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1. Antoni Zygmund (l); Alberto Calderón with Alexandra Bellow (r)

All three have biographical articles in Notices Amer. Math. Soc.
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1. The Calderón–Zygmund program in harmonic analysis

Prototypical question: Is a singular integral operator (SIO) T
bounded from function space X to function space Y ?

T : X → Y ?

Example: Is T bounded from L2(R) to L2(R)? In other words,
is there a constant C such that ‖T f ‖2 ≤ C‖f ‖2 for all
f ∈ L2(R), meaning

[ ∫ ∞

−∞
|T f (x)|2 dx

]1/2

≤ C

[ ∫ ∞

−∞
|f (x)|2 dx

]1/2

?

Operator T can be: Riesz transform Rj , Hilbert transform H:

Hf (x) := p.v.
1

π

∫ ∞

−∞

f (y)

x − y
dy

“Calderón–Zygmund operators (CZOs)”, multiplier operators.

Function spaces X , Y can be: Lp(R), the Hardy space H1,
BMO, weighted Lp(ω) for ω in Ap or RHp, etc.
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1. Selected elements of the Calderón–Zygmund theory

1 Define Hardy spaces Hp, 1 ≤ p <∞, via square function S(f )

2 Atomic decomposition of Hardy space H1: f (x) =
∑

i λiai (x)
for compactly supported atoms ai (x) with bounds

3 H1 = H1
at

4 Calderón–Zygmund decomposition f = g + b into good and
bad functions, for f ∈ Hp

5 Operator Theory: Interpolation Theorem T a CZO. Then:
[Stein]

(i)T : L2 → L2,T : H1 → L1 ⇒ T : Lp → Lp, p ∈ (1, 2].

(ii)T : L2 → L2,T : L∞ → BMO ⇒ T : Lp → Lp, p ∈ [2,∞).

6 Also get T : Hp → Lp bounded for a range of p

7 Hp and Lp coincide for a range of p

[CDLWY1]: We generalise this from Hp(R) to Hp
L1,L2

(X1 × X2)
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1. Why we care about dyadic H1
d , BMOd

Interpolation: Can interpolate between L2 and dyadic H1
d , or

L2 and dyadic BMOd . (Bui & Laugesen, 2013)

Estimates: The maximal function, which controls size of many
SIOs, is itself controlled by dyadic maximal functions:
Mf ≤ C (Md f + Mδf ) pointwise.

Dyadic version can be model case: John–Nirenberg Theorem
was first proved for dyadic case. Product BMO was first
defined for dyadic case.

Exploit easier proofs: Prove dyadic version first, pull across to
continuous version via a bridge.
(Garnett & Jones, BMO from dyadic BMO, 1982).
Corona-type theorem. Jones’ distance-to-L∞-in-BMO
theorem. Jones’ Ap factorization theorem.

The “one-third trick”: Gives BMO = BMOd ∩ BMO
1/3
d .
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1. Dyadic H1(R) and continuous H1(R)

Definition 1.1 (Dyadic H1)

Dyadic Hardy space H1
d(R) := {f ∈ L1(R) : Sd(f ) ∈ L1(R)}, where

Sd(f )(x) :=

{ ∑

I dyadic

∣∣∣∣〈f , hI 〉
χI (x)

|I |1/2

∣∣∣∣
2}1/2

is the dyadic square function, hI (x) is the Haar function of I ,
and 〈f , hI 〉 is the Haar coefficient of f for I .

Definition 1.2 (Continuous H1)

(Continuous) Hardy space H1(R) := {f ∈ L1(R) : S(f ) ∈ L1(R)},
where S(f ) is the Littlewood–Paley square function

S(f )(x) :=

{∫ ∞

0
|Qt f (x)|2 dt

t

}1/2

, Qt f (x , t) := ψt ∗ f (x).

Lesley Ward Product Hardy spaces H
p
L1,L2

(X1 × X2)



1. Our project: Extending the CZ theory in several directions

classical CZ
harmonic analysis

Hp
L1,L2

(X1 × X2)

@@I ���

��	 @@R

dyadic product theory

doubling
measures;
non-doubling
measures

spaces associated with
operators L;
singular integrals with
non-smooth kernels

Australian Research Council: DP120100399, DP160100153

Lesley Ward (UniSA) Xuan Duong (Macquarie)
Ji LI (Macquarie) Jill Pipher (Brown)
Peng CHEN (Sun Yat-sen Univ) Michael Lacey (Georgia Tech)
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1. Three directions of generalisation: Definition of Hardy space H1

Figure credit: Stephanie Mills.

