Boundary Layers in Periodic Homogenization

Zhongwei Shen

University of Kentucky

Joint work with Jinping Zhuge Supported in part by the NSF

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Elliptic Operators with Rapidly Oscillating Coefficients

Consider a family of elliptic operators

$$\mathcal{L}_{\varepsilon} = -\operatorname{div}(A(x/\varepsilon)\nabla) = -\frac{\partial}{\partial x_i} \left[a_{ij}^{\alpha\beta} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right], \qquad \varepsilon > 0$$

where

$$A = A(y) = (a_{ij}^{lphaeta}(y))$$

with

 $1 \le i, j \le d$ and $1 \le \alpha, \beta \le m$

Assume that

- A is real and uniformly elliptic
- A is 1-periodic
- A is smooth

Elliptic Operators with Rapidly Oscillating Coefficients

Consider a family of elliptic operators

$$\mathcal{L}_{\varepsilon} = -\operatorname{div}(A(x/\varepsilon)\nabla) = -\frac{\partial}{\partial x_i} \left[a_{ij}^{\alpha\beta} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right], \qquad \varepsilon > 0$$

where

$$A = A(y) = (a_{ij}^{lphaeta}(y))$$

with

 $1 \le i, j \le d$ and $1 \le \alpha, \beta \le m$

Assume that

- A is real and uniformly elliptic
- A is 1-periodic
- A is smooth

Elliptic Operators with Rapidly Oscillating Coefficients

Consider a family of elliptic operators

$$\mathcal{L}_{\varepsilon} = -\operatorname{div}(A(x/\varepsilon)\nabla) = -\frac{\partial}{\partial x_i} \left[a_{ij}^{\alpha\beta} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right], \qquad \varepsilon > 0$$

where

$$A = A(y) = (a_{ij}^{lphaeta}(y))$$

with

 $1 \le i, j \le d$ and $1 \le \alpha, \beta \le m$

Assume that

- A is real and uniformly elliptic
- A is 1-periodic
- A is smooth

 Media with rapidly oscillating and "self-similar" microstructure, such as composite materials,

$A^{\varepsilon}(x) = A(x/\varepsilon),$

$\varepsilon > 0$ microscopic scale

- *A*(*y*) could be periodic, quasi-periodic, almost-periodic, or a realization of a stationary random field
- Direct computation of the characteristics of the medium may be costly
- Homogenization theory: Use asymptotic analysis to find effective (averaged, homogenized) characteristics

 Media with rapidly oscillating and "self-similar" microstructure, such as composite materials,

$$A^{\varepsilon}(x) = A(x/\varepsilon),$$

 $\varepsilon > 0$ microscopic scale

- A(y) could be periodic, quasi-periodic, almost-periodic, or a realization of a stationary random field
- Direct computation of the characteristics of the medium may be costly
- Homogenization theory: Use asymptotic analysis to find effective (averaged, homogenized) characteristics

・ロト・日本・山市・ 山市・ トート

 Media with rapidly oscillating and "self-similar" microstructure, such as composite materials,

$$A^{\varepsilon}(x) = A(x/\varepsilon),$$

 $\varepsilon > 0$ microscopic scale

- A(y) could be periodic, quasi-periodic, almost-periodic, or a realization of a stationary random field
- Direct computation of the characteristics of the medium may be costly
- Homogenization theory: Use asymptotic analysis to find effective (averaged, homogenized) characteristics

・ロト・4回ト・4回ト・4回ト・4回ト

 Media with rapidly oscillating and "self-similar" microstructure, such as composite materials,

$$A^{\varepsilon}(x) = A(x/\varepsilon),$$

 $\varepsilon > 0$ microscopic scale

- A(y) could be periodic, quasi-periodic, almost-periodic, or a realization of a stationary random field
- Direct computation of the characteristics of the medium may be costly
- Homogenization theory: Use asymptotic analysis to find effective (averaged, homogenized) characteristics

もして、「山・山・山・山・山・山・

Homogenization of Boundary Value Problems

Suppose

$$\begin{cases} \mathcal{L}_{\varepsilon}(u_{\varepsilon}) = F & \text{in } \Omega \\ u_{\varepsilon} = f & \text{or} & \frac{\partial u_{\varepsilon}}{\partial \nu_{\varepsilon}} = g & \text{on } \partial \Omega \end{cases}$$

As $\varepsilon
ightarrow$ 0,

 $u_{\varepsilon} \rightarrow u_0$ weakly in $H^1(\Omega)$ and strongly in $L^2(\Omega)$

where

$$\begin{cases} \mathcal{L}_0(u_0) = F & \text{in } \Omega \\ u_0 = f & \text{or} & \frac{\partial u_0}{\partial \nu_0} = g & \text{on } \partial \Omega \end{cases}$$

and \mathcal{L}_0 is an elliptic operator with constant coefficients.

Theory of Homogenization

The strongly inhomogeneous medium with rapidly oscillating microstructure, such as composite material, may be approximately described via an effective homogeneous medium.

$$\mathcal{L}_{0} = -\frac{\partial}{\partial x_{i}}\widehat{a}_{ij}^{\alpha\beta}\frac{\partial}{\partial x_{j}}$$

- homogenized (effective) operator

 $\widehat{A} = (\widehat{a}_{ij}^{\alpha\beta}) - \text{homogenized (effective) coefficients}$

Theorem (Convergence Rate)

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \leq C \varepsilon \|u_0\|_{H^2(\Omega)}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Higher-order Convergence

Consider

$$w_{\varepsilon} = u_{\varepsilon} - u_{0} - \varepsilon \chi_{j} (x/\varepsilon) \frac{\partial u_{0}}{\partial x_{j}} - \varepsilon^{2} \chi_{ij} (x/\varepsilon) \frac{\partial^{2} u_{0}}{\partial x_{i} \partial x_{j}}$$

(two-scale expansion), where

$$\chi_j(y)$$
 - first-order correctors
 $\chi_{ij}(y)$ - second-order correctors

