Uniform rectifiability, bounded harmonic functions, and elliptic PDE's

Xavier Tolsa

16 May 2017

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017

1 / 17

Rectifiability

We say that $E \subset \mathbb{R}^d$ is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 2 / 17

Rectifiability

We say that $E \subset \mathbb{R}^d$ is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

E is n-AD-regular if

 $\mathcal{H}^n(B(x,r) \cap E) \approx r^n$ for all $x \in E$, $0 < r \leq \operatorname{diam}(E)$.

E is uniformly *n*-rectifiable if it is *n*-AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \le \text{diam}(E)$, there exists a Lipschitz map

 $g: \mathbb{R}^n \supset B_n(0,r) \to \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$

such that

$$\mathcal{H}^n(E\cap B(x,r)\cap g(B_n(0,r)))\geq \theta r^n.$$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 2 / 17

Rectifiability

We say that $E \subset \mathbb{R}^d$ is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

E is n-AD-regular if

 $\mathcal{H}^n(B(x,r) \cap E) \approx r^n$ for all $x \in E$, $0 < r \leq \operatorname{diam}(E)$.

E is uniformly *n*-rectifiable if it is *n*-AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \le \text{diam}(E)$, there exists a Lipschitz map

 $g: \mathbb{R}^n \supset B_n(0,r) \to \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$

such that

$$\mathcal{H}^n(E\cap B(x,r)\cap g(B_n(0,r)))\geq \theta r^n.$$

Uniform *n*-rectifiability is a quantitative version of *n*-rectifiability introduced by David and Semmes.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 2 / 17

Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$ open. For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 3 / 17

Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$ open.

For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega)$, $\int f d\omega^p$ is the value at p of the harmonic extension of f to Ω .

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 3 / 17

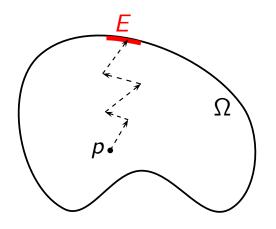
Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$ open.

For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega)$, $\int f d\omega^p$ is the value at p of the harmonic extension of f to Ω .

Probabilistic interpretation [Kakutani]:

When Ω is bounded, $\omega^{p}(E)$ is the probability that a particle with a Brownian movement leaving from $p \in \Omega$ escapes from Ω through E.



X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 3 / 17

We let $Lu = \operatorname{div} A \nabla u$ for $u \in W^{1,2}(\Omega)$, where A is an elliptic matrix with real bounded coefficients. u is L-harmonic in Ω if Lu = 0 in Ω .

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 4 / 17

We let $Lu = \operatorname{div} A \nabla u$ for $u \in W^{1,2}(\Omega)$, where A is an elliptic matrix with real bounded coefficients. u is L-harmonic in Ω if Lu = 0 in Ω .

For $p \in \Omega$, ω_L^p is the elliptic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega)$, $\int f d\omega_L^p$ is the value at p of the *L*-harmonic extension of f to Ω .

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 4 / 17

We let $Lu = \operatorname{div} A \nabla u$ for $u \in W^{1,2}(\Omega)$, where A is an elliptic matrix with real bounded coefficients.

u is *L*-harmonic in Ω if Lu = 0 in Ω .

For $p \in \Omega$, ω_L^p is the elliptic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega)$, $\int f d\omega_L^p$ is the value at p of the *L*-harmonic extension of f to Ω .

Quantitative properties of harmonic and elliptic measures, and connection to PDE's:

When ω or $\omega_L \in A_{\infty}(\mu)$, for $\mu = \mathcal{H}^n|_{\partial\Omega}$? Which is the connection to uniform rectifiability?

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 4 / 17

We let $Lu = \operatorname{div} A \nabla u$ for $u \in W^{1,2}(\Omega)$, where A is an elliptic matrix with real bounded coefficients.

u is *L*-harmonic in Ω if Lu = 0 in Ω .

For $p \in \Omega$, ω_L^p is the elliptic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega)$, $\int f d\omega_L^p$ is the value at p of the *L*-harmonic extension of f to Ω .

Quantitative properties of harmonic and elliptic measures, and connection to PDE's:

When ω or $\omega_L \in A_{\infty}(\mu)$, for $\mu = \mathcal{H}^n|_{\partial\Omega}$? Which is the connection to uniform rectifiability?

A basic result:

If Ω is a Lipschitz domain, then $\omega \in A_{\infty}(\mu)$ (Dahlberg).

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 4 / 17

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 5 / 17

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

(a) $\partial \Omega$ is uniformly n-rectifiable.

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 20175 / 17

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) $\omega \in A_{\infty}(\mu)$, for $\mu = \mathcal{H}_{\partial\Omega}^{n}$.