Similar diagram for Hp, 1 < p <∞. [AMcIR], [HM], [KU], [DL].
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2. Spaces of homogeneous type (X , d , µ)

Underlying space (Rn, Euclidean metric, Lebesgue measure)

becomes (X , quasimetric d , doubling measure µ)

Theme: Functions f : Rn → R replaced by f : X → R.

“One is amazed by the dramatic changes that occurred in analysis
during the twentieth century. In the 1930s complex methods and
Fourier series played a seminal role. After many improvements,
mostly achieved by the Calderón–Zygmund school, the action takes
place today on spaces of homogeneous type. No group structure is
available, the Fourier transform is missing, but a version of
harmonic analysis is still present.

—Yves Meyer, Abel Prize 2017
Preface to Deng & Han, LNM Vol. 1966, Springer, 2009
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2. Spaces of homogeneous type X

Definition: A space of homogeneous type is a triple (X , d , µ):

◦ X a set.
◦ d a quasimetric: d(x , y) ≤ A0d(x , z) + A0d(z , y).
◦ µ a doubling measure: ∃ C s.t. ∀ quasiballs B(x , r) ⊂ X ,

0 < µ(B(x , 2r)) ≤ Cµ(B(x , r)) <∞.

Def’n by Coifman & Weiss (1978); their original def’n (1971)
was slightly more general. Their insight about the proofs.

Quasiball of centre x and radius r :

B(x , r) := {y ∈ X : d(y , x) < r}.

We assume µ is defined on a σ-algebra which contains all
Borel sets and all quasiballs.
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2. Examples of spaces of homogeneous type (X , d , µ)

0. X = Rn,
d = Euclidean metric:

d(x , y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

µ = Lebesgue measure: µ(E ) = n-dimensional volume of E

1. X = four-corners Cantor set

2. X = graph of Lipschitz function F : Rn → R
3. X = Heisenberg group ∂Bn in Cn

4. X = nilpotent Lie group

5. X = Z with counting measure

6. X = {−1} ∪ [0,∞)

7. X = compact Riemannian manifold
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2. Example 1: Fractals

Example 1: Fractals
X = Garnett’s four-corners Cantor set
d = Euclidean metric
µ = one-dimensional Hausdorff measure = length

X is totally disconnected, and has finite, positive length.

X can be other regular fractals: Sierpiński gasket, Menger sponge.
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2. Example 7: X = compact Riemannian manifold

Special case:
X = compact Riemann surface
d = hyperbolic metric
µ = hyperbolic area measure

Doubling ok for small ball: measure almost Lebesgue.
What about large ball? X is compact so ok.

Q: What if X not compact?
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2. Non-example: X = non-compact Riemannian manifold

What if X not compact?

Hyperbolic crochet, by Dr Daina Taimina, Cornell.

µ-area of ball on this hyperbolic surface X grows
exponentially with radius: µ(B(x , r)) ∼ ecr .

µ not a doubling measure.
X not a space of homogeneous type.
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2. Non-example: X = non-compact Riemannian manifold

TED talk The Beautiful Math of Coral, by Margaret Wertheim.

To learn more about hyperbolic crochet see the book that 
shows you how: 

A Field Guide to Hyperbolic Space
By Margaret Wertheim (Institute For Figuring Press)

Books may be purchased online: 
www.theiff.org/publications

www.crochetcoralreef.org

how to crochet
hyperbolic corals

The Hyperbolic Crochet Coral Reef is a celebration 
of the intersection of geometry and handicraft 
and a testimony to the disappearing wonders 
of the marine world. Launched as a response 
to the devastation of living reefs from global 
warming and ocean acidification, the Crochet 
Reef resides equally in the realms of art, science, 
mathematics and environmentalism. 

hyperbolic crochet coral reeF

A project by the Institute For Figuring 

created and curated by
Margaret and Christine Wertheim

BY THE INSTITUTE FOR FIGURING

Ladies Silurian Atoll. Photo © the IFF.

