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Assume that

e Ais real and uniformly elliptic
e Ais 1-periodic
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Strongly Inhomogeneous Medium

Media with rapidly oscillating and "self-similar"
microstructure, such as composite materials,

A" (x) = Alx/e),

e>0 microscopic scale

A(y) could be periodic, quasi-periodic, almost-periodic, or
a realization of a stationary random field

Direct computation of the characteristics of the medium
may be costly

Homogenization theory:
Use asymptotic analysis to find effective (averaged,
homogenized) characteristics



Homogenization of Boundary Value Problems

Suppose
L(u)=F inQ
u.=f or Ol =g onoQ
OV,
As ¢ — 0,

u. — Up weakly in H'(Q) and strongly in L2(Q)
where

up="F or %:g on 02
aVo

and Lg is an elliptic operator with constant coefficients.

{ ,Co(Uo) —F inQ



Theory of Homogenization

The strongly inhomogeneous medium with rapidly oscillating
microstructure, such as composite material, may be
approximately described via an effective homogeneous

medium.

0 S0 0
OX; i an
— homogenized (effective) operator

Lo=

A= (Zz;fﬁ ) — homogenized (effective) coefficients

Theorem (Convergence Rate)

[U: — Uoll 2y < Cellol| ey



Higher-order Convergence

Consider

(92 Up
OXj0X;

(9U0

We = U — Up — exj(x/e) 5~ = e=xji(x/e)
/

(two-scale expansion), where

xj(¥) — first-order correctors
Xi(¥) — second-order correctors

Then

+ 2div(G(x /&) V3 up)

Eg(Wg) = SC,'jk(X/E)



Higher-order Convergence (Dirichlet Problem)

To correct the boundary discrepancy, introduce

,
23y
Le(ve) = Gii(x/e) 5 8x-(c‘)9xk in Q
) ou o
0
V. = —xj(x/e)=— on 0f2
\ P o

Then

U — Up — ex(x/e)Vug — 5VsHL2(Q) < C€2HU0H W3.22(Q)

what happens to v.,as ¢ — 07



Dirichlet Problem with Oscillating Data

Consider
L(u:)=0 in Q
u. = f(x, x/e) on 0f2
where
f(x,y) is 1-periodic in y € RY
Question:

Does u. have a limit ug in L2(Q), as ¢ — 0?
What is the homogenized problem for the limit ug?
Convergence rate?

The answers depend on the geometry of 02, even for operators
with constant coefficients.
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Fully nonlinear equations, W. Feldman (2014),
W. Feldman - I. Kim - P. Souganidis (2015)



Higher-order Convergence
for Neumann Problems

The two-scale expansion leads to the Neumann problem

{ L.(u:)=0 in Q
oU: 4 dUg
9. e~ ni(x)bji(x/e) ox on 02

where bj;(y) is 1-periodic,

0
- b,‘j =0 and 8—}/, (b,j) =0

Write bj = aiykqbk,-j, where ¢ is 1-periodic, and

Okif = —Pikj



Neumann Problems
with First-order Oscillating Boundary Data

Consider

{ Es(us) =0 in 2

Ou;
o Tij - Vx{95(X, x/€) } + go(X, x/€) — 7 on 00

where
T; = nije;—nje; —  atangential vector field on 9

ou.
OV,
- the conormal derivative associated with £,

gii(x,¥), 9o(x, y) are 1-periodic in y

=n-Ax/e)VuU.




Energy Estimates
for Dirichlet and Neumann Problems

We have 1
[Ue|[ 1) ~ €72
Also,
Iy < €, Uiz < €
In fact,

/ IV u.(x)|? dist(x, Q) dx < C
Q

(C. Kenig - S., Kenig - F. Lin - S.)



Homogenization for Neumann Problems
Assume that

Q2 is smooth and strictly convex
We show that

U. — Up strongly in L(Q)

where
,Co(Uo) =0 in Q
ou (2)
500 = Ti-VaGj+(90) —70  onaQ
20
with

(90)(x ][ 9o(x,y) ady

The formula for {g;;} on 082 is given explicitly. Its value at
x € 952 depends only on A, {gji(x, )}, and the unit normal n to
0f2 at x.



Sharp Convergence Rates

Theorem (S. - J. Zhuge, CPAM)

Let Q be a bounded smooth, strictly convex domain in R,
d > 3. Let u. and uy be solutions of (1) and (2), respectively,

with
- fmes

Then for any o € (0,1/2) ande € (0,1),

[Ue — Uoll2(q) < Co ez~

Y

where C, depends only ond, m, o, A, 2, and g = {90, gjj}-



Regularity for Homogenized Data

Theorem (S. - Zhuge)

Under the same assumptions on A and X2, the homogenized
data g = {gj} in (2) satisfy

19llw.aa) < Cq SUTQ 19(:¥)llctoq) foranyq<d-—1,
ye

where C4 depends only on d, m, ji, q and ||Al| ck(rey for some
k =k(d)>1.



