The Analyst's Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

Main Results: New β-numbers and TST

0000000

00000000

An Analyst's Traveling Salesman Theorem for sets of dimension larger than one

Jonas Azzam University of Edinburgh

May 18, 2017

イロトメ団 トメミトメミト 三重 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$ 1 / 60

Analyst's traveling salesman theorem

イロトメ 伊 トメ ミトメ ミトー 毛 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$ $2/60$

The Analyst's Traveling Salesman Theorem (TST)

Ο ΘΩΟ

Ο ΘΩΟ

Ο ΘΩΟΘΩΟ ΘΩΟΘΩΟ ΜΑΙ ΤΟ ΠΑΙΣΤΙΚΑ ΜΑΙ ΤΟ ΠΑΙΣΤΙΚΑ ΜΑΙ ΤΟ ΠΑΙ ΤΟ ΠΑΙ ΤΟ ΘΩΟΘΩΟ ΘΩΟΘΩΟ ΘΩΟΘΩΟ ΘΩΟΘΩΟ ΘΩΟΘΩΟ ΘΩΟΘΩ 0000000

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07) Let $E \subseteq \mathbb{R}^n$.

1. *There is a curve* Γ *containing E so that*

$$
\mathscr{H}^1(\Gamma) \lesssim \left(\text{diam}\, E + \sum_{Q \text{ dyadic} \atop Q \cap E \neq \emptyset} \beta_E(3Q)^2 \ell(Q)\right).
$$

イロト (御) (著) (著) (著) の Q Q $3/60$

The Analyst's Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

0000

0000000

00000000

00000000 0000 0000000

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07) Let $E \subseteq \mathbb{R}^n$.

1. *There is a curve* Γ *containing E so that*

$$
\mathscr{H}^1(\Gamma) \lesssim \left(\mathsf{diam}\, E + \sum_{Q \text{ dyadic} \atop Q \cap E \neq \emptyset} \beta_E(3Q)^2 \ell(Q)\right).
$$

2. *Conversely, if* Γ *is a curve, then*

$$
\text{diam}\, \Gamma + \sum_{Q \text{ dyadic} \atop Q \cap \Gamma \neq \emptyset} \beta_\Gamma(3Q)^2 \ell(Q) \lesssim \mathscr{H}^1(\Gamma).
$$

イロト (御) (著) (著) (著) の Q Q $4/60$

5 / 60

(ロ) (包) (ミ) (ミ) (ミ) ミーのQ (V

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07) Let $E \subseteq \mathbb{R}^n$.

1. *There is a curve* Γ *containing E so that*

$$
\mathscr{H}^1(\Gamma) \lesssim \left(\text{diam}\, E + \sum_{Q \text{ dyadic} \atop Q \cap E \neq \emptyset} \beta_E(3Q)^2 \ell(Q)\right).
$$

2. *Conversely, if* Γ *is a curve, then*

$$
\mathsf{diam}\,\mathsf{\Gamma}+\sum_{Q\text{ dyadic}\atop Q\cap\mathsf{\Gamma}\neq\emptyset}\beta_\mathsf{\Gamma}(3Q)^2\ell(Q)\lesssim \mathscr{H}^1(\mathsf{\Gamma}).
$$

Hence, for curves Γ, we have

$$
\mathscr{H}^1(\Gamma)\sim \text{diam}\,\Gamma+\sum_{Q\text{ dyadic}\atop Q\cap\Gamma\neq\emptyset}\beta_\Gamma(3Q)^2\ell(Q).
$$

The Analyst's Traveling Salesman Theorem (TST)

Ο ΘΩΘ

Ο ΘΩΘ

Ο ΘΩΘΩΘΩΘ

Ο ΘΩΘΩΘΩΘΩ $00 \bullet 0$ 0000000

Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on Ω ⊆ C *simply connected is absolutely continuous w.r.t. arclength on* ∂Ω ∩ Γ*,* Γ *any rectifiable curve.*

> (ロ) (包) (ミ) (ミ) (ミ) ミーのQ (V 6 / 60

Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on Ω ⊆ C *simply connected is absolutely continuous w.r.t. arclength on* ∂Ω ∩ Γ*,* Γ *any rectifiable curve.*

Theorem (Bishop, Jones, '97)

Let Γ ⊆ R 2 *be a curve s.t.* β^Γ (*Q*) > ε *whenever Q is centered on* Γ *then* dim $\Gamma > 1 + c \varepsilon^2$.