Then

$$\mathcal{L}_{\varepsilon}(w_{\varepsilon}) = \varepsilon c_{ijk}(x/\varepsilon) \frac{\partial^3 u_0}{\partial x_i \partial x_j \partial x_k} + \varepsilon^2 \operatorname{div}(G(x/\varepsilon) \nabla^3 u_0)$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Higher-order Convergence (Dirichlet Problem)

To correct the boundary discrepancy, introduce

$$\begin{cases} \mathcal{L}_{\varepsilon}(\mathbf{v}_{\varepsilon}) = \mathbf{c}_{ijk}(\mathbf{x}/\varepsilon) \frac{\partial^{3} u_{0}}{\partial x_{i} \partial x_{j} \partial x_{k}} & \text{ in } \Omega \\ \mathbf{v}_{\varepsilon} = -\chi_{j}(\mathbf{x}/\varepsilon) \frac{\partial u_{0}}{\partial x_{j}} & \text{ on } \partial \Omega \end{cases}$$

Then

$$\|u_{\varepsilon} - u_0 - \varepsilon \chi(x/\varepsilon) \nabla u_0 - \varepsilon v_{\varepsilon}\|_{L^2(\Omega)} \leq C \varepsilon^2 \|u_0\|_{W^{3,\infty}(\Omega)}$$

what happens to v_{ε} , as $\varepsilon \rightarrow 0$?

Consider

$$\left\{egin{array}{ll} \mathcal{L}_arepsilon(u_arepsilon) = 0 & ext{in } \Omega \ u_arepsilon = f(x,x/arepsilon) & ext{on } \partial\Omega \end{array}
ight.$$

where

f(x, y) is 1-periodic in $y \in \mathbb{R}^d$

Question:

Does u_{ε} have a limit u_0 in $L^2(\Omega)$, as $\varepsilon \to 0$? What is the homogenized problem for the limit u_0 ? Convergence rate?

The answers depend on the geometry of $\partial \Omega$, even for operators with constant coefficients.

・ロト・日本・山下・山下・山下・山下・山下・山下・山下

- First-order correction for eigenvalues, F. Santosa M. Vogelius (1993), S. Moskow - M. Vogelius (1997)
- Boundary layers for rectangular domains, G. Allaire - M. Amar (1999)
- Convex polygonal domains, strictly convex domains, homogenized data and their regularities, convergence rates,
 - D. Gérard-Varet N. Masmoudi (2011, 2012)
- Sharp rates for systems with constant coefficients,
 H. Aleksanyan H. Shahgholian P. Sjölin (2013 2015)
- Sharp convergence rates (for *d* ≥ 4),
 S.N. Armstrong T. Kuusi J.C. Mourrat C. Prange (2016)
- Fully nonlinear equations, W. Feldman (2014),
 W. Feldman I. Kim P. Souganidis (2015)

- First-order correction for eigenvalues, F. Santosa M. Vogelius (1993), S. Moskow - M. Vogelius (1997)
- Boundary layers for rectangular domains,
 G. Allaire M. Amar (1999)
- Convex polygonal domains, strictly convex domains, homogenized data and their regularities, convergence rates,
 - D. Gérard-Varet N. Masmoudi (2011, 2012)
- Sharp rates for systems with constant coefficients,
 H. Aleksanyan H. Shahgholian P. Sjölin (2013 2015)
- Sharp convergence rates (for *d* ≥ 4),
 S.N. Armstrong T. Kuusi J.C. Mourrat C. Prange (2016)
- Fully nonlinear equations, W. Feldman (2014),
 W. Feldman I. Kim P. Souganidis (2015)

- First-order correction for eigenvalues, F. Santosa M. Vogelius (1993), S. Moskow - M. Vogelius (1997)
- Boundary layers for rectangular domains,
 G. Allaire M. Amar (1999)
- Convex polygonal domains, strictly convex domains, homogenized data and their regularities, convergence rates,
 - D. Gérard-Varet N. Masmoudi (2011, 2012)
- Sharp rates for systems with constant coefficients,
 H. Aleksanyan H. Shahgholian P. Sjölin (2013 2015)
- Sharp convergence rates (for *d* ≥ 4),
 S.N. Armstrong T. Kuusi J.C. Mourrat C. Prange (2016)
- Fully nonlinear equations, W. Feldman (2014),
 W. Feldman I. Kim P. Souganidis (2015)

- First-order correction for eigenvalues, F. Santosa M. Vogelius (1993), S. Moskow - M. Vogelius (1997)
- Boundary layers for rectangular domains,
 G. Allaire M. Amar (1999)
- Convex polygonal domains, strictly convex domains, homogenized data and their regularities, convergence rates,
 - D. Gérard-Varet N. Masmoudi (2011, 2012)
- Sharp rates for systems with constant coefficients,
 H. Aleksanyan H. Shahgholian P. Sjölin (2013 2015)
- Sharp convergence rates (for *d* ≥ 4),
 S.N. Armstrong T. Kuusi J.C. Mourrat C. Prange (2016)
- Fully nonlinear equations, W. Feldman (2014),
 W. Feldman I. Kim P. Souganidis (2015)

- First-order correction for eigenvalues, F. Santosa M. Vogelius (1993), S. Moskow - M. Vogelius (1997)
- Boundary layers for rectangular domains,
 G. Allaire M. Amar (1999)
- Convex polygonal domains, strictly convex domains, homogenized data and their regularities, convergence rates,
 - D. Gérard-Varet N. Masmoudi (2011, 2012)
- Sharp rates for systems with constant coefficients,
 H. Aleksanyan H. Shahgholian P. Sjölin (2013 2015)
- Sharp convergence rates (for d ≥ 4),
 S.N. Armstrong T. Kuusi J.C. Mourrat C. Prange (2016)
- Fully nonlinear equations, W. Feldman (2014),
 W. Feldman I. Kim P. Souganidis (2015)

・ロト・日本・モート ヨー うくぐ

- First-order correction for eigenvalues, F. Santosa M. Vogelius (1993), S. Moskow - M. Vogelius (1997)
- Boundary layers for rectangular domains,
 G. Allaire M. Amar (1999)
- Convex polygonal domains, strictly convex domains, homogenized data and their regularities, convergence rates,
 - D. Gérard-Varet N. Masmoudi (2011, 2012)
- Sharp rates for systems with constant coefficients,
 H. Aleksanyan H. Shahgholian P. Sjölin (2013 2015)
- Sharp convergence rates (for *d* ≥ 4),
 S.N. Armstrong T. Kuusi J.C. Mourrat C. Prange (2016)
- Fully nonlinear equations, W. Feldman (2014),
 W. Feldman I. Kim P. Souganidis (2015)