Boundary Layers for Neumann Problems

There exists Q. = Q. , such that
{xe€Q: 6(x)<coe} CQ C{xeQ: §x)<ciVe}

with
Q.| < Ce'°
and for x € Q\ €,

1—p

o [ Meale )] T
) — wl)| < Ot | Ao

where 1 <g<d—-1andpe (0,1).



Boundary Layers
Q. = U/B(va r]) N

with x; € 02 and cge < r; < ¢/,

1/p
rngﬂ"/(]f KZ'D> , p>d—1
B(xj,r;)NoQ

where x(x) is defined by

(1= n(x) @ n(x))¢| > kl€| 2 forany ¢ € 29\ {0}
It is known

Te L9-12°(5Q) if Q is convex
K



Dirichlet Problem with Oscillating Data

{Lg(ug) =0 in Q -

u. = f(x, x/¢) on 90f2
where f(x, y) is smooth in (x, y) € R? x R? and 1-periodic in y.

e D. Gérard-Varet - N. Masmoudi (JEMS, 2011) (Acta Math,
2012). Homogenization and convergence rates,

d—1
[Ue — Upll12(q) < Ceddrs,

where 2 is smooth and strictly convex,

Lo(g)=0 inQ and wuy="Ff(x) onoQ,

and the homogenized data f is identified.



Optimal Rates for

Dirichlet Problem

e S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

[Ue — Uoll12(0) < 4

(Cez™ ford > 4
Ce%_ ford =3
| Ces~  ford=2
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Cea™ ford =2



Optimal Rates for Dirichlet Problem

e S.N. Armstrong - T. Kuusi - J.C. Mourrat - C. Prange (2016)

(Ce2™ for d > 4
[Us = Uol[2(q) < S Ces™ ford =3
\ 05%_ ford =2

e S.- Zhuge (2016)

Ce2™ ford =3

[u: — Uoll 2y < { |
Ces™ ford =2

e Zhuge (2016), general domains of finite type
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Regularity for Homogenized Data f

fe whioQ)

e Gérard-Varet - Masmoudi, g < %

. 2(d—1
o Armstrong - Kuusi - Mourrat - Prange, g < %

e S.-Zhuge,g< d—1
(for both Dirichlet and Neumann problems)

The O(4/¢) convergence rate is sharp even for operators with
constant coefficients
(H. Aleksanyan - H. Shahgholian - P. Sjélin, 2013-2015)



An Approach to Dirichlet Problem
(Armstrong - Kuusi - Mourrat - Prange)

U (x) = /8 Py y/2) o

Homogenization of Poisson Kernels
M. Avellaneda - Lin (1989), Kenig - Lin - S. (2014)

=/ Po(x,y)f(y,y/e)w:(y)dy + error

Calderdn-Zygmund decomposition on 0f2 adapted to «(x)
=2 /A ni(Y)Po(X, ¥)I(y), ¥ /€)w:(y) dy + error
j j

Approximation by solutions in half-spaces

= ;/anﬂ[, ni(yY)Po(x, Y)Y, y/e)o(y;, y/€) dy + error



Continued

() =3 [ 0Polx. Y35y /2y /=) oy + error
j j
mean values of quasi-periodic functions

- Ej:/aHj ni(¥)Po(x,y)f(y;, - )w(y;,-)dy + error

regularity of the homogenized data

— Z/A ni(Y)Po(x,y)(y,-)w(y,-)dy + error
J J

:/ Po(x,y)f(y,-)w(y,-)dy + error
o9
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e Homogenization of first-order derivatives of Neumann
functions (Kenig - Lin - S., 2014).
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A Similar and Improved Approach
to Neumann Problems

e Homogenization of first-order derivatives of Neumann
functions (Kenig - Lin - S., 2014).

e Construction and optimal estimates of solutions to
Neumann problems in half-spaces with periodic data.

e Approximation of oscillating factors by solutions in
half-spaces.



Homogenization of Neumann Functions
Kenig - Lin - S. (CPAM, 2014)
Let N.(x, y) be the matrix of Neumann functions for L. in Q.
Then

Celnle|x —y|+2]
X =yl

INz(X,¥) = No(x, y)| <

Y

Ca 81—0
X — y|d=’

IV INGGY) LT = Vi)V INL(x, )} | <

forany x,y € Qand o € (0,1),
where W7 denotes the Neumann corrector for £} in €2,

0 ;. O
o (V) = ov;

LX(VH)=0 inQ and (x) ondqQ.