> (ロ) (包) (ミ) (ミ) (ミ) ミーのQ (V 7 / 60

 000 00000000

Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on Ω ⊆ C *simply connected is absolutely continuous w.r.t. arclength on* ∂Ω ∩ Γ*,* Γ *any rectifiable curve.*

Theorem (Bishop, Jones, '97)

Let Γ ⊆ R 2 *be a curve s.t.* β^Γ (*Q*) > ε *whenever Q is centered on* Γ *then* dim $\Gamma > 1 + c \varepsilon^2$.

Theorem (A., Schul, '12)

There is $C > 0$ *so that if* $\Gamma \subseteq \mathbb{R}^n$ *is a connected set, there is* $\tilde{\Gamma} \supseteq \Gamma$ *C*-quasiconvex so that $\mathscr{H}^1(\tilde{\Gamma}) \lesssim_n \mathscr{H}^1(\Gamma)$.

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

> イロト (御) (著) (著) (著) の Q Q 9 / 60

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

Corollary (Bishop, Jones '90)

If Γ *is a compact connected set, it is* 1*-rectifiable if and only if*

 \sum *x*∈*Q Q dyadic* β _Γ $(3Q)^2 < \infty$ for \mathscr{H}^1 -a.e. $x \in \Gamma$.

> K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 10 / 60

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

Corollary (Bishop, Jones '90)

If Γ *is a compact connected set, it is* 1*-rectifiable if and only if*

 \sum *x*∈*Q Q dyadic* β _Γ $(3Q)^2 < \infty$ for \mathscr{H}^1 -a.e. $x \in \Gamma$.

Let Γ be a Lipschitz curve. Then $\Gamma = f([0, 1])$, where *f* is Lipschitz.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 11 / 60

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

Corollary (Bishop, Jones '90)

If Γ *is a compact connected set, it is* 1*-rectifiable if and only if*

$$
\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.
$$

Let Γ be a Lipschitz curve. Then $\Gamma = f([0, 1])$, where *f* is Lipschitz.

• Rademacher's theorem says *f* is differentiable a.e., and so at almost e very *x* ∈ Γ, $β$ г $(3Q)$ $↓$ 0 as Q \ni *x* decreases.

> K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 12 / 60

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

Corollary (Bishop, Jones '90)

If Γ *is a compact connected set, it is* 1*-rectifiable if and only if*

$$
\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.
$$

Let Γ be a Lipschitz curve. Then $\Gamma = f([0, 1])$, where *f* is Lipschitz.

- Rademacher's theorem says *f* is differentiable a.e., and so at almost e very *x* ∈ Γ, $β$ г $(3Q)$ $↓$ 0 as Q \ni *x* decreases.
- However, this isn't enough to *imply* rectifiability.

K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 13 / 60

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

Corollary (Bishop, Jones '90)

If Γ *is a compact connected set, it is* 1*-rectifiable if and only if*

$$
\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.
$$

Let Γ be a Lipschitz curve. Then $\Gamma = f([0,1])$, where *f* is Lipschitz.

- Rademacher's theorem says *f* is differentiable a.e., and so at almost e very *x* ∈ Γ, $β$ г $(3Q)$ $↓$ 0 as Q \ni *x* decreases.
- However, this isn't enough to *imply* rectifiability.
- The corollary tells us that the flatness must be decaying fast enough to characterize rectifiability.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ │ 할 │ ◆ 9 Q (º 14 / 60

Applications of the TST: ℓ^2 -flatness

A set $E \subseteq \mathbb{R}^n$ is d-rectifiable if it can be covered up to \mathscr{H}^d -measure zero by Lipschitz images of $\mathbb{R}^d.$

Corollary (Bishop, Jones '90)

If Γ *is a compact connected set, it is* 1*-rectifiable if and only if*

$$
\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.
$$

Let Γ be a Lipschitz curve. Then $\Gamma = f([0,1])$, where *f* is Lipschitz.

- Rademacher's theorem says *f* is differentiable a.e., and so at almost e very *x* ∈ Γ, $β$ Γ(3*Q*) $↓$ 0 as *Q* $⇒$ *x* decreases.
- However, this isn't enough to *imply* rectifiability.
- The corollary tells us that the flatness must be decaying fast enough to characterize rectifiability.
- It also gives us more information for rectifiable sets: Not only does $\beta_\mathsf{\Gamma}(3Q)\downarrow 0$, but at a square summable rate!

K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 15 / 60

Higher dimensional β 's are not adequate for TST

If $E \subseteq \mathbb{R}^n$, $d \leq n$, and we define

$$
\beta^d_{E,\infty}(Q) = \inf \left\{ \sup_{x \in E \cap Q} \frac{\text{dist}(x,P)}{\ell(Q)} : P \text{ is a d-plane} \right\}
$$

then the first direction of the TST holds for $d = 2$ (Pajot, '96) and for $d > 2$ under some assumptions (David-Toro, '12), but not the other.