Christine Wertheim installing The People's Reef in Scottsdale AZ. Photo © the IFF.

hyperbolic woNDers

For humans, the best way to make models of hyperbolic 
geometry is with crochet, a discovery made in 1997 by Dr. Daina 
Taimina at Cornell University. Nature, however, does not stick to 
mathematical perfection and just as there is nothing in nature 
that is perfectly spherical, so there is nothing in nature that 
is perfectly hyperbolic. Living forms result from deviation and 
imperfection.

In coral reefs we witness an almost 
endless diversity: wavy strands 
of kelp, crenellated corals and 
curlicued sponges. Even those 
who have never seen a living 
reef immediately recognize 
the Crochet Reef’s distinctive 
forms for this woolly wonder 
takes its cue from nature. 
In both cases the ruffled 
shapes are variations on a 
mathematical structure known 
as hyperbolic geometry. Nature 
loves these forms, for this is an 
ideal way to maximize surface area, 
allowing filter feeding organisms such 
as corals to enhance nutrient intake. 

In 2005, Margaret and Christine Wertheim at the Institute 
For Figuring, in Los Angeles, began to develop a taxonomy 
of reef-like forms by building on Dr Taimina’s techniques. 
Instead of adhering to a mathematically pure pattern, they 
began to use more freeform techniques which give the 
models a natural and organic look. Tightly bunched mounds 
of brain coral, towered spires of pillar coral, blooms of 
carnation coral, and forests of kelp can all be mimicked. 

Just as the diversity of living species on earth result from 
variations in an underlying DNA code, so a huge range 
of woolen 'species' may be brought into being through 
modifications in the underlying crochet code. As in nature, 
organic looking structures are the result of variation and 
experiementation. Anyone who takes up these techniques 
may begin to explore what is possible here. There is, as it 
were, an endlessly diverse, ever-evolving crochet 'tree of 
life.'

In addition to the "Core Collection" of Crochet Reef's 
created by the Institute, since 2006 the IFF has been working 
with cities and communities around the globe to create local 
“Satellite Reefs”. As of 2010, Satellite Reefs have been made 
across the USA, and in the UK, Australia, Latvia, Ireland, and 
South Africa. 

For more information about the Hyperbolic Crochet Coral 
Reef project visit:  www.crochetcoralreef.org.

 

 Institute For Figuring
 P.O. Box 50346
 Los Angeles, CA 90050

 www.theiff.org

 

hyperbolic crochet 

sea anemone
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2. Features of spaces of homogeneous type X

(X , d , µ) is geometrically doubling: ∃ A1 s.t. every ball
B(x , r) can be covered by at most A1 balls of radius r/2.

Quasi-metric d need not be Hölder regular.
(Can pass to regular Maćıas & Segovia quasimetric d ′.)

Ball B(x , r) need not be open.

No 0 element. No coordinate directions.

No addition +.
(Can replace by random dyadic lattices {D(ω)}ω∈Ω;
[NTV], [HK], . . . ).

No translation in X .

No 1/3 trick.
(Can replace by collection of adjacent systems of dyadic
cubes {D1, . . . ,DT}; [HK]).
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2. Features of spaces of homogeneous type X

Quasi-metric d need not be Hölder regular.
(Can pass to regular Maćıas & Segovia quasimetric d ′.)

d , d ′ give same topologies, same atoms.
The d ′-quasi-balls B ′(x , r) are open.

Regularity (smoothness) of d ′:
∃ C0 > 0, θ ∈ (0, 1) s.t. ∀ x , x̃ , y ∈ X ,

|d ′(x , y)−d ′(x̃ , y))| ≤ C0d
′(x , x̃)θ

[
d ′(x , y) +d ′(x̃ , y)

]1−θ
.

d ′ is often used, e.g. for T (b) theorem of
David–Journé–Semmes on (X , d ′, µ).
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2. Features of spaces of homogeneous type X

Example where we want to use original quasi-metric d , not d ′.

Bessel operators

∆λ := ∂2
x +

2λ

x
∂x , λ > 0, x > 0

Muckenhoupt–Stein 1965 prove Lp(R+, dmλ)-boundedness
of fractional integrals T associated with L = ∆λ, for
1 < p <∞, with the (doubling) measure

dmλ := x2λ dx

Duong, Li, Wick & Yang (arXiv) use [CDLWY1]
approach to define Hardy spaces associated to ∆λ:

Prove duality (Hp
∆λ

(R+))∗ = CMOp(R+)
Characterize Hp

∆λ
(R+) via non-tangential maximal function,

via radial maximal function, and via Bessel Riesz transforms.