Neumann Problems in a Half-Space

Forne S9! and a € R, let
Hy(a) = {x €R%:x-n< —a}.
For g € C>(TY), consider the Neumann problem

div(A(x)Vu) =0 in Hy(a)
n-AVu=T -Vg on 0Hp(a)

where T € RY, |T| <1,and T-n=0.
Assume that n satisfies the Diophantine condition

(I—n@n)é| > kl¢g[?  forany ¢ € 29\ {0},

for some x > 0.



Neumann Problems in a Half-Space
Let
u(x)=V(x—(x-n)n,—x-n)
where V(6, t) is a function of (6,t) € T? x [a,00). Then
( T T
N'Ve Y g N Ve Y y_p in T x (4, cc)
O O

T
—ed_|_1‘B(Nav9>V: T-Vga oanx{a}
t

\

where Mey = —n,

B=B9,1t)=M"AG — tn)M,
5(07 t) — g(e T tn)v
NN +nen=1.



Existence and Preliminary Estimates

Theorem (S. - Zhuge, 2016)

The Neumann problem has a smooth solution u satisfying

Cav
< !

UGl < k(1 + k|x-n+ a|)t’
O u(x)| < o

(1+x|x-n+ a|)?’
forany |o| > 1 and ¢ > 1.

Note that
dist(x,0Hp(a)) = |x - n+ a|



A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

Cllgll
|x - n+ &

Vu(x)| < for any x € Hp(a),

where C depends only on d, m, the ellipticity constant 1., and
some Holder norm of A.



A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

Cllgll

<
N e P

for any x € Hp(a),

where C depends only on d, m, the ellipticity constant 1., and
some Holder norm of A.

e The proof uses the representation by Neumann functions
and integration by parts on the boundary 012.




A Refined Estimate

Theorem (S. - Zhuge, 2016)

The solution given by the last theorem satisfies

Cllgll

<
VUl < 1 nt 4

for any x € Hp(a),

where C depends only on d, m, the ellipticity constant 1., and
some Holder norm of A.

e The proof uses the representation by Neumann functions
and integration by parts on the boundary 012.

e This theorem plays the same role as the maximum
principle in the Dirichlet problem.



Approximation of Neumann Correctors

Fix xo € 0. For g € C>*(T9), approximate the solution to the
Neumann problem

{ Es(us) =0 in Q

g:jg = T(x)-Vg(x/e) on 0N

where T(x) = nj(x)e; — n;j(x)e;, by a solution to

L.(v.)=0 in Hp(a)
{ gf = T(xp) - Vg(x/¢) on 0Hp(a)

where a = —xp - n and dHp(a) is the tangent plane of 9Q2 at xp.



Continued

Theorem (S. - Zhuge, 2016)

Let
e<r<+e and oe€(0,1).

Then
IV (Ue = Ve )L (B(xo,r)n0)

< Cve{1+]|Ing|} + Ce177r2t7,



Continued

Theorem (S. - Zhuge, 2016)

Let
e<r<+e and oe€(0,1).

Then
HV(Ua _ V€)||L°°(B(x0,r)ﬂ§2)
< Cve{1+]|Ing|} + Ce177r2t7,

e Use representation by Neumann functions, boundary
Lipschitz estimates, and lots of integration by parts on the
boundary.



Continued

Theorem (S. - Zhuge, 2016)
Let

e<r<+e and oe€(0,1).
Then
HV(UE _ V€)||L°°(B(x0,r)ﬂ§2)
< Cve{1+]|Ing|} + Ce177r2t7,

e Use representation by Neumann functions, boundary
Lipschitz estimates, and lots of integration by parts on the
boundary.

e Similar estimates were obtained for Dirichlet problem by
Armstrong - Kuusi - Mourrat - Prange.



Approximation of Neumann Correctors

Let
P=(Xx) = VI(X) — x —ex(x/e).

Then, for any x € B(xp, r) N €2,

\V(¢Z(X)—€V* (x—(x.n+a)n7_x.n+a>’

£ £
< Cve{l+|Ingl} + Ce17or2t7,

where
e<r<ye and o€(0,1/2)



Sharp Estimates for the Homogenized Data

Let x,y € 02 and |x — y| < ¢p. Suppose n(x) and n(y) satisfy
the Diophantine condition with constants «(x) and x(y),

respectively. Let g = (Ef) be the homogenized data. Then

_ _ Cy|lx — X —
a0 -g) < “H2 (P21 sup (- Dlorony

zeTd

where
k= max(k(x), k(y)).

e The estimate also holds for homogenized data in the case
of Dirichlet problem. This improved a result of Armstrong -
Kuusi - Mourrat - Prange (by a power of 1/2), which in turn
improved an early work of Gérard-Varet - Masmoudi.