Higher-order Convergence for Neumann Problems

The two-scale expansion leads to the Neumann problem

$$\begin{cases} \mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0 & \text{in } \Omega\\ \frac{\partial u_{\varepsilon}}{\partial \nu_{\varepsilon}} = \varepsilon^{-1} n_{i}(x) b_{ij}(x/\varepsilon) \frac{\partial u_{0}}{\partial x_{j}} & \text{on } \partial \Omega \end{cases}$$

where $b_{ij}(y)$ is 1-periodic,

$$\int_{\mathbb{T}^d} b_{ij} = 0$$
 and $rac{\partial}{\partial y_i} (b_{ij}) = 0$

Write $b_{ij} = \frac{\partial}{\partial y_k} \phi_{kij}$, where ϕ is 1-periodic, and

$$\phi_{\it kij} = -\phi_{\it ikj}$$

Neumann Problems with First-order Oscillating Boundary Data

Consider

$$\begin{cases} \mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0 & \text{in } \Omega\\ \frac{\partial u_{\varepsilon}}{\partial \nu_{\varepsilon}} = T_{ij} \cdot \nabla_{x} \{ g_{ij}(x, x/\varepsilon) \} + g_{0}(x, x/\varepsilon) - \gamma_{\varepsilon} & \text{on } \partial \Omega \end{cases}$$
⁽¹⁾

where

 $T_{ij} = n_i e_j - n_j e_i - a \text{ tangential vector field on } \partial\Omega$ $\frac{\partial u_{\varepsilon}}{\partial \nu_{\varepsilon}} = n \cdot A(x/\varepsilon) \nabla u_{\varepsilon}$

- the conormal derivative associated with $\mathcal{L}_{\varepsilon}$ $g_{ij}(x, y), g_0(x, y)$ are 1-periodic in y

・ロト・1日・1日・1日・1日・1日・

Energy Estimates for Dirichlet and Neumann Problems

$$\|u_{\varepsilon}\|_{H^1(\Omega)} \sim \varepsilon^{-\frac{1}{2}}$$

Also,

$$\|u_{\varepsilon}\|_{H^{1}(K)} \leq C, \qquad \|u_{\varepsilon}\|_{H^{1/2}(\Omega)} \leq C$$

In fact,

$$\int_{\Omega} |\nabla u_{\varepsilon}(x)|^2 \operatorname{dist}(x, \partial \Omega) \, dx \leq C$$

(C. Kenig - S., Kenig - F. Lin - S.)

Homogenization for Neumann Problems Assume that

 Ω is smooth and strictly convex

We show that

$$u_{\varepsilon} \rightarrow u_0$$
 strongly in $L^2(\Omega)$

where

$$\begin{cases} \mathcal{L}_{0}(u_{0}) = 0 & \text{in } \Omega \\ \frac{\partial u_{0}}{\partial \nu_{0}} = T_{ij} \cdot \nabla_{x} \overline{g}_{ij} + \langle g_{0} \rangle - \gamma_{0} & \text{on } \partial \Omega \end{cases}$$
(2)

with

$$\langle g_0 \rangle(x) = \int_{\mathbb{T}^d} g_0(x, y) \, dy$$

The formula for $\{\overline{g}_{ij}\}$ on $\partial\Omega$ is given explicitly. Its value at $x \in \partial\Omega$ depends only on A, $\{g_{ij}(x, \cdot)\}$, and the unit normal n to $\partial\Omega$ at x.

Sharp Convergence Rates

Theorem (S. - J. Zhuge, CPAM)

Let Ω be a bounded smooth, strictly convex domain in \mathbb{R}^d , $d \ge 3$. Let u_{ε} and u_0 be solutions of (1) and (2), respectively, with

$$\int_{\Omega} u_{\varepsilon} = \int_{\Omega} u_0 = 0.$$

Then for any $\sigma \in (0, 1/2)$ and $\varepsilon \in (0, 1)$,

$$\|u_{\varepsilon}-u_0\|_{L^2(\Omega)}\leq C_{\sigma}\,\varepsilon^{rac{1}{2}-\sigma},$$

where C_{σ} depends only on d, m, σ , A, Ω , and $g = \{g_0, g_{ij}\}$.

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Regularity for Homogenized Data

Theorem (S. - Zhuge)

Under the same assumptions on A and Ω , the homogenized data $\overline{g} = \{\overline{g}_{ij}\}$ in (2) satisfy

 $\|\overline{g}\|_{W^{1,q}(\partial\Omega)} \leq C_q \sup_{y\in\mathbb{T}^d} \|g(\cdot,y)\|_{\mathcal{C}^1(\partial\Omega)} \quad ext{ for any } q < d-1,$

where C_q depends only on d, m, μ , q and $||A||_{C^k(\mathbb{T}^d)}$ for some $k = k(d) \ge 1$.

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Boundary Layers for Neumann Problems

There exists $\Omega_{\varepsilon} = \Omega_{\varepsilon,\sigma}$ such that

$$\left\{ \boldsymbol{x} \in \Omega : \ \delta(\boldsymbol{x}) \leq \boldsymbol{c}_0 \varepsilon \right\} \subset \Omega_{\varepsilon} \subset \left\{ \boldsymbol{x} \in \Omega : \ \delta(\boldsymbol{x}) \leq \boldsymbol{c}_1 \sqrt{\varepsilon} \right\}$$

with

$$|\Omega_{\varepsilon}| \leq C \varepsilon^{1-\sigma}$$

and for $x \in \Omega \setminus \Omega_{\varepsilon}$,

$$|u_{\varepsilon}(x) - u_{0}(x)| \leq C \varepsilon^{\frac{1}{2} - \sigma} \int_{\partial \Omega} \frac{\left[M_{\partial \Omega}(\kappa^{-q})(y)\right]^{\frac{1 - \rho}{q}}}{|x - y|^{d - 1}} dy$$

where 1 < q < d - 1 and $\rho \in (0, 1)$.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Boundary Layers

$$\Omega_{\varepsilon} = \cup_{j} B(x_{j}, r_{j}) \cap \Omega$$

with $x_j \in \partial \Omega$ and $c_0 \varepsilon \leq r_j \leq c_1 \sqrt{\varepsilon}$,

$$r_j \sim \varepsilon^{1-\sigma} / \left(\oint_{B(x_j,r_j) \cap \partial \Omega} \kappa^p \right)^{1/p}, \qquad p > d-1$$

where $\kappa(x)$ is defined by

$$|(I - n(x) \otimes n(x))\xi| \ge \kappa |\xi|^{-2}$$
 for any $\xi \in \mathbb{Z}^d \setminus \{0\}$

