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Elliptic Operators
with Rapidly Oscillating Coefficients

Consider a family of elliptic operators

Lε = −div
(
A(x/ε)∇

)
= − ∂

∂xi

[
aαβij

(x
ε

) ∂

∂xj

]
, ε > 0

where
A = A(y) =

(
aαβij (y)

)

with
1 ≤ i , j ≤ d and 1 ≤ α, β ≤ m

Assume that

• A is real and uniformly elliptic
• A is 1-periodic
• A is smooth
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Strongly Inhomogeneous Medium

• Media with rapidly oscillating and "self-similar"
microstructure, such as composite materials,

Aε(x) = A(x/ε),

ε > 0 microscopic scale

• A(y) could be periodic, quasi-periodic, almost-periodic, or
a realization of a stationary random field

• Direct computation of the characteristics of the medium
may be costly

• Homogenization theory:
Use asymptotic analysis to find effective (averaged,
homogenized) characteristics
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Homogenization of Boundary Value Problems

Suppose 



Lε(uε) = F in Ω

uε = f or
∂uε
∂νε

= g on ∂Ω

As ε→ 0,

uε → u0 weakly in H1(Ω) and strongly in L2(Ω)

where 



L0(u0) = F in Ω

u0 = f or
∂u0

∂ν0
= g on ∂Ω

and L0 is an elliptic operator with constant coefficients.



Theory of Homogenization

The strongly inhomogeneous medium with rapidly oscillating
microstructure, such as composite material, may be
approximately described via an effective homogeneous
medium.

L0 = − ∂

∂xi
âαβij

∂

∂xj

− homogenized (effective) operator

Â = (âαβij )− homogenized (effective) coefficients

Theorem (Convergence Rate)

‖uε − u0‖L2(Ω) ≤ C ε‖u0‖H2(Ω)



Higher-order Convergence

Consider

wε = uε − u0 − εχj(x/ε)
∂u0

∂xj
− ε2χij(x/ε)

∂2u0

∂xi∂xj

(two-scale expansion), where

χj(y) − first-order correctors
χij(y) − second-order correctors

Then

Lε(wε) = εcijk (x/ε)
∂3u0

∂xi∂xj∂xk
+ ε2div(G(x/ε)∇3u0)



Higher-order Convergence (Dirichlet Problem)

To correct the boundary discrepancy, introduce




Lε(vε) = cijk (x/ε)
∂3u0

∂xi∂xj∂xk
in Ω

vε = −χj(x/ε)
∂u0

∂xj
on ∂Ω

Then

‖uε − u0 − εχ(x/ε)∇u0 − εvε‖L2(Ω) ≤ C ε2‖u0‖W 3,∞(Ω)

what happens to vε, as ε→ 0?



Dirichlet Problem with Oscillating Data

Consider {
Lε(uε) = 0 in Ω

uε = f (x , x/ε) on ∂Ω

where
f (x , y) is 1-periodic in y ∈ Rd

Question:

Does uε have a limit u0 in L2(Ω), as ε→ 0?
What is the homogenized problem for the limit u0?
Convergence rate?

The answers depend on the geometry of ∂Ω, even for operators
with constant coefficients.



Dirichlet Problem with Oscillating Data

• First-order correction for eigenvalues, F. Santosa - M.
Vogelius (1993), S. Moskow - M. Vogelius (1997)

• Boundary layers for rectangular domains,
G. Allaire - M. Amar (1999)

• Convex polygonal domains, strictly convex domains,
homogenized data and their regularities, convergence
rates,
D. Gérard-Varet - N. Masmoudi (2011, 2012)

• Sharp rates for systems with constant coefficients,
H. Aleksanyan - H. Shahgholian - P. Sjölin (2013 - 2015)

• Sharp convergence rates (for d ≥ 4),
S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

• Fully nonlinear equations, W. Feldman (2014),
W. Feldman - I. Kim - P. Souganidis (2015)
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Higher-order Convergence
for Neumann Problems

The two-scale expansion leads to the Neumann problem




Lε(uε) = 0 in Ω

∂uε
∂νε

= ε−1ni(x)bij(x/ε)
∂u0

∂xj
on ∂Ω

where bij(y) is 1-periodic,
∫

Td
bij = 0 and

∂

∂yi

(
bij
)