Must use original d , since if pass to [MS] quasi-metric
then the spaces are no longer well adapted to the Bessel
operator.
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2. Replace underlying space Rn by X

The Calderón–Zygmund theory deals with collections of functions
f : Rn → R.

Theme: Replace Rn by any space of homogeneous type X :
f : X → R.

Includes functions
f : four-corners Cantor set→ R.
f : graph of Lipschitz function F → R.
f : Heisenberg group→ R.
f : nilpotent Lie group→ R.
f : Z→ R.
f : {−1} ∪ [0,∞)→ R.
f : compact Riemannian manifold→ R.

Goal: Develop Calderón–Zygmund theory on all X ; covers all this.
Many contributors.
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3. Product spaces of homogeneous type X̃ = X1 × · · · × Xk

Product space of homogeneous type: (X̃ , d , µ)

X̃ := X1 × · · · × Xk ,

d := d1 × · · · × dk ,

µ := µ1 × · · · × µk .

Example 1: Rn1 × · · · × Rnk .

Example 2: Nagel–Stein: Carnot–Carathéodory spaces

M̃ = M1 × · · · ×Mk formed by vector fields satisfying
Hörmander’s finite-rank condition.
They study non-isotropic smooth SIOs.
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3. The product theory: “R× R 6= R2”

“To oversimplify, . . . “product theory” is that part of harmonic
analysis in Rn which is invariant with respect to the n-fold
dilations

x = (x1, . . . , xn) 7→ (δ1x1, . . . , δnxn), δj > 0.

Its initial concern is with operators that are essentially products
of operators acting on each variable separately, and then more
generally with operators (and associated function spaces) that
retain some of these characteristics.” —E.M. Stein [S]

S.-Y. A. Chang, R. Fefferman, R. Gundy, J. Journé, J. Pipher,
E.M. Stein, . . .

Lesley Ward Product Hardy spaces H
p
L1,L2

(X1 × X2)



3. The product theory: “R× R 6= R2”

• Compare product theory case (independent δs):

x = (x1, . . . , xn) 7→ (δ1x1, . . . , δnxn), δj > 0.

• Compare one-parameter case (identical δs):

x = (x1, . . . , xn) 7→ (δx1, . . . , δxn), δ > 0.

Operators (such as ∆, Riesz transforms) compatible with
these uniform dilations.
• Compare multiparameter case (intermediate: related δs):
Example: Zygmund dilation

(x1, x2, x3) 7→ (δ1x1, δ2x2, δ1δ2x3), δj > 0.

Operators compatible with specified subgroups of the group of
n-parameter dilations.
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3. Features of the product and multiparameter settings

Not only higher-dimensional, but also:

Allow different dilations in each direction.
Multiparameter example:

(x1, x2, x3) 7→ (δ1x1, δ2x2, δ1δ2x3) Zygmund dilation

Deal with rectangles, not just cubes

No canonical decomposition of open set into rectangles

No Vitali-type covering lemmas

Substitute: Journé’s Lemma; complicated even for n = 2

No stopping-time arguments

(Non-trivial) Define product function spaces
H1(Rd1 × · · · × Rdn), BMO(Rd1 × · · · × Rdn)

Definitions of product BMO no longer coincide:

bmo(R×R) ( BMOprod(R×R) ( BMOrec,k(R×R)
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3. A note on notation

“Any product theory tends to be burdened with
notational complexities.”

A. Nagel and E.M. Stein, 2006

On the product theory of singular integrals

Today X̃ := X1 × X2 has only two factors.
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Example: Generalise H1(Rn) to X and product [KLPW,HLW]

Definition 1.3 (KLPW: dyadic H1, biparameter version)

H1
d (X̃ ) :=

{
f ∈ L1(X1 × X2) : Sd(f ) ∈ L1(X1 × X2)

}
,

with Sd(f ) Littlewood–Paley g -function for Haar basis {hQu }:

Sd(f )(x1, x2) :=

{ ∑

Q1∈D1

∑

Q2∈D2

MQ1
−1∑

u1=1

MQ2
−1∑

u2=1

∣∣∣〈f , hQ1
u1
hQ2
u2
〉 χQ1(x1)

µ1(Q1)1/2

χQ2(x2)

µ2(Q2)1/2

∣∣∣
2}1/2

.