It is known

$$\frac{1}{\kappa} \in L^{d-1,\infty}(\partial\Omega)$$
 if Ω is convex

◆□ > ◆□ > ◆ = > ◆ = > = の < @

$$\begin{cases} \mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0 & \text{in } \Omega \\ u_{\varepsilon} = f(x, x/\varepsilon) & \text{on } \partial \Omega \end{cases}$$
(3)

where f(x, y) is smooth in $(x, y) \in \mathbb{R}^d \times \mathbb{R}^d$ and 1-periodic in y.

 D. Gérard-Varet - N. Masmoudi (JEMS, 2011) (Acta Math, 2012). Homogenization and convergence rates,

$$\|u_{\varepsilon}-u_0\|_{L^2(\Omega)}\leq C\,\varepsilon^{\frac{d-1}{3d+5}-},$$

where Ω is smooth and strictly convex,

$$\mathcal{L}_0(u_0) = 0$$
 in Ω and $u_0 = \overline{f}(x)$ on $\partial \Omega$,

and the homogenized data \overline{f} is identified.

・ロト・日本・山下・山下・山下・山下・山下・山下・山下

Optimal Rates for Dirichlet Problem

• S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \le \begin{cases} C \varepsilon^{\frac{1}{2}} & \text{for } d \ge 4 \\ C \varepsilon^{\frac{1}{3}} & \text{for } d = 3 \\ C \varepsilon^{\frac{1}{6}} & \text{for } d = 2 \end{cases}$$

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \le egin{cases} C \, \varepsilon^{rac{1}{2}^-} & ext{for } d = 3 \ C \, \varepsilon^{rac{1}{4}^-} & ext{for } d = 2 \end{cases}$$

• Zhuge (2016), general domains of finite type

・ロ・・ 白・ ・ ヨ・ ・ ヨ・ うへぐ

Optimal Rates for Dirichlet Problem

• S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \le \begin{cases} C \varepsilon^{\frac{1}{2}^-} & \text{for } d \ge 4 \\ C \varepsilon^{\frac{1}{3}^-} & \text{for } d = 3 \\ C \varepsilon^{\frac{1}{6}^-} & \text{for } d = 2 \end{cases}$$

• S. - Zhuge (2016)

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \le \left\{ egin{array}{ll} C \, arepsilon^{rac{1}{2}-} & ext{for } d=3 \ C \, arepsilon^{rac{1}{4}-} & ext{for } d=2 \end{array}
ight.$$

• Zhuge (2016), general domains of finite type

▲□▶▲□▶▲≣▶▲≣▶ ≣ りへぐ

Optimal Rates for Dirichlet Problem

• S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \le \begin{cases} C \varepsilon^{\frac{1}{2}^-} & \text{for } d \ge 4 \\ C \varepsilon^{\frac{1}{3}^-} & \text{for } d = 3 \\ C \varepsilon^{\frac{1}{6}^-} & \text{for } d = 2 \end{cases}$$

$$\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \le \begin{cases} C \varepsilon^{\frac{1}{2}-} & \text{for } d = 3 \\ C \varepsilon^{\frac{1}{4}-} & \text{for } d = 2 \end{cases}$$

• Zhuge (2016), general domains of finite type

・ロ・・ 白・・ キャー・ キー うへぐ

Regularity for Homogenized Data \overline{f}

 $\overline{f} \in W^{1,q}(\partial \Omega)$

- Gérard-Varet Masmoudi, $q < \frac{d-1}{2}$
- Armstrong Kuusi Mourrat Prange, $q < \frac{2(d-1)}{3}$
- S. Zhuge, q < d 1
 (for both Dirichlet and Neumann problems)

The $O(\sqrt{\varepsilon})$ convergence rate is sharp even for operators with constant coefficients

(H. Aleksanyan - H. Shahgholian - P. Sjölin, 2013-2015)

▲□▶▲□▶▲≣▶▲≣▶ ≣ りへぐ

Regularity for Homogenized Data \overline{f}

$$\overline{f} \in W^{1,q}(\partial \Omega)$$

- Gérard-Varet Masmoudi, $q < \frac{d-1}{2}$
- Armstrong Kuusi Mourrat Prange, $q < \frac{2(d-1)}{3}$
- S. Zhuge, q < d 1
 (for both Dirichlet and Neumann problems)

The $O(\sqrt{\varepsilon})$ convergence rate is sharp even for operators with constant coefficients

(H. Aleksanyan - H. Shahgholian - P. Sjölin, 2013-2015)

・ロト・日本・山下・山下・山下・山下・山下・山下・山下

Regularity for Homogenized Data \overline{f}

$$\overline{f} \in W^{1,q}(\partial \Omega)$$

- Gérard-Varet Masmoudi, $q < \frac{d-1}{2}$
- Armstrong Kuusi Mourrat Prange, $q < \frac{2(d-1)}{3}$
- S. Zhuge, q < d 1
 (for both Dirichlet and Neumann problems)

The $O(\sqrt{\varepsilon})$ convergence rate is sharp even for operators with constant coefficients

(H. Aleksanyan - H. Shahgholian - P. Sjölin, 2013-2015)

・ロト・西ト・ボルト・ ゴー うくら

An Approach to Dirichlet Problem (Armstrong - Kuusi - Mourrat - Prange)

$$u_{\varepsilon}(x) = \int_{\partial\Omega} P_{\varepsilon}(x,y) f(y,y/\varepsilon) \, dy$$