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 20175 / 17

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) $\omega \in A_{\infty}(\mu)$, for $\mu = \mathcal{H}^{n}_{\partial\Omega}$.
- (c) If A satisfies a suitable Carleson type condition, $\omega_L \in A_{\infty}(\mu)$ and $\omega_{L^*} \in A_{\infty}(\mu)$.

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

(a) $\partial \Omega$ is uniformly n-rectifiable.

(b)
$$\omega \in A_{\infty}(\mu)$$
, for $\mu = \mathcal{H}^n_{\partial\Omega}$.

(c) If A satisfies a suitable Carleson type condition, $\omega_L \in A_{\infty}(\mu)$ and $\omega_{L^*} \in A_{\infty}(\mu)$.

• (a) \Rightarrow (b) by Hofmann and Martell.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 5 / 17

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

(a) $\partial \Omega$ is uniformly n-rectifiable.

(b)
$$\omega \in A_{\infty}(\mu)$$
, for $\mu = \mathcal{H}^n_{\partial\Omega}$.

- (c) If A satisfies a suitable Carleson type condition, $\omega_L \in A_{\infty}(\mu)$ and $\omega_{L^*} \in A_{\infty}(\mu)$.
 - (a) \Rightarrow (b) by Hofmann and Martell.
 - (b) \Rightarrow (a) by Hofmann, Martell and Uriarte-Tuero (alternative argument by Azzam, Hofmann, Martell, Nyström and Toro).

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 5 / 17

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

(a) $\partial \Omega$ is uniformly n-rectifiable.

(b)
$$\omega \in A_{\infty}(\mu)$$
, for $\mu = \mathcal{H}^n_{\partial\Omega}$

- (c) If A satisfies a suitable Carleson type condition, $\omega_L \in A_{\infty}(\mu)$ and $\omega_{L^*} \in A_{\infty}(\mu)$.
 - (a) \Rightarrow (b) by Hofmann and Martell.
 - (b) ⇒ (a) by Hofmann, Martell and Uriarte-Tuero (alternative argument by Azzam, Hofmann, Martell, Nyström and Toro).
 (a) ⇒ (c) by Kenig and Pipher.

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

(a) $\partial \Omega$ is uniformly n-rectifiable.

(b)
$$\omega \in A_{\infty}(\mu)$$
, for $\mu = \mathcal{H}_{\partial\Omega}^n$

- (c) If A satisfies a suitable Carleson type condition, $\omega_L \in A_{\infty}(\mu)$ and $\omega_{L^*} \in A_{\infty}(\mu)$.
 - (a) \Rightarrow (b) by Hofmann and Martell.
 - (b) ⇒ (a) by Hofmann, Martell and Uriarte-Tuero (alternative argument by Azzam, Hofmann, Martell, Nyström and Toro).
 - (a) \Rightarrow (c) by Kenig and Pipher.
 - (c) \Rightarrow (a) by Hofmann, Martell and Toro.

 $\Omega \subset \mathbb{R}^{n+1}$ is uniform if it satisfies an interior corkscrew condition and a Harnack chain condition.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE:

(a) $\partial \Omega$ is uniformly n-rectifiable.

(b)
$$\omega \in A_{\infty}(\mu)$$
, for $\mu = \mathcal{H}^n_{\partial\Omega}$.

- (c) If A satisfies a suitable Carleson type condition, $\omega_L \in A_{\infty}(\mu)$ and $\omega_{L^*} \in A_{\infty}(\mu)$.
 - Zihui Zhao has shown that $\omega_L \in A_{\infty}(\mu)$ iff for any *u L*-harmonic in Ω , continuous in $\overline{\Omega}$, and any ball *B* centered at $\partial \Omega$,

$$\int_{B\cap\Omega} |
abla u|^2 \operatorname{dist}(x,\partial\Omega) \, dx \leq C \, \|u\|_{BMO(\mu)}^2 \, r(B)^n.$$

(BMO solvability condition).

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 5 / 17

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE: (a) $\partial \Omega$ is uniformly n-rectifiable.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's

ions, and elliptic PDE's 16 May 2017 6 / 17

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE:

- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) There is C > 0 such that if u is a bounded harmonic function on Ω and B is a ball centered at $\partial \Omega$,

 $\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 6 / 17

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE:

- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) There is C > 0 such that if u is a bounded harmonic function on Ω and B is a ball centered at $\partial \Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

(c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms of harmonic measure.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 6 / 17

Theorem

- Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE:
- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) There is C > 0 such that if u is a bounded harmonic function on Ω and B is a ball centered at $\partial \Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

- (c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms of harmonic measure.
 - (a) \Rightarrow (b) by Hofmann, Martell, Mayboroda. They asked if (b) \Rightarrow (a).