Definition 1.4 (HLW: continuous H1, biparameter version)

To define continuous H1(X̃ ): use Auscher–Hytönen [AH]
orthonormal spline wavelet coefficients 〈f , ψk1

α1
ψk2
α2
〉 instead.
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4. Overview of our results

(A) Construct Haar basis on space of homogeneous type (X , d , µ).

(B) On X and X̃ := X1×X2, define BMO, H1 and dyadic versions.

(C) Kairema–Li–Pereyra–W :
Intersections
BMO(X̃ ) =

⋂T
t=1 BMOd ,t(X̃ )

Sums
H1(X̃ ) =

∑T
t=1 H1

d ,t(X̃ )

(D) Chen–Li–W :
Translation-averaging
BMOd ,ω(X̃ )→ BMO(X̃ )

Translates
H1(X̃ ) Davis’ Theorem

(C) extends Mei, Hytönen–Kairema, Li–Pipher–W .

(D) extends Garnett–Jones, Pipher–W , Treil.

(E) On X̃ = X1 × X2, define Hp
L1,L2

and atomic and dyadic
versions. Prove boundedness of spectral multiplier operators.
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4. Construction of Haar basis on (X , d , µ) [KLPW]

[KLPW]: Explicit construction of Haar wavelet basis {hQu }
on space of homogeneous type X .

hQu :=
µ(Eu+1)1/2

µ(Qu)1/2µ(Eu)1/2
χQu −

µ(Qu)1/2

µ(Eu)1/2µ(Eu+1)1/2
χEu+1 .

Built on Hytönen–Kairema (M. Christ, David, . . . )
formulation of construction of “dyadic cubes” on X .
Number of basis functions per cube depends on number
of children.

Compare earlier work of Giraldi–Sweldens,
Nazarov–Treil–Volberg, Aimar et al., Hytönen.

On X̃ := X1 × · · · × Xn use product Haar wavelet basis.

[KLPW]: This Haar basis is key ingredient in definition of
dyadic product H1

d , BMOd and VMOd on product spaces

of homogeneous type X̃ .
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4. Construction of Haar basis on (X , d , µ) [KLPW]

[KLPW]: Explicit construction of Haar wavelet basis {hQu }
on space of homogeneous type X .

hQu :=
µ(Eu+1)1/2

µ(Qu)1/2µ(Eu)1/2
χQu −

µ(Qu)1/2

µ(Eu)1/2µ(Eu+1)1/2
χEu+1 .

Here dyadic cube Q has children Q1, . . . , Qu, . . . , QMQ
.

Index so µ(Q1) ≤ · · · ≤ µ(Qu) ≤ · · · ≤ µ(QMQ
).

For each u ∈ {1, . . . ,MQ}, let

Eu := Eu(Q) :=

MQ⋃

j=u

Qj .

Then µ(Eu) ∼M µ(Eu+1) ∼M µ(Q).

Define hQu as above, for u ∈ {1, . . . ,MQ − 1}.
Lesley Ward Product Hardy spaces H

p
L1,L2

(X1 × X2)



4. Construction of Haar basis on (X , d , µ) [KLPW]

Theorem 1.5 (KLPW)

Let (X , ρ) be a geometrically doubling quasi-metric space and
suppose µ is a positive Borel measure on X with the property
that µ(B) <∞ for all balls B ⊆ X. For 1 < p <∞, for each
f ∈ Lp(X , µ), we have the Haar wavelet expansion

f (x) = mX (f ) +
∑

Q∈D

MQ−1∑

u=1

〈f , hQu 〉hQu (x),

where the sum converges (unconditionally) both in the
Lp(X , µ)-norm and pointwise µ-almost everywhere, and

mX (f ) :=

{
1

µ(X )

∫
X
fdµ, if µ(X ) <∞,

0, if µ(X ) =∞.
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4. Construction of Haar basis on (X , d , µ) [KLPW]

Theorem 1.6 (KLPW)

The Haar functions hQu , Q ∈ D, u = 1, . . . ,MQ − 1, satisfy

(i) hQu is a simple Borel-measurable real function on X ;