Homogenization of Poisson Kernels

M. Avellaneda - Lin (1989), Kenig - Lin - S. (2014)

$$= \int_{\partial\Omega} P_0(x,y) f(y,y/\varepsilon) \omega_{\varepsilon}(y) \, dy + \text{ error}$$

Calderón-Zygmund decomposition on $\partial \Omega$ adapted to $\kappa(x)$

$$=\sum_{j}\int_{\Delta_{j}}\eta_{j}(\mathbf{y})P_{0}(\mathbf{x},\mathbf{y})f(\mathbf{y}_{j},\mathbf{y}/\varepsilon)\omega_{\varepsilon}(\mathbf{y})\,d\mathbf{y}+\text{error}$$

Approximation by solutions in half-spaces

$$=\sum_{j}\int_{\partial\mathbb{H}_{j}}\eta_{j}(y)P_{0}(x,y)f(y_{j},y/\varepsilon)\widetilde{\omega}(y_{j},y/\varepsilon)\,dy + \text{error}$$

$$u_{\varepsilon}(x) = \sum_{j} \int_{\partial \mathbb{H}_{j}} \eta_{j}(y) P_{0}(x, y) f(y_{j}, y/\varepsilon) \widetilde{\omega}(y_{j}, y/\varepsilon) dy + \text{error}$$

mean values of quasi-periodic functions

$$=\sum_{j}\int_{\partial\mathbb{H}_{j}}\eta_{j}(y)P_{0}(x,y)\overline{f(y_{j},\cdot)\widetilde{\omega}(y_{j},\cdot)}dy + \text{ error}$$

regularity of the homogenized data

$$= \sum_{j} \int_{\Delta_{j}} \eta_{j}(y) P_{0}(x, y) \overline{f(y, \cdot)} \widetilde{\omega}(y, \cdot) dy + \text{ error}$$
$$= \int_{\partial \Omega} P_{0}(x, y) \overline{f(y, \cdot)} \widetilde{\omega}(y, \cdot) dy + \text{ error}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

A Similar and Improved Approach to Neumann Problems

- Homogenization of first-order derivatives of Neumann functions (Kenig - Lin - S., 2014).
- Construction and optimal estimates of solutions to Neumann problems in half-spaces with periodic data.
- Approximation of oscillating factors by solutions in half-spaces.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A Similar and Improved Approach to Neumann Problems

- Homogenization of first-order derivatives of Neumann functions (Kenig - Lin - S., 2014).
- Construction and optimal estimates of solutions to Neumann problems in half-spaces with periodic data.
- Approximation of oscillating factors by solutions in half-spaces.

・・

A Similar and Improved Approach to Neumann Problems

- Homogenization of first-order derivatives of Neumann functions (Kenig - Lin - S., 2014).
- Construction and optimal estimates of solutions to Neumann problems in half-spaces with periodic data.
- Approximation of oscillating factors by solutions in half-spaces.

Homogenization of Neumann Functions Kenig - Lin - S. (CPAM, 2014)

Let $N_{\varepsilon}(x, y)$ be the matrix of Neumann functions for $\mathcal{L}_{\varepsilon}$ in Ω . Then

$$|N_{\varepsilon}(x,y)-N_0(x,y)|\leq rac{C\,\varepsilon\ln\left[arepsilon^{-1}|x-y|+2
ight]}{|x-y|^{d-1}},$$

$$|\nabla_{y} \{ N(x,y) \}^{T} - \nabla_{y} \Psi_{\varepsilon}^{*}(y) \nabla_{y} \{ N_{\varepsilon}(x,y) \}^{T} | \leq \frac{C_{\sigma} \varepsilon^{1-\sigma}}{|x-y|^{d-\sigma}},$$

for any $x, y \in \Omega$ and $\sigma \in (0, 1)$, where Ψ_{ε}^* denotes the Neumann corrector for $\mathcal{L}_{\varepsilon}^*$ in Ω ,

$$\mathcal{L}^*_{\varepsilon}(\Psi^*_{\varepsilon}) = 0$$
 in Ω and $\frac{\partial}{\partial \nu^*_{\varepsilon}}(\Psi^*_{\varepsilon}) = \frac{\partial}{\partial \nu^*_{0}}(x)$ on $\partial \Omega$.

Neumann Problems in a Half-Space

For $n \in \mathbb{S}^{d-1}$ and $a \in \mathbb{R}$, let

$$\mathbb{H}_n(a) = \{x \in \mathbb{R}^d : x \cdot n < -a\}.$$

For $g \in C^{\infty}(\mathbb{T}^d)$, consider the Neumann problem

$$\left\{ egin{array}{ll} \operatorname{div}({\it A}(x)
abla u)=0 & ext{in }\mathbb{H}_n(a)\ n\cdot {\it A}
abla u=T\cdot
abla g & ext{on }\partial\mathbb{H}_n(a) \end{array}
ight.$$

where $T \in \mathbb{R}^d$, $|T| \leq 1$, and $T \cdot n = 0$. Assume that *n* satisfies the Diophantine condition

$$|(I - n \otimes n)\xi| \ge \kappa |\xi|^{-2}$$
 for any $\xi \in \mathbb{Z}^d \setminus \{0\}$,

for some $\kappa > 0$.