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 6 / 17

Theorem

- Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE:
- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) There is C > 0 such that if u is a bounded harmonic function on Ω and B is a ball centered at $\partial \Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

- (c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms of harmonic measure.
 - (a) ⇒ (b) by Hofmann, Martell, Mayboroda. They asked if (b) ⇒ (a).
 (b) ⇒ (c) ⇒ (a) by Garnett, Mourgoglou and T.

Theorem

- Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE:
- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) There is C > 0 such that if u is a bounded harmonic function on Ω and B is a ball centered at $\partial \Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n$$

- (c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms of harmonic measure.
 - (a) \Rightarrow (b) by Hofmann, Martell, Mayboroda. They asked if (b) \Rightarrow (a).
 - (b) \Rightarrow (c) \Rightarrow (a) by Garnett, Mourgoglou and T.
 - (c) should be understood as a substitute of ω ∈ A_∞(μ), which fails in general.
 - X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 20176 / 17

Theorem

- Let $E \subset \mathbb{R}^{n+1}$ be closed, n-AD-regular, and $\Omega = \mathbb{R}^{n+1} \setminus E$. TFAE:
- (a) $\partial \Omega$ is uniformly n-rectifiable.
- (b) There is C > 0 such that if u is a bounded harmonic function on Ω and B is a ball centered at $\partial \Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n$$

- (c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms of harmonic measure.
 - (a) \Rightarrow (b) by Hofmann, Martell, Mayboroda. They asked if (b) \Rightarrow (a).
 - (b) \Rightarrow (c) \Rightarrow (a) by Garnett, Mourgoglou and T.
 - (d) Hofmann, Le, Martell and Nyström showed ω ∈ A^{weak}_∞(μ) ⇒ ∂Ω is uniformly *n*-rectifiable, but (a) ≠ ω ∈ A^{weak}_∞(μ).
 - X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 6 / 17

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 7 / 17

• The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T}\in I: \operatorname{Root}(\mathcal{T})\subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C\,\mu(\mathcal{S}) \quad \text{for all } \mathcal{S}\in \mathcal{D}_{\mu}.$$

• For each $\mathcal{T} \in I$ with $R = \operatorname{Root}(\mathcal{T})$, there exists a point $p_{\mathcal{T}} \in \Omega$ with $c^{-1}\ell(R) \leq \operatorname{dist}(p_{\mathcal{T}}, R) \leq \operatorname{dist}(p_{\mathcal{T}}, \partial\Omega) \leq c\,\ell(R)$ such that, for all $\Omega \in \mathcal{T}$, $\omega^{p_{\mathcal{T}}}(5\Omega) \sim \frac{\mu(Q)}{2}$

such that, for all $Q \in \mathcal{T}$, $\omega^{p_{\mathcal{T}}}(5Q) pprox rac{\mu(Q)}{\mu(R)}.$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 7 / 17

• The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T}\in I: \operatorname{Root}(\mathcal{T})\subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C\,\mu(\mathcal{S}) \quad \text{for all } \mathcal{S}\in \mathcal{D}_{\mu}.$$

• For each $\mathcal{T} \in I$ with $R = \operatorname{Root}(\mathcal{T})$, there exists a point $p_{\mathcal{T}} \in \Omega$ with $c^{-1}\ell(R) \leq \operatorname{dist}(p_{\mathcal{T}}, R) \leq \operatorname{dist}(p_{\mathcal{T}}, \partial\Omega) \leq c \,\ell(R)$ $\mu(\Omega)$

such that, for all $Q \in \mathcal{T}$, $\omega^{p_{\mathcal{T}}}(5Q) \approx \frac{\mu(Q)}{\mu(R)}$.

Remarks: (c) $\Leftrightarrow \omega \in A_{\infty}(\mu)$ if Ω is uniform.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 7 / 17

• The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T}\in I: \operatorname{Root}(\mathcal{T})\subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C\,\mu(\mathcal{S}) \quad \text{for all } \mathcal{S}\in \mathcal{D}_{\mu}.$$

 For each *T* ∈ *I* with *R* = Root(*T*), there exists a point *p_T* ∈ Ω with *c*⁻¹ℓ(*R*) ≤ dist(*p_T*, *R*) ≤ dist(*p_T*, ∂Ω) ≤ *c*ℓ(*R*)

 such that, for all *Q* ∈ *T*, ω^{*p_T*}(5*Q*) ≈ μ(*Q*)/μ(*R*).