(ii) hQu is supported on Q;

(iii) hQu is constant on each R ∈ Ch(Q);

(iv)
∫
hQu dµ = 0 (cancellation);

(v) 〈hQu , hQu′〉 = 0 for u 6= u′, u, u′ ∈ {1, . . . ,MQ − 1};
(vi) the collection

{
µ(Q)−1/21Q

}
∪ {hQu : u = 1, . . . ,MQ − 1}

is an orthogonal basis for the vector space V (Q) of all
functions on Q that are constant on each R ∈ Ch(Q);

(vii) if hQu 6≡ 0 then ‖hQu ‖Lp(X ,µ) ' µ(Qu)
1
p
− 1

2 for 1 ≤ p ≤ ∞;

(viii) if hQu 6≡ 0 then ‖hQu ‖L1(X ,µ) · ‖hQu ‖L∞(X ,µ) ' 1.
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4. Dyadic and continuous BMO on R

Definition 1.7 (Dyadic Bounded Mean Oscillation)

f ∈ L1
loc(R) belongs to dyadic BMOd(R) if

‖f ‖d := sup
dyadic intervals I⊂R

1

|I |

∫

I

|f (x)− fI | dx <∞.

Equivalent to Carleson packing condition:

sup
J

1

|J |
∑

I⊂J,I∈D
|〈f , hI 〉|2 <∞.

Continuous BMO(R): similar but with all intervals J (not just
dyadic), and with an integral (not sum) using different,
smoother wavelets.
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4. Define dyadic and continuous BMO on X̃ [KLPW,HLW]

Recall BMOd(R):

f ∈ L1
loc(R) s.t. sup

J

1

|J |
∑

I⊂J,I∈D
|〈f , hI 〉|2 <∞.

Definition 1.8 (KLPW: dyadic BMO, biparameter version)

BMOd(X̃ ) :=
{
f ∈ L1

loc(X1 × X2) : Cd1 (f ) <∞},
with Cd1 (f ) defined via Haar basis {hQu } on each factor:

Cd1 (f ) :=

sup
Ω

{ 1

µ(Ω)

∑

R⊂Ω,R=Q1×Q2∈D1×D2

MQ1
−1∑

u1=1

MQ2
−1∑

u2=1

∣∣〈f , hQ1
u1
hQ2
u2
〉
∣∣2
}1/2

.

[HLW]: For continuous BMO(X̃ ): use Auscher–Hytönen
o.n. spline wavelet coefficients 〈f , ψk1

α1
ψk2
α2
〉 instead.
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4. Develop the product Hardy space theory on X̃ : [HLW]

With no additional assumptions on X̃ :

Prove Auscher–Hytönen o.n. spline wavelet expansions
also converge in suitable spaces of test functions and
distributions

Define square function via AH wavelet coefficients

Define Hp and CMOp. Prove duality.
(p = 1 gives (H1)∗ = BMO := CMO1)

Define VMO, prove VMO∗ = H1

Calderón–Zygmund decomposition

Interpolation theorem

Note: Han–Li–W comes after a long history: previously
with additional assumptions on space of homogeneous type.
Y. Han and E.T. Sawyer, D. Müller, D. Yang, J. Li, G. Lu, . . .
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4. Develop the product Hardy space theory on X̃ : [HLW]

No additional assumptions on X̃ :
Maćıas–Segovia quasi-metric d ′ is used in Coifman’s approach
to constructing H1(R):

Define difference operators Dk := Sk+1 − Sk .

Build a.o.t.i. from operators Sk whose kernels Sk(x , y)
have smoothness property

|Sk(x , y)− Sk(x̃ , y)| ≤ C2k(1+ε)d ′(x , x̃)ε

which follows from smoothness of [MS] quasi-metric d ′.

(Sk also used in David–Journé–Semmes T (b) theorem.)

We can’t use this approach since our d has no such
smoothness.

In our approach via Auscher–Hytönen wavelets, “the
smoothness comes from the random dyadic cubes”.
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5. Hardy spaces associated to operators L

Classical function spaces Hp(Rn) are entwined with
Laplacian ∆ = ∇ · ∇
Generalise ∆ to wider class of operators L

Define function spaces associated to operators L:

H1
L(Rn), BMOL(Rn)

Duong & Yan (L as below), Hofmann & Mayboroda
(L = ∇ · A∇), Auscher, Russ & McIntosh, . . .