4 日 ト 4 国 ト 4 国 ト 4 国 ト 1 の 0 0 0

Neumann Problems in a Half-Space

Let

$$u(x) = V(x - (x \cdot n)n, -x \cdot n)$$

where $V(\theta, t)$ is a function of $(\theta, t) \in \mathbb{T}^d \times [a, \infty)$. Then

$$\begin{cases} \left(\begin{array}{c} N^{T}\nabla_{\theta} \\ \partial_{t} \end{array}\right) \cdot B\left(\begin{array}{c} N^{T}\nabla_{\theta} \\ \partial_{t} \end{array}\right) V = 0 & \text{in } \mathbb{T}^{d} \times (a, \infty) \\ -e_{d+1} \cdot B\left(\begin{array}{c} N^{T}\nabla_{\theta} \\ \partial_{t} \end{array}\right) V = T \cdot \nabla_{\theta} \widetilde{g} & \text{on } \mathbb{T}^{d} \times \{a\} \end{cases}$$

where $Me_d = -n$,

$$B = B(\theta, t) = M^{T}A(\theta - tn)M,$$

$$\widetilde{g}(\theta, t) = g(\theta - tn),$$

$$NN^{T} + n \otimes n = I.$$

Existence and Preliminary Estimates

Theorem (S. - Zhuge, 2016)

The Neumann problem has a smooth solution u satisfying

$$ert u(x) ert \leq rac{C_{lpha,\ell}}{\kappa(1+\kappaert x\cdot n+aert)^\ell}, \ ert \partial_x^lpha u(x) ert \leq rac{C_{lpha,\ell}}{(1+\kappaert x\cdot n+aert)^\ell},$$

for any $|\alpha| \ge 1$ and $\ell \ge 1$.

Note that

$$dist(x, \partial \mathbb{H}_n(a)) = |x \cdot n + a|$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

$$|\nabla u(x)| \leq \frac{C \|g\|_{\infty}}{|x \cdot n + a|}$$

for any $x \in \mathbb{H}_n(a)$,

where C depends only on d, m, the ellipticity constant μ , and some Hölder norm of A.

- The proof uses the representation by Neumann functions and integration by parts on the boundary $\partial \Omega$.
- This theorem plays the same role as the maximum principle in the Dirichlet problem.

・ロト・4回ト・4回ト・4回ト・4回ト

A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

$$|\nabla u(x)| \leq \frac{C \|g\|_{\infty}}{|x \cdot n + a|}$$

for any $x \in \mathbb{H}_n(a)$,

where C depends only on d, m, the ellipticity constant μ , and some Hölder norm of A.

- The proof uses the representation by Neumann functions and integration by parts on the boundary $\partial \Omega$.
- This theorem plays the same role as the maximum principle in the Dirichlet problem.

・ロト・4日・4日・4日・日・9000

A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

$$|\nabla u(x)| \leq \frac{C \|g\|_{\infty}}{|x \cdot n + a|}$$

for any $x \in \mathbb{H}_n(a)$,

where C depends only on d, m, the ellipticity constant μ , and some Hölder norm of A.

- The proof uses the representation by Neumann functions and integration by parts on the boundary $\partial \Omega$.
- This theorem plays the same role as the maximum principle in the Dirichlet problem.

・ロト・日本・山市・ 山市・ トート

Approximation of Neumann Correctors

Fix $x_0 \in \partial \Omega$. For $g \in C^{\infty}(\mathbb{T}^d)$, approximate the solution to the Neumann problem

$$\begin{cases} \mathcal{L}_{\varepsilon}(u_{\varepsilon}) = 0 & \text{in } \Omega \\ \frac{\partial u_{\varepsilon}}{\partial \nu_{\varepsilon}} = T(x) \cdot \nabla g(x/\varepsilon) & \text{on } \partial \Omega \end{cases}$$

where $T(x) = n_i(x)e_j - n_j(x)e_i$, by a solution to

$$\begin{cases} \mathcal{L}_{\varepsilon}(v_{\varepsilon}) = 0 & \text{ in } \mathbb{H}_{n}(a) \\ \frac{\partial v_{\varepsilon}}{\partial \nu_{\varepsilon}} = T(x_{0}) \cdot \nabla g(x/\varepsilon) & \text{ on } \partial \mathbb{H}_{n}(a) \end{cases}$$

where $a = -x_0 \cdot n$ and $\partial \mathbb{H}_n(a)$ is the tangent plane of $\partial \Omega$ at x_0 .

Theorem (S. - Zhuge, 2016)

Let

$$\varepsilon \leq r \leq \sqrt{\varepsilon}$$
 and $\sigma \in (0, 1)$.

Then

$$egin{aligned} & \|
abla (u_arepsilon - oldsymbol{v}_arepsilon) \|_{L^\infty(B(x_0,r)\cap\Omega)} \ & \leq C \sqrt{arepsilon} ig\{ 1 + |\lnarepsilon| ig\} + C arepsilon^{-1-\sigma} r^{2+\sigma}. \end{aligned}$$

- Use representation by Neumann functions, boundary Lipschitz estimates, and lots of integration by parts on the boundary.
- Similar estimates were obtained for Dirichlet problem by Armstrong - Kuusi - Mourrat - Prange.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem (S. - Zhuge, 2016)

Let

$$\varepsilon \leq r \leq \sqrt{\varepsilon}$$
 and $\sigma \in (0, 1)$.

Then

$$egin{aligned} & \|
abla (u_arepsilon - v_arepsilon) \|_{L^\infty(B(x_0,r) \cap \Omega)} \ & \leq C \sqrt{arepsilon} \left\{ 1 + |\ln arepsilon|
ight\} + C arepsilon^{-1 - \sigma} r^{2 + \sigma}. \end{aligned}$$

- Use representation by Neumann functions, boundary Lipschitz estimates, and lots of integration by parts on the boundary.
- Similar estimates were obtained for Dirichlet problem by Armstrong Kuusi Mourrat Prange.

< ロ > < 母 > < 目 > < 目 > < 日 > < 日 > < < つ < の < の

Theorem (S. - Zhuge, 2016)

Let

$$\varepsilon \leq r \leq \sqrt{\varepsilon}$$
 and $\sigma \in (0, 1)$.

Then

$$egin{aligned} & \|
abla (u_arepsilon - v_arepsilon) \|_{L^\infty(B(x_0,r) \cap \Omega)} \ & \leq C \sqrt{arepsilon} \left\{ 1 + |\ln arepsilon|
ight\} + C arepsilon^{-1 - \sigma} r^{2 + \sigma}. \end{aligned}$$

- Use representation by Neumann functions, boundary Lipschitz estimates, and lots of integration by parts on the boundary.
- Similar estimates were obtained for Dirichlet problem by Armstrong - Kuusi - Mourrat - Prange.