 μ (N

Remarks: (c) $\Leftrightarrow \omega \in A_{\infty}(\mu)$ if Ω is uniform. Up to now there was no characterization of uniform rectifiability in terms of harmonic measure.

But there was a characterization in terms of harmonic measure of big pieces of NTA domains by Bortz and Hofmann.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 7 / 17

• Recall that ω may be singular with respect to $\mathcal{H}^n|_E$ (Bishop - Jones).

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 8 / 17

- Recall that ω may be singular with respect to $\mathcal{H}^n|_E$ (Bishop Jones).
- Corona decompositions are a basic tool in the work of David and Semmes.

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 20178 / 17

- Recall that ω may be singular with respect to $\mathcal{H}^n|_E$ (Bishop Jones).
- Corona decompositions are a basic tool in the work of David and Semmes.
- Connection with ε -approximability and work of Kenig, Kirchheim, Pipher and Toro.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 8 / 17

- Recall that ω may be singular with respect to $\mathcal{H}^n|_E$ (Bishop Jones).
- Corona decompositions are a basic tool in the work of David and Semmes.
- Connection with ε-approximability and work of Kenig, Kirchheim, Pipher and Toro.
- Condition (b) is related to the "area integral".
 We cannot replace ||u||_{L[∞](Ω)} by ||u||_{BMO(µ)} with u continuous in Ω.
 Related work by Hofmann and Le.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 8 / 17

Extension to elliptic operators

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed and n-AD regular and $\Omega = \mathbb{R}^{n+1} \setminus E$. Suppose that A satisfies a suitable Carleson type condition. TFAE: (a) $\partial \Omega$ is uniformly n-rectifiable.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 9 / 17

Theorem

^

Let $E \subset \mathbb{R}^{n+1}$ be closed and n-AD regular and $\Omega = \mathbb{R}^{n+1} \setminus E$. Suppose that A satisfies a suitable Carleson type condition. TFAE: (a) $\partial \Omega$ is uniformly n-rectifiable.

(b) There is C > 0 such that for all L-harmonic functions and all L^* -harmonic functions u in Ω and all balls B centered at $\partial\Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 20179 / 17

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed and n-AD regular and $\Omega = \mathbb{R}^{n+1} \setminus E$. Suppose that A satisfies a suitable Carleson type condition. TFAE: (a) $\partial \Omega$ is uniformly n-rectifiable.

(b) There is C > 0 such that for all L-harmonic functions and all L^* -harmonic functions u in Ω and all balls B centered at $\partial \Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

(c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms ω_L and ω_{L^*} .

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 9 / 17

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed and n-AD regular and $\Omega = \mathbb{R}^{n+1} \setminus E$. Suppose that A satisfies a suitable Carleson type condition. TFAE: (a) $\partial \Omega$ is uniformly n-rectifiable.

(b) There is C > 0 such that for all L-harmonic functions and all L^* -harmonic functions u in Ω and all balls B centered at $\partial\Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

(c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms ω_L and ω_{L^*} .

• (a) \Rightarrow (b) by Hofmann, Martell and Mayboroda.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 9 / 17

Theorem

Let $E \subset \mathbb{R}^{n+1}$ be closed and n-AD regular and $\Omega = \mathbb{R}^{n+1} \setminus E$. Suppose that A satisfies a suitable Carleson type condition. TFAE: (a) $\partial \Omega$ is uniformly n-rectifiable.

(b) There is C > 0 such that for all L-harmonic functions and all L^* -harmonic functions u in Ω and all balls B centered at $\partial\Omega$,

$$\int_{B} |\nabla u(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C \, \|u\|_{L^{\infty}(\Omega)}^2 \, r(B)^n.$$

(c) There is a corona decomposition of $\mu = \mathcal{H}^n|_{\partial\Omega}$ in terms ω_L and ω_{L^*} .

- (a) \Rightarrow (b) by Hofmann, Martell and Mayboroda.
- (b) \Rightarrow (c) \Rightarrow (a) by Azzam, Garnett, Mourgoglou and T.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 9 / 17

Corona decomposition in terms of ω_L and ω_{L^*} Condition (c) means that there exists a partition of \mathcal{D}_{μ} into trees $\mathcal{T} \in I$ satisfying:

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017 10 / 17

Corona decomposition in terms of ω_L and ω_{L^*}

Condition (c) means that there exists a partition of \mathcal{D}_{μ} into trees $\mathcal{T} \in I$ satisfying:

• The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T}\in I: \operatorname{Root}(\mathcal{T})\subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C\,\mu(S) \quad \text{for all } S\in \mathcal{D}_{\mu}.$$