Sharp Estimates for the Homogenized Data

Let x,y € 02 and |x — y| < ¢p. Suppose n(x) and n(y) satisfy
the Diophantine condition with constants «(x) and x(y),
respectively. Let g = (Ef) be the homogenized data. Then

_ _ Cy|lx — X —
a0 -g) < “H2 (P21 sup (- Dlorony

zeTd

where
k= max(k(x), k(y)).

e The estimate also holds for homogenized data in the case
of Dirichlet problem. This improved a result of Armstrong -
Kuusi - Mourrat - Prange (by a power of 1/2), which in turn
improved an early work of Gérard-Varet - Masmoudi.

e The improvement for Dirichlet Problem leads to the sharp
convergence rates for d = 2 or 3.



Let n,n € S9—1. Show that

IQH_U K

* * C,\n—n| /(ln—n
/Td|NnTV9(V,,(6,O)—Vﬁ(e,o)),dgé | \<| |+1)7

where x > 0 is the constant in the Diophantine condition for n.
Let
W(o,t) = V,(0,t) — V=(0,1).

By Sobolev imbedding it suffices to show that

1 =12 =14
T 2 2 in—n| [n—n|
/O/Td{uv,,v@W\ HVp0 WP L doat < c(,{ e

forany o € (0,1).

b



Note that W is a solution of the Neumann problem,

NIV, . [ NIV ~( NIvy
_( 5 >.Bn< 9, W = 9, G+H

in T x R,
with

-
—eg+1 - B; Na Vo W=h+eq1-G onTx {0}
d-+1 n O d+1



Weighted Estimates - Neumann Problem

Suppose that n € S" satisfies the Diophantine condition. Let
U be a smooth solution of

( T T T
_ Nan =2 Nnvﬁ . NnVQ : d
(M) (M Yoo (M) e

I\

T
- ed_|_1 . B;; ( Nnatve ) U — ed_|_1 . F on Td X {O}

\

Assume that
(1 + OIVe, U(, D)l oo (ray + (1 4+ OIF (5 )] oo ey < o0

Then, forany -1 < a < 0,
/ / [INTVoUP+12:U12) 1 doat < ca/ F2* dodt,
0 Td 0 Td

where C, depends only on d, m, i, « as well as some Holder
norm of A.



Reduction to
Weighted Estimates for Half-Spaces

Let
Q=Hu,(a) and L= —div(A(x)V).

Consider the Dirichlet problem,

L(u) =div(f)+ h in Q
u=2~0 on 02

and the Neumann problem,

{ L(u) = div(f) in Q

@z—n-f on of2

ov



We are interested in the weighted L? estimate,
IVu(x)[5(x)]* dx
< ¢ [ 110)P[s(x)] " dx + C /Q M) RT3(x)] 2 dix,
where —1 < a < 0 and
d(x) = dist(x,00) = |a+ (x - n)|.

o Use a weighted (and duel) version of the
Calderén-Zygmund theory (Caffarelli - Peral (1998), Shen
(2005), ...)
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where —1 < a < 0 and

d(x) = dist(x,00) = |a+ (x - n)|.

o Use a weighted (and duel) version of the
Calderén-Zygmund theory (Caffarelli - Peral (1998), Shen
(2005), ...)

e Reduce the problem to a weak reverse Holder inequality.



We are interested in the weighted L? estimate,
/ V()2 [5(x)]° dx
a+2
<c/v m+c/m 5(x)] 2 dix,

where —1 < o < 0 and

d(x) = dist(x,00) = |a+ (x - n)|.

o Use a weighted (and duel) version of the
Calderén-Zygmund theory (Caffarelli - Peral (1998), Shen
(2005), ...)

e Reduce the problem to a weak reverse Holder inequality.
o If -1 < <0, then w,(x) = [§(x)]* is an Ay weight.



Higher-order Convergence for Neumann Problems

Let u. be the solution to

L(u)=F inQ and glf =g onoQ

with [, u. = 0.
Let ug be the solution of the homogenized problem.

Then there exists a function v?, independent of ¢, such that
S o
|Ue — Up — ex(x/e)Vup — €Vb/||L2(Q) < Gy e27 7ol .0 ()

forany o € (0,1/2), where C, depends only on d, m, o, A and
Q.



Continued

The function v?' is a solution to the Neumann problem

8vb/
Lo(vPY=F, inQ and — =g, onodQ,
8V0
where ;
— 0 Up
F* ]
Chie X OXiOXy

for some constants ¢, and g, satisfies

19x][Laa0) < Cq ”UOHWZOO(Q)a

forany1 <g<d-1.
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