・・

Approximation of Neumann Correctors

Let

$$\phi_{\varepsilon}^*(\mathbf{x}) = \Psi_{\varepsilon}^*(\mathbf{x}) - \mathbf{x} - \varepsilon \chi^*(\mathbf{x}/\varepsilon).$$

Then, for any $x \in B(x_0, r) \cap \Omega$,

$$\begin{split} |\nabla \Big(\phi_{\varepsilon}^*(x) - \varepsilon V^* \left(\frac{x - (x \cdot n + a)n}{\varepsilon}, -\frac{x \cdot n + a}{\varepsilon} \right) | \\ &\leq C \sqrt{\varepsilon} \Big\{ 1 + |\ln \varepsilon| \Big\} + C \varepsilon^{-1 - \sigma} r^{2 + \sigma}, \end{split}$$

where

$$\varepsilon \leq r \leq \sqrt{\varepsilon}$$
 and $\sigma \in (0, 1/2)$

Sharp Estimates for the Homogenized Data

Let $x, y \in \partial \Omega$ and $|x - y| \leq c_0$. Suppose n(x) and n(y) satisfy the Diophantine condition with constants $\kappa(x)$ and $\kappa(y)$, respectively. Let $\overline{g} = (\overline{g}_k^\beta)$ be the homogenized data. Then

$$|\overline{g}(x) - \overline{g}(y)| \leq \frac{C_{\sigma}|x - y|}{\kappa^{1 + \sigma}} \left(\frac{|x - y|}{\kappa} + 1 \right) \sup_{z \in \mathbb{T}^d} \|g(\cdot, z)\|_{C^1(\partial\Omega)}$$

where

$$\kappa = \max(\kappa(\mathbf{x}), \kappa(\mathbf{y})).$$

- The estimate also holds for homogenized data in the case of Dirichlet problem. This improved a result of Armstrong -Kuusi - Mourrat - Prange (by a power of 1/2), which in turn improved an early work of Gérard-Varet - Masmoudi.
- The improvement for Dirichlet Problem leads to the sharp convergence rates for d = 2 or 3.

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ◇ ○ ◇ ◇ ◇

Sharp Estimates for the Homogenized Data

Let $x, y \in \partial \Omega$ and $|x - y| \leq c_0$. Suppose n(x) and n(y) satisfy the Diophantine condition with constants $\kappa(x)$ and $\kappa(y)$, respectively. Let $\overline{g} = (\overline{g}_k^\beta)$ be the homogenized data. Then

$$|\overline{g}(x) - \overline{g}(y)| \leq rac{C_{\sigma}|x-y|}{\kappa^{1+\sigma}} \left(rac{|x-y|}{\kappa} + 1
ight) \sup_{z\in\mathbb{T}^d} \|g(\cdot,z)\|_{\mathcal{C}^1(\partial\Omega)}$$

where

$$\kappa = \max(\kappa(\mathbf{x}), \kappa(\mathbf{y})).$$

- The estimate also holds for homogenized data in the case of Dirichlet problem. This improved a result of Armstrong -Kuusi - Mourrat - Prange (by a power of 1/2), which in turn improved an early work of Gérard-Varet - Masmoudi.
- The improvement for Dirichlet Problem leads to the sharp convergence rates for d = 2 or 3.

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ◇ ○ ◇ ◇ ◇

Let $n, \widetilde{n} \in \mathbb{S}^{d-1}$. Show that

$$\int_{\mathbb{T}^d} |N_n^T \nabla_\theta \left(V_n^*(\theta, 0) - V_{\widetilde{n}}^*(\theta, 0) \right)| \, d\theta \leq \frac{C_\sigma |n - \widetilde{n}|}{\kappa^{1 + \sigma}} \left(\frac{|n - \widetilde{n}|}{\kappa} + 1 \right),$$

where $\kappa > 0$ is the constant in the Diophantine condition for \tilde{n} . Let

$$W(\theta, t) = V_n^*(\theta, t) - V_{\widetilde{n}}^*(\theta, t).$$

By Sobolev imbedding it suffices to show that

$$\int_{0}^{1} \int_{\mathbb{T}^{d}} \left\{ |N_{n}^{T} \nabla_{\theta} W|^{2} + |\nabla_{\theta} \partial_{t} W|^{2} \right\} d\theta dt \leq C_{\sigma} \left\{ \frac{|n - \widetilde{n}|^{2}}{\kappa^{2 + \sigma}} + \frac{|n - \widetilde{n}|^{4}}{\kappa^{4 + \sigma}} \right\},$$
 for any $\sigma \in (0, 1)$.

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Note that W is a solution of the Neumann problem,

$$-\left(\begin{array}{c} \mathbf{N}_{n}^{T}\nabla_{\theta}\\\partial_{t}\end{array}\right)\cdot\mathbf{B}_{n}^{*}\left(\begin{array}{c} \mathbf{N}_{n}^{T}\nabla_{\theta}\\\partial_{t}\end{array}\right)\mathbf{W}=\left(\begin{array}{c} \mathbf{N}_{n}^{T}\nabla_{\theta}\\\partial_{t}\end{array}\right)\mathbf{G}+\mathbf{H}$$

in
$$\mathbb{T}^d \times \mathbb{R}_+$$
,

with

$$-e_{d+1} \cdot B_n^* \left(egin{array}{c} N_n^T
abla_{ heta} \ \partial_t \end{array}
ight) W = h + e_{d+1} \cdot G \quad ext{ on } \mathbb{T}^d imes \{0\}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Weighted Estimates - Neumann Problem Suppose that $n \in S^{n-1}$ satisfies the Diophantine condition. Let *U* be a smooth solution of

$$\begin{cases} -\begin{pmatrix} N_n^T \nabla_{\theta} \\ \partial_t \end{pmatrix} \cdot B_n^* \begin{pmatrix} N_n^T \nabla_{\theta} \\ \partial_t \end{pmatrix} U = \begin{pmatrix} N_n^T \nabla_{\theta} \\ \partial_t \end{pmatrix} F & \text{in } \mathbb{T}^d \times \mathbb{R}_+, \\ -e_{d+1} \cdot B_n^* \begin{pmatrix} N_n^T \nabla_{\theta} \\ \partial_t \end{pmatrix} U = e_{d+1} \cdot F & \text{on } \mathbb{T}^d \times \{0\}. \end{cases}$$

Assume that

$$(1+t)\|\nabla_{\theta,t}U(\cdot,t)\|_{L^{\infty}(\mathbb{T}^d)}+(1+t)\|F(\cdot,t)\|_{L^{\infty}(\mathbb{T}^d)}<\infty.$$

Then, for any $-1 < \alpha < 0$,

$$\int_0^\infty \int_{\mathbb{T}^d} \left\{ |N_n^T \nabla_\theta U|^2 + |\partial_t U|^2 \right\} t^\alpha \, d\theta \, dt \leq C_\alpha \int_0^\infty \int_{\mathbb{T}^d} |F|^2 \, t^\alpha \, d\theta \, dt,$$

where C_{α} depends only on d, m, μ, α as well as some Hölder norm of A.