• For each $\mathcal{T} \in I$ with $R = \operatorname{Root}(\mathcal{T})$, there exist points $p_{\mathcal{T}}^1, p_{\mathcal{T}}^2 \in \Omega$ with

$$c^{-1}\ell(R) \leq \operatorname{dist}(p_{\mathcal{T}}^{\kappa}, R) \leq \operatorname{dist}(p_{\mathcal{T}}^{\kappa}, \partial\Omega) \leq c\,\ell(R)$$

such that, for all $Q \in \mathcal{T}$, $\omega_L^{p_{\mathcal{T}}^+}(5Q) \approx \omega_{L^*}^{p_{\mathcal{T}}^-}(5Q) \approx \frac{\mu(\mathbf{v})}{\mu(R)}$.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 10 / 17

Corona decomposition in terms of ω_L and ω_{L^*}

Condition (c) means that there exists a partition of \mathcal{D}_{μ} into **trees** $\mathcal{T} \in I$ satisfying:

• The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T}\in I: \operatorname{Root}(\mathcal{T})\subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C\,\mu(\mathcal{S}) \quad \text{for all } \mathcal{S}\in \mathcal{D}_{\mu}.$$

• For each $\mathcal{T} \in I$ with $R = \operatorname{Root}(\mathcal{T})$, there exist points $p_{\mathcal{T}}^1, p_{\mathcal{T}}^2 \in \Omega$ with

$$c^{-1}\ell(R) \leq \operatorname{dist}(p_{\mathcal{T}}^{\kappa}, R) \leq \operatorname{dist}(p_{\mathcal{T}}^{\kappa}, \partial\Omega) \leq c\,\ell(R)$$

that, for all $Q \in \mathcal{T}$, $\omega_L^{p_{\mathcal{T}}^1}(5Q) \approx \omega_{L^*}^{p_{\mathcal{T}}^2}(5Q) pprox rac{\mu(Q)}{\mu(R)}$.

The Carleson condition on A:

such

$$\int_{B\cap\Omega} \left(\sup_{\substack{z_1,z_2\in B(y,M\delta_\Omega(y))\cap\Omega\\\delta_\Omega(z_k)\geq \frac{1}{4}\delta_\Omega(y)}} \frac{|A(z_1)-A(z_2)|}{|z_1-z_2|} \right) dy \leq C r(B)^n,$$

for all balls *B* centered at $\partial \Omega$, where $\delta_{\Omega}(z) = \text{dist}(z, \partial \Omega)$. X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's

Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 10 / 17

Let μ be a Borel measure in \mathbb{R}^d . The *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\varepsilon \searrow 0} \mathcal{R}_{\mu,\varepsilon}f(x)$, where

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) d\mu(y).$$

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017

11 / 17

Let μ be a Borel measure in \mathbb{R}^d . The *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\varepsilon \searrow 0} \mathcal{R}_{\mu,\varepsilon}f(x)$, where

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) d\mu(y).$$

The existence of principal values is not guarantied. We also denote $\mathcal{R}\mu = \mathcal{R}_{\mu}1$.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 11 / 17

Let μ be a Borel measure in \mathbb{R}^d . The *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\varepsilon \searrow 0} \mathcal{R}_{\mu,\varepsilon}f(x)$, where

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) d\mu(y).$$

The existence of principal values is not guarantied. We also denote $\mathcal{R}\mu = \mathcal{R}_{\mu}1$.

We say that \mathcal{R}_{μ} is bounded in $L^{2}(\mu)$ if the operators $\mathcal{R}_{\mu,\varepsilon}$ are bounded in $L^{2}(\mu)$ uniformly on $\varepsilon > 0$.

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 201711 / 17

Let μ be a Borel measure in \mathbb{R}^d . The *n*-dimensional Riesz transform of $f \in L^1_{loc}(\mu)$ is $\mathcal{R}_{\mu}f(x) = \lim_{\varepsilon \searrow 0} \mathcal{R}_{\mu,\varepsilon}f(x)$, where

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) d\mu(y).$$

The existence of principal values is not guarantied. We also denote $\mathcal{R}\mu = \mathcal{R}_{\mu}1$.

We say that \mathcal{R}_{μ} is bounded in $L^{2}(\mu)$ if the operators $\mathcal{R}_{\mu,\varepsilon}$ are bounded in $L^{2}(\mu)$ uniformly on $\varepsilon > 0$.

Theorem (Nazarov, T., Volberg, 2012)

Let $E \subset \mathbb{R}^{n+1}$ n-AD-regular, and $\mu = \mathcal{H}_E^n$. Then E is uniformly n-rectifiable iff $\mathcal{R}_{\mu} : L^2(\mu) \to L^2(\mu)$ is bounded.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 11 / 17

We show that $\mathcal{R}_{\mu}: L^2(\mu) o L^2(\mu)$ is bounded.