= 0

Write bij = ∂
∂yk
φkij , where φ is 1-periodic, and

φkij = −φikj



Neumann Problems
with First-order Oscillating Boundary Data

Consider




Lε(uε) = 0 in Ω

∂uε
∂νε

= Tij · ∇x
{

gij(x , x/ε)
}

+ g0(x , x/ε)− γε on ∂Ω
(1)

where

Tij = niej − njei − a tangential vector field on ∂Ω

∂uε
∂νε

= n · A(x/ε)∇uε

- the conormal derivative associated with Lε
gij(x , y),g0(x , y) are 1-periodic in y



Energy Estimates
for Dirichlet and Neumann Problems

We have
‖uε‖H1(Ω) ∼ ε−

1
2

Also,
‖uε‖H1(K ) ≤ C, ‖uε‖H1/2(Ω) ≤ C

In fact, ∫

Ω
|∇uε(x)|2 dist(x , ∂Ω) dx ≤ C

(C. Kenig - S., Kenig - F. Lin - S.)



Homogenization for Neumann Problems
Assume that

Ω is smooth and strictly convex

We show that

uε → u0 strongly in L2(Ω)

where




L0(u0) = 0 in Ω

∂u0

∂ν0
= Tij · ∇xg ij + 〈g0〉 − γ0 on ∂Ω

(2)

with
〈g0〉(x) = −

∫

Td
g0(x , y) dy

The formula for {g ij} on ∂Ω is given explicitly. Its value at
x ∈ ∂Ω depends only on A, {gij(x , ·)}, and the unit normal n to
∂Ω at x .



Sharp Convergence Rates

Theorem (S. - J. Zhuge, CPAM)

Let Ω be a bounded smooth, strictly convex domain in Rd ,
d ≥ 3. Let uε and u0 be solutions of (1) and (2), respectively,
with ∫

Ω
uε =

∫

Ω
u0 = 0.

Then for any σ ∈ (0,1/2) and ε ∈ (0,1),

‖uε − u0‖L2(Ω) ≤ Cσ ε
1
2−σ,

where Cσ depends only on d, m, σ, A, Ω, and g = {g0,gij}.



Regularity for Homogenized Data

Theorem (S. - Zhuge)

Under the same assumptions on A and Ω, the homogenized
data g = {g ij} in (2) satisfy

‖g‖W 1,q(∂Ω) ≤ Cq sup
y∈Td

‖g(·, y)‖C1(∂Ω) for any q < d − 1,

where Cq depends only on d, m, µ, q and ‖A‖Ck (Td ) for some
k = k(d) ≥ 1.



Boundary Layers for Neumann Problems

There exists Ωε = Ωε,σ such that
{

x ∈ Ω : δ(x) ≤ c0ε
}
⊂ Ωε ⊂

{
x ∈ Ω : δ(x) ≤ c1

√
ε
}

with
|Ωε| ≤ C ε1−σ

and for x ∈ Ω \ Ωε,

|uε(x)− u0(x)| ≤ C ε
1
2−σ

∫

∂Ω

[
M∂Ω(κ−q)(y)

] 1−ρ
q

|x − y |d−1 dy

where 1 < q < d − 1 and ρ ∈ (0,1).



Boundary Layers

Ωε = ∪jB(xj , rj) ∩ Ω

with xj ∈ ∂Ω and c0ε ≤ rj ≤ c1
√
ε,

rj ∼ ε1−σ/

(
−
∫

B(xj ,rj )∩∂Ω
κp

)1/p

, p > d − 1

where κ(x) is defined by

|(I − n(x)⊗ n(x))ξ| ≥ κ|ξ|−2 for any ξ ∈ Zd \ {0}
It is known

1
κ
∈ Ld−1,∞(∂Ω) if Ω is convex



Dirichlet Problem with Oscillating Data

{
Lε(uε) = 0 in Ω

uε = f (x , x/ε) on ∂Ω
(3)

where f (x , y) is smooth in (x , y) ∈ Rd × Rd and 1-periodic in y .