Reduction to Weighted Estimates for Half-Spaces

Let

$$\Omega = \mathbb{H}_n(a)$$
 and $\mathcal{L} = -\operatorname{div}(A(x)\nabla).$

Consider the Dirichlet problem,

$$\left\{egin{array}{ll} \mathcal{L}(u) = {\sf div}(f) + h & ext{ in } \Omega \ u = 0 & ext{ on } \partial\Omega \end{array}
ight.$$

and the Neumann problem,

$$\begin{cases} \mathcal{L}(u) = \operatorname{div}(f) & \text{ in } \Omega \\ \frac{\partial u}{\partial \nu} = -n \cdot f & \text{ on } \partial \Omega \end{cases}$$

We are interested in the weighted L^2 estimate,

$$\int_{\Omega} |\nabla u(x)|^2 [\delta(x)]^{\alpha} dx$$

$$\leq C \int_{\Omega} |f(x)|^2 [\delta(x)]^{\alpha} dx + C \int_{\Omega} |h(x)|^2 [\delta(x)]^{\alpha+2} dx,$$

where $-1 < \alpha < 0$ and

$$\delta(\mathbf{x}) = \operatorname{dist}(\mathbf{x}, \partial \Omega) = |\mathbf{a} + (\mathbf{x} \cdot \mathbf{n})|.$$

- Use a weighted (and duel) version of the Calderón-Zygmund theory (Caffarelli - Peral (1998), Shen (2005), ...)
- Reduce the problem to a weak reverse Hölder inequality.
- If $-1 < \alpha < 0$, then $\omega_{\alpha}(x) = [\delta(x)]^{\alpha}$ is an A_1 weight.

・<・<・・</l

We are interested in the weighted L^2 estimate,

$$\int_{\Omega} |\nabla u(x)|^2 [\delta(x)]^{\alpha} dx$$

$$\leq C \int_{\Omega} |f(x)|^2 [\delta(x)]^{\alpha} dx + C \int_{\Omega} |h(x)|^2 [\delta(x)]^{\alpha+2} dx,$$

where $-1 < \alpha < 0$ and

$$\delta(\mathbf{x}) = \operatorname{dist}(\mathbf{x}, \partial \Omega) = |\mathbf{a} + (\mathbf{x} \cdot \mathbf{n})|.$$

- Use a weighted (and duel) version of the Calderón-Zygmund theory (Caffarelli - Peral (1998), Shen (2005), ...)
- Reduce the problem to a weak reverse Hölder inequality.
- If $-1 < \alpha < 0$, then $\omega_{\alpha}(x) = [\delta(x)]^{\alpha}$ is an A_1 weight.

▲□▶▲□▶▲≡▶▲≡▶ ■ りへぐ

We are interested in the weighted L^2 estimate,

$$\int_{\Omega} |\nabla u(x)|^2 [\delta(x)]^{\alpha} dx$$

$$\leq C \int_{\Omega} |f(x)|^2 [\delta(x)]^{\alpha} dx + C \int_{\Omega} |h(x)|^2 [\delta(x)]^{\alpha+2} dx,$$

where $-1 < \alpha < 0$ and

$$\delta(\mathbf{x}) = \operatorname{dist}(\mathbf{x}, \partial \Omega) = |\mathbf{a} + (\mathbf{x} \cdot \mathbf{n})|.$$

- Use a weighted (and duel) version of the Calderón-Zygmund theory (Caffarelli - Peral (1998), Shen (2005), ...)
- Reduce the problem to a weak reverse Hölder inequality.
- If $-1 < \alpha < 0$, then $\omega_{\alpha}(x) = [\delta(x)]^{\alpha}$ is an A_1 weight.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Higher-order Convergence for Neumann Problems

Let u_{ε} be the solution to

$$\mathcal{L}_{arepsilon}(u_{arepsilon})=F \quad ext{in } \Omega \quad ext{and} \quad rac{\partial u_{arepsilon}}{\partial
u_{arepsilon}}=g \quad ext{on } \partial \Omega$$

with $\int_{\Omega} u_{\varepsilon} = 0$.

Let u_0 be the solution of the homogenized problem.

Then there exists a function v^{bl} , independent of ε , such that

$$\|u_{\varepsilon}-u_{0}-\varepsilon\chi(x/\varepsilon)\nabla u_{0}-\varepsilon v^{bl}\|_{L^{2}(\Omega)}\leq C_{\sigma}\varepsilon^{\frac{3}{2}-\sigma}\|u_{0}\|_{W^{3,\infty}(\Omega)},$$

for any $\sigma \in (0, 1/2)$, where C_{σ} depends only on d, m, σ , A and Ω .

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶

The function v^{bl} is a solution to the Neumann problem

 $\mathcal{L}_0(v^{bl}) = F_* \quad ext{in } \Omega \quad ext{and} \quad rac{\partial v^{bl}}{\partial
u_0} = g_* \quad ext{on } \partial \Omega,$

where

$$F_* = \overline{c}_{ki\ell} \frac{\partial^3 u_0}{\partial x_k \partial x_i \partial x_\ell}$$

for some constants $\overline{c}_{ki\ell}$, and g_* satisfies

 $\|g_*\|_{L^q(\partial\Omega)} \leq C_q \|u_0\|_{W^{2,\infty}(\Omega)},$

for any 1 < q < d - 1.

4 日 ト 4 国 ト 4 国 ト 4 国 ト 1 の 0 0 0

Thank You!