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017

12 / 17

We show that $\mathcal{R}_{\mu}: L^2(\mu)
ightarrow L^2(\mu)$ is bounded.

To this end, for ${\it Q} \in {\cal D}_{\mu}$ set

$$\mathcal{R}_Q \mu(x) = \chi_Q(x) \int_{\frac{1}{2}\ell(Q) < |x-y| \le \ell(Q)} \frac{x-y}{|x-y|^{n+1}} \, d\mu(y),$$

and for $\mathcal{T} \in I$,

$$\mathcal{R}_{\mathcal{T}}\mu(x) = \sum_{Q\in\mathcal{T}}\mathcal{R}_{Q}\mu(x),$$

so that $\mathcal{R}\mu = \sum_{\mathcal{T}\in I} \mathcal{R}_{\mathcal{T}}\mu$.

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 201712 / 17

We show that $\mathcal{R}_{\mu}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is bounded.

To this end, for ${\it Q}\in {\cal D}_\mu$ set

$$\mathcal{R}_Q \mu(x) = \chi_Q(x) \int_{\frac{1}{2}\ell(Q) < |x-y| \le \ell(Q)} \frac{x-y}{|x-y|^{n+1}} \, d\mu(y),$$

and for $\mathcal{T} \in I$,

$$\mathcal{R}_{\mathcal{T}}\mu(x) = \sum_{Q\in\mathcal{T}}\mathcal{R}_{Q}\mu(x),$$

so that $\mathcal{R}\mu = \sum_{\mathcal{T}\in I} \mathcal{R}_{\mathcal{T}}\mu$. We show:

• For each \mathcal{T} , $\mathcal{R}_{\mathcal{T}}$ is bounded in $L^2(\mu)$, by the connection between Riesz transform and harmonic measure.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 12 / 17

We show that $\mathcal{R}_{\mu}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is bounded.

To this end, for $Q\in\mathcal{D}_{\mu}$ set

$$\mathcal{R}_Q \mu(x) = \chi_Q(x) \int_{\frac{1}{2}\ell(Q) < |x-y| \le \ell(Q)} \frac{x-y}{|x-y|^{n+1}} \, d\mu(y),$$

and for $\mathcal{T} \in I$,

$$\mathcal{R}_{\mathcal{T}}\mu(x) = \sum_{Q\in\mathcal{T}}\mathcal{R}_{Q}\mu(x),$$

so that $\mathcal{R}\mu = \sum_{\mathcal{T}\in I} \mathcal{R}_{\mathcal{T}}\mu$. We show:

- For each \mathcal{T} , $\mathcal{R}_{\mathcal{T}}$ is bounded in $L^2(\mu)$, by the connection between Riesz transform and harmonic measure.
- By the packing condition and Carleson's theorem, it follows that $\mathcal{R}_{\mu}: L^{2}(\mu) \to L^{2}(\mu)$ is bounded.
 - X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 12 / 17

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017

2017 13 / 17

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

The kernel of the Riesz transform is

$$K(x) = \frac{x}{|x|^{n+1}} = c \nabla \mathcal{E}(x).$$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 13 / 17

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

The kernel of the Riesz transform is

$$K(x) = \frac{x}{|x|^{n+1}} = c \nabla \mathcal{E}(x).$$

The Green function $G(\cdot, \cdot)$ of Ω is

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) d\omega^p(y).$$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 13 / 17

$$\mathcal{E}(x)=c_n\,\frac{1}{|x|^{n-1}}.$$

The kernel of the Riesz transform is

$$K(x) = \frac{x}{|x|^{n+1}} = c \nabla \mathcal{E}(x).$$

The Green function $G(\cdot, \cdot)$ of Ω is

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) d\omega^{p}(y).$$

Therefore, for $x \in \Omega$:

$$c \nabla_x G(x,p) = K(x-p) - \int K(x-y) d\omega^p(y).$$

That is,

 $\mathcal{R}\omega^{p}(x) = K(x-p) - c \nabla_{x}G(x,p).$

16 May 2017 13 / 17

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic $\mathsf{PDE}\mathsf{'s}$