• D. Gérard-Varet - N. Masmoudi (JEMS, 2011) (Acta Math,
2012). Homogenization and convergence rates,

‖uε − u0‖L2(Ω) ≤ C ε
d−1
3d+5−,

where Ω is smooth and strictly convex,

L0(u0) = 0 in Ω and u0 = f (x) on ∂Ω,

and the homogenized data f is identified.



Optimal Rates for Dirichlet Problem

• S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

‖uε − u0‖L2(Ω) ≤





C ε
1
2− for d ≥ 4

C ε
1
3− for d = 3

C ε
1
6− for d = 2

• S. - Zhuge (2016)

‖uε − u0‖L2(Ω) ≤
{

C ε
1
2− for d = 3

C ε
1
4− for d = 2

• Zhuge (2016), general domains of finite type
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Regularity for Homogenized Data f

f ∈W 1,q(∂Ω)

• Gérard-Varet - Masmoudi, q < d−1
2

• Armstrong - Kuusi - Mourrat - Prange, q < 2(d−1)
3

• S. - Zhuge, q < d − 1
(for both Dirichlet and Neumann problems)

The O(
√
ε) convergence rate is sharp even for operators with

constant coefficients
(H. Aleksanyan - H. Shahgholian - P. Sjölin, 2013-2015)
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An Approach to Dirichlet Problem
(Armstrong - Kuusi - Mourrat - Prange)

uε(x) =

∫

∂Ω
Pε(x , y)f (y , y/ε) dy

Homogenization of Poisson Kernels
M. Avellaneda - Lin (1989), Kenig - Lin - S. (2014)

=

∫

∂Ω
P0(x , y)f (y , y/ε)ωε(y) dy + error

Calderón-Zygmund decomposition on ∂Ω adapted to κ(x)

=
∑

j

∫

∆j

ηj(y)P0(x , y)f (yj , y/ε)ωε(y) dy + error

Approximation by solutions in half-spaces

=
∑

j

∫

∂Hj

ηj(y)P0(x , y)f (yj , y/ε)ω̃(yj , y/ε) dy + error



Continued

uε(x) =
∑

j

∫

∂Hj

ηj(y)P0(x , y)f (yj , y/ε)ω̃(yj , y/ε) dy + error

mean values of quasi-periodic functions

=
∑

j

∫

∂Hj

ηj(y)P0(x , y)f (yj , ·)ω̃(yj , ·)dy + error

regularity of the homogenized data

=
∑

j

∫

∆j

ηj(y)P0(x , y)f (y , ·)ω̃(y , ·)dy + error

=

∫

∂Ω
P0(x , y)f (y , ·)ω̃(y , ·)dy + error



A Similar and Improved Approach
to Neumann Problems

• Homogenization of first-order derivatives of Neumann
functions (Kenig - Lin - S., 2014).

• Construction and optimal estimates of solutions to
Neumann problems in half-spaces with periodic data.

• Approximation of oscillating factors by solutions in
half-spaces.
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Homogenization of Neumann Functions
Kenig - Lin - S. (CPAM, 2014)

Let Nε(x , y) be the matrix of Neumann functions for Lε in Ω.
Then

|Nε(x , y)− N0(x , y)| ≤ C ε ln
[
ε−1|x − y |+ 2

]

|x − y |d−1 ,

|∇y
{

N(x , y)
}T −∇y Ψ∗ε(y)∇y

{
Nε(x , y)

}T | ≤ Cσ ε
1−σ

|x − y |d−σ ,

for any x , y ∈ Ω and σ ∈ (0,1),
where Ψ∗ε denotes the Neumann corrector for L∗ε in Ω,

L∗ε(Ψ∗ε) = 0 in Ω and
∂

∂ν∗ε

(
Ψ∗ε
)

=
∂

∂ν∗0

(
x
)

on ∂Ω.



Neumann Problems in a Half-Space

For n ∈ Sd−1 and a ∈ R, let

Hn(a) =
{

x ∈ Rd : x · n < −a
}
.

