and likewise the other integral is TχF (y (1)).
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Reduction to Sublevel Set Estimates II

Assuming that the sublevel set operators are bounded, the sort of
inequality we get is:
∫

G
TGFT

∗
G ′F ′TGFχF . 1

α
(|F ||G |)1−ε+αs

∫
|T ∗χG |

1
pl T ∗G ′F ′ |TχF |

1
pr

Now, because of the G ′ and F ′ we may replace

|T ∗χG |
1
pl ; δ

− 1
p′
l

F T ∗χG and |TχF |
1
pr ; δ

− 1
p′r

G TχF

which essentially allows for a bootstrapping-type inequality if we
choose α so that

αsδ
− 1

p′
l

F δ
− 1

p′r
G << 1.

By the TT ∗T refinement inequality, this gives an upper bound for∫
G TχF . Because δF , δG both contain

∫
G TχF , it’s another

bootstrapping-type situation (but we know the quantity must be
finite). This leads to a restricted weak type estimate for T .
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Understanding the Jacobian

Wx(2),y (1)(χG , χF ) :=
∫

y (2)∈Σ∗
x(2)

∫

x(1)∈Σ
y(1)

χ J

Dk ≤α
χG (y (2))χF (x (1))dσ∗(y (2))dσ(x (1)).

• X i
L: vector fields tangent to M := {(y , x) | x ∈ Σy } which

project to zero in the space XL (second factor).
• X i

R : vector fields tangent to M which project to zero in the
space XR (first factor).

• Roughly speaking, W reduces to the object

W (χG , χF ) ≈ W̃ (χG̃ , χF̃ ) :=

∫
χG̃ (t)χF̃ (s)χΦ≤αdtds

where

Φ ≈ 1

(|t|+ |s|)k volTp(M)

{
X ∗L ,X

∗
R ,

[∑

i

tiX
i
L,X

∗
R

]
,

[
X ∗L ,

∑

i

siX
i
R

]}

to lowest order in t and s.
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Convolution with Nondegenerate 2-surface in R5 II

Recall

W (χG , χF ) ≈ W̃ (χG̃ , χF̃ ) :=

∫
χG̃ (t)χF̃ (s)χΦ≤αdtds

Φ ≈ 1

(|t|+ |s|)k volTp(M)

{
X ∗L ,X

∗
R ,

[∑

i

tiX
i
L,X

∗
R

]
,

[
X ∗L ,

∑

i

siX
i
R

]}

For the two surface in R5, there are two each of X i
L and X i

R ,
k = 1, and Tp(M) is seven dimensional. If we take

X 1
L ,X

2
L ,X

1
R ,X

2
R ,

[∑

i

tiX
i
L,X

1
R

]
,

[∑

i

tiX
i
L,X

2
R

]

to build a spanning set, may as well take
[
−t2X

1
L + t1X

2
L

|t| ,
∑

i

siX
i
R

]

as the final vector.
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Convolution with Nondegenerate 2-surface in R5 III

Unfortunately it is not possible to devise a constraint on the
commutators [X i

L,X
j
R ] so that

X ∗L ,X
∗
R ,

[∑

i

tiX
i
L,X

∗
R

]
,

[
−t2X

1
L + t1X

2
L

|t| ,
∑

i

siX
i
R

]

always span for any pair (t, s). However, for any t, you can insist
that it is always possible to find some s, which is effectively the
same as saying

|∇sΦ(t, s)| & |t|.
You can also insist that |∇tΦ(t, s)| & |s|, which implies an
estimate ∫

χG̃ (t)χF̃ (s)χΦ≤αdtds ≤ α|G̃ |
1
2 |F̃ | 12 .

This estimate gives an L
8
5 → L

8
3 estimate up to infinitesimal loss,

which is best possible.
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Concluding Remarks

• The technique sketched here works in a number of other cases
(see arXiv:1609.02972). However many related problems are far
from resolved, even some multilinear, one-dimensional problems.

• The only limitation in proving rather general results (i.e., in
terms of knowledge of v.f. commutators only) is whether the
limited information it gives about Φ is stable enough to prove a
sublevel set functional inequality.

• Ultimately one would like to know if there is a unified way of
identifying what estimates a given operator satisfies (a la Tao
and Wright (2003), for example). There seems to be mounting
evidence that this may not be possible to do in a very general
way (or is, at the moment, beyond reach).
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