Let $R = \operatorname{Root}(\mathcal{T})$. Let $x \in R$ and $x' \in \Omega$ such that $\operatorname{dist}(x', \partial \Omega) \approx \varepsilon$. Then use the identity

$$\mathcal{R}\omega^{p_R}(x') = K(x'-p_R) - c \nabla_{x'} G(x',p_R).$$

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017

14 / 17

Let $R = \operatorname{Root}(\mathcal{T})$. Let $x \in R$ and $x' \in \Omega$ such that $\operatorname{dist}(x', \partial \Omega) \approx \varepsilon$. Then use the identity

$$\mathcal{R}\omega^{p_R}(x') = \mathcal{K}(x'-p_R) - c\,\nabla_{x'}G(x',p_R).$$

By standard estimates for Green's function,

$$|
abla_{x'}G(x',p_R)|\lesssim rac{G(x',p_R)}{arepsilon}\lesssim rac{\omega^p(B(x,4arepsilon))}{\mu(B(x,arepsilon))}.$$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 14 / 17

Let $R = \operatorname{Root}(\mathcal{T})$. Let $x \in R$ and $x' \in \Omega$ such that $\operatorname{dist}(x', \partial \Omega) \approx \varepsilon$. Then use the identity

$$\mathcal{R}\omega^{p_R}(x') = \mathcal{K}(x'-p_R) - c\,\nabla_{x'}G(x',p_R).$$

By standard estimates for Green's function,

$$|
abla_{x'}G(x',p_R)|\lesssim rac{G(x',p_R)}{arepsilon}\lesssim rac{\omega^p(B(x,4arepsilon))}{\mu(B(x,arepsilon))}.$$

By the properties of ω^{p_R} in \mathcal{T} , we deduce

$$\sup_{\ell(Q_x)\leqarepsilon\leq\ell(R)}|\mathcal{R}_arepsilo\omega^{p_R}(x)|\lesssimrac{1}{\mu(R)},$$

where $x \in Q_x \in \text{Stop}(R)$.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 14 / 17

Let $R = \operatorname{Root}(\mathcal{T})$. Let $x \in R$ and $x' \in \Omega$ such that $\operatorname{dist}(x', \partial \Omega) \approx \varepsilon$. Then use the identity

$$\mathcal{R}\omega^{p_R}(x') = \mathcal{K}(x'-p_R) - c\,\nabla_{x'}G(x',p_R).$$

By standard estimates for Green's function,

$$|
abla_{x'}G(x',p_R)|\lesssim rac{G(x',p_R)}{arepsilon}\lesssim rac{\omega^p(B(x,4arepsilon))}{\mu(B(x,arepsilon))}.$$

By the properties of ω^{p_R} in \mathcal{T} , we deduce

$$\sup_{\ell(Q_x)\leq arepsilon\leq \ell(R)} |\mathcal{R}_arepsilo\omega^{p_R}(x)| \lesssim rac{1}{\mu(R)},$$

where $x \in Q_x \in \text{Stop}(R)$. Approximating $\mu|_R$ by $\mu(R) \omega^{p_R}$ and applying some kind of T1 theorem, we deduce that \mathcal{R}_T is bounded in $L^2(\mu)$.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 14 / 17

The ACF formula for elliptic operators Theorem (AGMT) Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be

nonnegative L-subharmonic functions. Suppose that A(x) = Id and that $u_1(x) = u_2(x) = 0$ and $u_1 \cdot u_2 \equiv 0$, u_i Hölder continuous at x. Set

$$J(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right)$$

X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's 16

16 May 2017 15 / 17

The ACF formula for elliptic operators Theorem (AGMT) Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$

Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative L-subharmonic functions. Suppose that A(x) = Id and that $u_1(x) = u_2(x) = 0$ and $u_1 \cdot u_2 \equiv 0$, u_i Hölder continuous at x. Set

$$J(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right)$$

Then $J(x, \cdot)$ is absolutely continuous and

$$rac{J'(x,r)}{J(x,r)} \geq -c \, rac{w(x,r)}{r}, \quad ext{ for a.e. } 0 < r < R,$$

where

$$w(x,r) = \sup_{y \in B(x,r)} |A(y) - A(x)|.$$

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 15 / 17

• u_i Hölder continuous at x means that there exists $\alpha > 0$ such that

$$u_i(y) \leq C\left(\frac{|y-x|}{r}\right)^{\alpha} \|u\|_{\infty,B(x,r)},$$

for all $0 < r \leq R$ and $y \in B(x, r)$.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 16 / 17

• u_i Hölder continuous at x means that there exists $\alpha > 0$ such that

$$u_i(y) \leq C\left(\frac{|y-x|}{r}\right)^{\alpha} \|u\|_{\infty,B(x,r)},$$

for all $0 < r \leq R$ and $y \in B(x, r)$.

• For $L = \Delta$ we recover the classical Alt-Caffarelli-Friedman formula.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 16 / 17

• u_i Hölder continuous at x means that there exists $\alpha > 0$ such that

$$u_i(y) \leq C\left(\frac{|y-x|}{r}\right)^{\alpha} \|u\|_{\infty,B(x,r)},$$

for all $0 < r \leq R$ and $y \in B(x, r)$.