For g ∈ C∞(Td ), consider the Neumann problem
{

div(A(x)∇u) = 0 in Hn(a)

n · A∇u = T · ∇g on ∂Hn(a)

where T ∈ Rd , |T | ≤ 1, and T · n = 0.
Assume that n satisfies the Diophantine condition

|(I − n ⊗ n)ξ| ≥ κ|ξ|−2 for any ξ ∈ Zd \ {0},

for some κ > 0.



Neumann Problems in a Half-Space

Let
u(x) = V (x − (x · n)n,−x · n)

where V (θ, t) is a function of (θ, t) ∈ Td × [a,∞). Then




(
NT∇θ
∂t

)
· B
(

NT∇θ
∂t

)
V = 0 in Td × (a,∞)

−ed+1 · B
(

NT∇θ
∂t

)
V = T · ∇θg̃ on Td × {a}

where Med = −n,

B = B(θ, t) = MT A(θ − tn)M,

g̃(θ, t) = g(θ − tn),

NNT + n ⊗ n = I.



Existence and Preliminary Estimates

Theorem (S. - Zhuge, 2016)

The Neumann problem has a smooth solution u satisfying

|u(x)| ≤ Cα,`

κ(1 + κ|x · n + a|)` ,

|∂αx u(x)| ≤ Cα,`

(1 + κ|x · n + a|)` ,

for any |α| ≥ 1 and ` ≥ 1.

Note that
dist(x , ∂Hn(a)) = |x · n + a|



A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

|∇u(x)| ≤ C ‖g‖∞
|x · n + a| for any x ∈ Hn(a),

where C depends only on d, m, the ellipticity constant µ, and
some Hölder norm of A.

• The proof uses the representation by Neumann functions
and integration by parts on the boundary ∂Ω.

• This theorem plays the same role as the maximum
principle in the Dirichlet problem.
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Approximation of Neumann Correctors

Fix x0 ∈ ∂Ω. For g ∈ C∞(Td ), approximate the solution to the
Neumann problem





Lε(uε) = 0 in Ω

∂uε
∂νε

= T (x) · ∇g(x/ε) on ∂Ω

where T (x) = ni(x)ej − nj(x)ei , by a solution to




Lε(vε) = 0 in Hn(a)

∂vε
∂νε

= T (x0) · ∇g(x/ε) on ∂Hn(a)

where a = −x0 · n and ∂Hn(a) is the tangent plane of ∂Ω at x0.



Continued

Theorem (S. - Zhuge, 2016)

Let
ε ≤ r ≤ √ε and σ ∈ (0,1).

Then
‖∇(uε − vε)‖L∞(B(x0,r)∩Ω)

≤ C
√
ε
{

1 + | ln ε|
}

+ Cε−1−σr2+σ.

• Use representation by Neumann functions, boundary
Lipschitz estimates, and lots of integration by parts on the
boundary.

• Similar estimates were obtained for Dirichlet problem by
Armstrong - Kuusi - Mourrat - Prange.
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Approximation of Neumann Correctors

Let
φ∗ε(x) = Ψ∗ε(x)− x − εχ∗(x/ε).

Then, for any x ∈ B(x0, r) ∩ Ω,

|∇
(
φ∗ε(x)− εV ∗

(
x − (x · n + a)n

ε
,−x · n + a

ε

)
|

≤ C
√
ε
{

1 + | ln ε|
}

+ C ε−1−σr2+σ,

where
ε ≤ r ≤ √ε and σ ∈ (0,1/2)



Sharp Estimates for the Homogenized Data
Let x , y ∈ ∂Ω and |x − y | ≤ c0. Suppose n(x) and n(y) satisfy
the Diophantine condition with constants κ(x) and κ(y),
respectively. Let g = (gβk ) be the homogenized data. Then

|g(x)− g(y)| ≤ Cσ|x − y |
κ1+σ

( |x − y |
κ

+ 1
)

sup
z∈Td
‖g(·, z)‖C1(∂Ω)

where
κ = max(κ(x), κ(y)).

• The estimate also holds for homogenized data in the case
of Dirichlet problem. This improved a result of Armstrong -
Kuusi - Mourrat - Prange (by a power of 1/2), which in turn
improved an early work of Gérard-Varet - Masmoudi.