Nonnegative self-adjoint operators L acting on L2(Rn) with
conditions (GE), (GGEp), (DG), (FS) on kernel pt(x , y) of
heat semigroup e−tL

Hence prove boundedness of associated Riesz transforms

T =
∂

∂xi
L−1/2, T =

∂2

∂xi∂xj
L−1.

Riesz transforms: the components of ∇L−1/2, ∆L−1
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5. Operators L with heat-kernel bounds: Five examples

1 L = −∆ + V on Rn, n ≥ 3, Schrödinger operator with
nonnegative V ∈ L1

loc(Rn).

2 L = −∆ + V on Rn, n ≥ 3, with inverse square potential
V = c/|x |2, c > −(n − 2)2/4.

3 L second-order Maxwell operator with measurable coefficient
matrices

4 L Stokes operator with Hodge boundary conditions on
bounded Lipschitz domains in R3

5 L time-dependent Lamé system with homogeneous Dirichlet
boundary conditions
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5. Typical conditions on heat kernel pt(x , y): stronger to weaker

(GE) Gaussian estimates (Gaussian upper bounds): ∃ C , c > 0 s.t.
∀ x , y ∈ X , ∀ t > 0,

|pt(x , y)| ≤ C

V (x , t1/2)
exp

(
−d(x , y)2

ct

)
.

(GGEp) p ∈ [1, 2]. Generalised Gaussian estimates: (1/p + 1/p′ = 1)

‖PB(x ,t1/2)e−tLPB(y ,t1/2)‖Lp(X )→Lp′ (X )

≤ CV (x , t1/2)−(1/p−1/p′) exp

(
−d(x , y)2

ct

)
.

(DG) Davies–Gaffney estimates: ∀ open Ui ⊃ supp fi , fi ∈ L2(X ),

|〈e−tLf1, f2〉| ≤ C exp

(
−dist(U1,U2)2

ct

)
‖f1‖L2(X )‖f2‖L2(X ).

(FS) Finite propagation speed property: ∀fi ∈ L2(Ui ),
∀t ∈ (0, dist(U1,U2)),

〈cos(t
√

L)f1, f2〉 = 0.
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5. Relations between conditions on heat kernel

“(GE) =⇒ (GGEp) =⇒ (DG) ⇐⇒ (FS)”

Legalese:

(GE) ⇐⇒ (GGE1) =⇒ (GGEp) for all p ∈ (1, 2].

(GGEp) for some p ∈ [1, 2) =⇒ (GGE2)⇐⇒ (DG) ⇐⇒ (FS)

(GGEp) for some p ∈ [1, 2) =⇒ L is one-to-one on L2(X )
(Theorem 5.1)
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5. Operators L: which conditions on heat kernel?

1 L = −∆ + V on Rn, n ≥ 3, Schrödinger operator with
nonnegative V ∈ L1

loc(Rn).
Has (GE), hence (DG).

2 L = −∆ + V on Rn, n ≥ 3, with inverse square potential
V = c/|x |2, c > −(n − 2)2/4.
Has (GGEp) for p ∈ ((p∗c )′, 2n/(n + 2)] where p∗c = p∗c (n, c),
hence (DG).

3 L second-order Maxwell operator with measurable coefficient
matrices
Has (GGEp) for some p ∈ [1, 2), hence (DG).

4 L Stokes operator with Hodge boundary conditions on
bounded Lipschitz domains in R3

Has (GGEp) for some p ∈ [1, 2), hence (DG).
5 L time-dependent Lamé system with homogeneous Dirichlet

boundary conditions
Has (GGEp) for some p ∈ [1, 2), hence (DG).
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6. [CDLWY1] Our main results (α): p = 1

Assume L1, L2 have (DG).

1 Define H1
L1,L2

(X1 × X2) via square function Sf = SL1,L2f .

Sf (x) :=

{∫∫
Γ(x)

∣∣(t2
1 L1e−t

2
1L1 ⊗ t2

2 L2e−t
2
2L2
)
f (y)

∣∣2

×dµ1(y1)dt1dµ2(y2)dt2

t1V (x1, t1)t2V (x2, t2)

}1/2

.

where Γ(x) is a suitable product cone.