- For $L = \Delta$ we recover the classical Alt-Caffarelli-Friedman formula.
- There are less precise variants for parabolic equations and with weaker assumptions by Caffarelli-Jerison-Kenig, or by Matevosyan-Petrosyan.

X. Tolsa (ICREA / UAB) Rectifiability, harmonic functions, and elliptic PDE's 16 May 2017 16 / 17

• u_i Hölder continuous at x means that there exists $\alpha > 0$ such that

$$u_i(y) \leq C\left(\frac{|y-x|}{r}\right)^{\alpha} \|u\|_{\infty,B(x,r)},$$

for all $0 < r \le R$ and $y \in B(x, r)$.

- For $L = \Delta$ we recover the classical Alt-Caffarelli-Friedman formula.
- There are less precise variants for parabolic equations and with weaker assumptions by Caffarelli-Jerison-Kenig, or by Matevosyan-Petrosyan.
- These formulas are a basic tool in free boundary problems.

X. Tolsa (ICREA / UAB)Rectifiability, harmonic functions, and elliptic PDE's16 May 201716 / 17

Thank you!

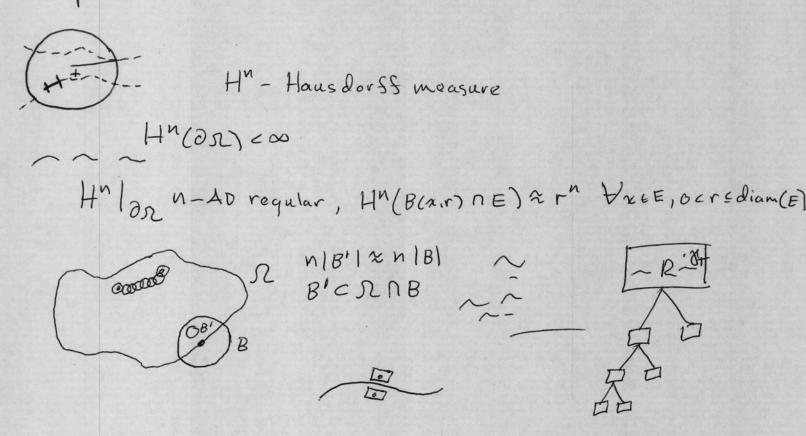
X. Tolsa (ICREA / UAB)

Rectifiability, harmonic functions, and elliptic PDE's

16 May 2017

17 / 17

Uniform rectifiability, bounded harmonic Sunctions and elliptic PDES Xavier Tolsa 16 May 2017



Theorem: Let ECRⁿ⁺¹ be closed in - AD-regular, and R=Rⁿ⁺¹ \E TEAE: a) DR is uniformly n-rectifiable b) There is C>0 s.t. if u is a bounded harmonic function on R and B is a ball centered at DR,

$$\int |\nabla u(x)|^2 dist(x, \partial x) dx \leq C \|u\|_{L^{\infty}(x)}^2 r(B)^n$$

c) There is a corona decomposition of $\mu = H^n |_{\partial \mathcal{I}}$ in terms of harmonic measure.

(b) ⇒(c) Build trees TEI imposing stopping conditions. Given Re Dµ set: (1)Q ∈ HD(R) if WPR(Q) ≥ A μ(Q) Q ⊂ R maximal (2)Q ∈ LD(R) if (1 ≤ S, 11, S < <1)

Xavier Tolson 16 May 2017
Stop (R) = LD(R) U HD(R)
Tree (R) = Samily of cubes from
$$D\mu$$
 (R) not contained etrictly
in any cube from Stop(R)
I S supp μ = Ro $\in D\mu$,
Let To = Tree (Ro)
Next roots of trees are the sons of $\int_{R}^{R} \mathcal{R}$
cubes from Stop(Ro)
 $\mathcal{M}_{R}(x) = \int_{R} \frac{1}{|x-y|^{n-1}} d\mu(y)$
 $(1) \Rightarrow \mu (UQ) = \int_{R} \mu(R)$
 $(2) \Rightarrow w^{TR} (UQ) = \int_{R} \mu(R)$
 $(2) \Rightarrow w^{TR} (UQ) = \int_{R} w^{TR}$
 $Reloce
M = \sum_{R} \lambda_{R} M_{R}$
Relects
 $MMM_{\infty}, \partial_{R} = \sup_{R \in Poot,} |\lambda_{R}| \|\mathcal{M}_{R}\|_{\infty}$
 $\int |\nabla^{2}g(\rho_{R,1}, \cdot)| g(o, \gamma R_{2}) dx$