• The improvement for Dirichlet Problem leads to the sharp
convergence rates for d = 2 or 3.
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Let n, ñ ∈ Sd−1. Show that
∫

Td
|NT

n ∇θ
(
V ∗n (θ,0)− V ∗ñ (θ,0)

)
|dθ ≤ Cσ|n − ñ|

κ1+σ

( |n − ñ|
κ

+ 1
)
,

where κ > 0 is the constant in the Diophantine condition for ñ.
Let

W (θ, t) = V ∗n (θ, t)− V ∗ñ (θ, t).

By Sobolev imbedding it suffices to show that

∫ 1

0

∫

Td

{
|NT

n ∇θW |2+|∇θ∂tW |2
}

dθdt ≤ Cσ

{ |n − ñ|2
κ2+σ

+
|n − ñ|4
κ4+σ

}
,

for any σ ∈ (0,1).



Note that W is a solution of the Neumann problem,

−
(

NT
n ∇θ
∂t

)
· B∗n

(
NT

n ∇θ
∂t

)
W =

(
NT

n ∇θ
∂t

)
G + H

in Td × R+,
with

−ed+1 · B∗n
(

NT
n ∇θ
∂t

)
W = h + ed+1 ·G on Td × {0}



Weighted Estimates - Neumann Problem
Suppose that n ∈ Sn−1 satisfies the Diophantine condition. Let
U be a smooth solution of




−
(

NT
n ∇θ
∂t

)
· B∗n

(
NT

n ∇θ
∂t

)
U =

(
NT

n ∇θ
∂t

)
F in Td × R+,

− ed+1 · B∗n
(

NT
n ∇θ
∂t

)
U = ed+1 · F on Td × {0}.

Assume that

(1 + t)‖∇θ,tU(·, t)‖L∞(Td ) + (1 + t)‖F (·, t)‖L∞(Td ) <∞.

Then, for any −1 < α < 0,
∫ ∞

0

∫

Td

{
|NT

n ∇θU|2+|∂tU|2
}

tα dθdt ≤ Cα

∫ ∞

0

∫

Td
|F |2 tα dθdt ,

where Cα depends only on d , m, µ, α as well as some Hölder
norm of A.



Reduction to
Weighted Estimates for Half-Spaces

Let
Ω = Hn(a) and L = −div(A(x)∇).

Consider the Dirichlet problem,
{
L(u) = div(f ) + h in Ω

u = 0 on ∂Ω

and the Neumann problem,



L(u) = div(f ) in Ω

∂u
∂ν

= −n · f on ∂Ω



We are interested in the weighted L2 estimate,
∫

Ω
|∇u(x)|2

[
δ(x)

]α dx

≤ C
∫

Ω
|f (x)|2

[
δ(x)

]α dx + C
∫

Ω
|h(x)|2

[
δ(x)

]α+2 dx ,

where −1 < α < 0 and

δ(x) = dist(x , ∂Ω) = |a + (x · n)|.

• Use a weighted (and duel) version of the
Calderón-Zygmund theory (Caffarelli - Peral (1998), Shen
(2005), ...)

• Reduce the problem to a weak reverse Hölder inequality.
• If −1 < α < 0, then ωα(x) = [δ(x)]α is an A1 weight.
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Higher-order Convergence for Neumann Problems

Let uε be the solution to

Lε(uε) = F in Ω and
∂uε
∂νε

= g on ∂Ω

with
∫

Ω uε = 0.

Let u0 be the solution of the homogenized problem.

Then there exists a function vbl , independent of ε, such that

‖uε − u0 − εχ(x/ε)∇u0 − εvbl‖L2(Ω) ≤ Cσ ε
3
2−σ‖u0‖W 3,∞(Ω),

for any σ ∈ (0,1/2), where Cσ depends only on d , m, σ, A and
Ω.



Continued

The function vbl is a solution to the Neumann problem

L0(vbl) = F∗ in Ω and
∂vbl

∂ν0
= g∗ on ∂Ω,

where

F∗ = cki`
∂3u0

∂xk∂xi∂x`
for some constants cki`, and g∗ satisfies

‖g∗‖Lq(∂Ω) ≤ Cq ‖u0‖W 2,∞(Ω),

for any 1 < q < d − 1.



Thank You!