2 H1
L1,L2

(X1 × X2) := {f ∈ H2(X1 × X2) : ‖Sf ‖1 <∞}.
3 Then C1‖f ‖2 ≤ ‖Sf ‖2 ≤ C2‖f ‖2.
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6. [CDLWY1] Our main results: for p = 1

Assume L1, L2 have (DG).

1 Define H1
L1,L2

(X1 × X2) via square function Sf = SL1,L2f .

2 Define atomic H1
L1,L2,at,N

(X1 × X2) via (H1
L1,L2

, 2,N)-atoms
a(x1, x2).

3 Theorem (CDLWY1): The square function and atomic
definitions of H1 coincide:

H1
L1,L2

(X1 × X2) = H1
L1,L2,at,N(X1 × X2)

for all N sufficiently large.
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6. [CDLWY1] Our main results: for 1 < p <∞

Assume L1, L2 have (DG).

1 Define Hp
L1,L2

(X1 × X2) via square function SK0f = SK0,L1,L2f .

2 Theorem (CDLWY1): Establish Calderón–Zygmund
decomposition f = g + b of f ∈ Hp

L1,L2
(X1 × X2).

3 Theorem (CDLWY1: Interpolation theorem #1): For
sublinear T with T bounded on L2 and bounded from H1

to L1 as follows:

T : L2(X1 × X2)→ L2(X1 × X2),

T : H1
L1,L2

(X1 × X2)→ L1(X1 × X2),

get T bounded from Hp to Lp for p between 1 and 2:

T : Hp
L1,L2

(X1 × X2)→ Lp(X1 × X2) for all p ∈ (1, 2).
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6. [CDLWY1] Our main results: for p0 < p < p′0

Assume L1, L2 have (GGEp0) for some p0 ∈ [1, 2).

1 Theorem (CDLWY1): Hp and Lp coincide for suitable p:

Hp
L1,L2

(X1 × X2) = Lp(X1 × X2)

for p0 < p < p′0, where 1/p0 + 1/p′0 = 1.

2 Theorem (CDLWY1: Interpolation theorem #2): For
sublinear T with T bounded on L2 and bounded from H1

to L1 as follows:

T : L2(X1 × X2)→ L2(X1 × X2),

T : H1
L1,L2

(X1 × X2)→ L1(X1 × X2),

we get T bounded on Lp for suitable p:

T : Lp(X1 × X2)→ Lp(X1 × X2) for p0 < p < p′0.
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6. [CDLWY2] Boundedness of product spectral multiplier operators

Theorem (CDLWY2): Assume L1, L2 have (DG) and satisfy
Stein-Tomas restriction-type estimates (ST2

pi ,2
) for some

pi ∈ [1, 2), for i = 1, 2. Suppose si > ni/2 where
V (xi , λr) ≤ Cλni V (xi , r) for i = 1, 2. Suppose F is a bounded
Borel function satisfying these Sobolev conditions:

sup
t1,t2>0

∥∥η(1,2)δ(t1,t2)F
∥∥
W (s1,s2),2(R×R)

<∞,

sup
t1>0

∥∥η1δ(t1,1)F (·, 0)
∥∥
W s1,2(R)

<∞,

sup
t2>0

∥∥η2δ(1,t2)F (0, ·)
∥∥
W s2,2(R)

<∞.

Then

(i) F (L1, L2) extends to a bounded operator from
H1
L1,L2

(X1 × X2) to Lp(X1 × X2), and

(ii) F (L1, L2) is bounded on Lp(X1 × X2) for pmax < p < p′max,
where pmax := max{p1, p2}.
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Insights: Calderón–Zygmund theory on (X , d , µ) and X̃

1. Calderón–Zygmund theory is robust: can extend most of it to
cover functions defined on spaces of homogeneous
type (X , d , µ), and on product spaces X1 × X2.

2. A key ingredient: Can explicitly construct Haar basis {hQ
u } on

a space of homogeneous type (X , d , µ).

3. Can develop definitions and theory of function spaces Hp,
BMO, VMO, on (X , d , µ) and on product (X̃ , d , µ). Can
dispense with earlier “additional assumptions” on X , X̃ .

4. Can develop definitions and theory of function spaces Hp
L1,L2

,
BMOL1,L2 associated to operators L1, L2 with heat kernel

estimates, on product (X̃ , d , µ).

Thank you!
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