> **◆ロト ◆団ト ◆ミト ◆ミト │ ミー ◇ 9 ◇** 16 / 60

Higher dimensional β 's are not adequate for TST

If $E \subseteq \mathbb{R}^n$, $d \leq n$, and we define

$$
\beta^d_{E,\infty}(Q) = \inf \left\{ \sup_{x \in E \cap Q} \frac{\text{dist}(x,P)}{\ell(Q)} : P \text{ is a d-plane} \right\}
$$

then the first direction of the TST holds for $d = 2$ (Pajot, '96) and for $d > 2$ under some assumptions (David-Toro, '12), but not the other.

Theorem (Jones, Fang)

There is a 3*-dimensional Lipschitz graph* Γ *in* [0, 1] 4 *so that*

$$
\sum_{\substack{Q\subseteq [0,1]^4\\ Q\cap E\neq\emptyset}}\beta^3_{\Gamma,\infty}(3Q)^2\ell(Q)^3=\infty.
$$

Thus, in generalizing either the TST or the Bishop-Jones corollary, we need a new β-number.

> **K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q (Y** 17 / 60

 \mathbf{A} \mathcal{L}

 $\frac{1}{2}$

Dorronsoro's theorem, '85

Let
$$
f \in W^{1,2}(\mathbb{R}^d)
$$
 and define (recall $\int_B f d\mu = \frac{1}{\mu(B)} \int_B f d\mu$)

$$
\alpha(x, r) = \inf \left\{ \left(\int_{B(x,r)} \left(\frac{f(y) - A(y)}{r} \right)^2 dy \right)^{\frac{1}{2}} : A \text{ is linear} \right\}
$$

Then

$$
||\nabla f||_2^2 \sim \int_{\mathbb{R}^d} \int_0^\infty \alpha(x,r)^2 \frac{dr}{r} dx.
$$

K ロ X K 御 X K 重 X K 重 X …重 $2Q$ 18 / 60

TST for graphs

For $S, E \subseteq \mathbb{R}^n$, define

$$
\beta_{E,2}^d(S) = \inf_{P \text{ ad-plane}} \left(\frac{1}{(\text{diam }S)^d} \int_{S \cap E} \left(\frac{\text{dist}(y,P)}{\text{diam }S} \right)^2 \, d\mathcal{H}^d(y) \right)^{1/2}
$$

Theorem (Dorronsoro)

Let f : ℝ^{*d*} → ℝ^{*n−d*} *be L-Lipschitz (L very small) and* Γ ⊆ ℝ^{*n*} *be its graph. Then* $\mathbf{r} \cdot \mathbf{r}$

$$
\int_{\Gamma}\int_0^\infty \beta_{\Gamma,2}^d(B(x,r))^2\frac{dr}{r}d\mathcal{H}^d(x)\sim_L ||\nabla f||_2^2
$$

or equivalently,

$$
\sum_{Q\cap\Gamma\neq\emptyset}\beta^d_{\Gamma,2}(3Q)^2\ell(Q)^d\sim_L||\nabla f||_2^2.
$$

イロト (御) (著) (著) (著) の Q Q 19 / 60

TST for graphs

For $E \subseteq \mathbb{R}^n$ and S a cube or ball, define

$$
\beta_{E,2}^d(S) = \inf_{\text{P a d-plane}} \left(\frac{1}{(\text{diam }S)^d} \int_{S \cap E} \left(\frac{\text{dist}(y,P)}{\text{diam }S} \right)^2 \, d\mathcal{H}^d(y) \right)^{1/2}
$$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 20 / 60

TST for graphs

For $E \subseteq \mathbb{R}^n$ and S a cube or ball, define

$$
\beta_{E,2}^d(S) = \inf_{P \text{ ad-plane}} \left(\frac{1}{(\text{diam }S)^d} \int_{S \cap E} \left(\frac{\text{dist}(y,P)}{\text{diam }S} \right)^2 \, d\mathcal{H}^d(y) \right)^{1/2}
$$

If $\mathrm{supp}\, f = B(0,R) \subseteq \mathbb{R}^d$, $||\nabla f||_{\infty} \ll 1$, and Γ is its graph over $B(0,R)$,

K ロ K K 伊 K K ミ K K モ K エ 字 → つ Q Q Q 21 / 60

TST for graphs

For $E \subseteq \mathbb{R}^n$ and S a cube or ball, define

$$
\beta_{E,2}^d(S) = \inf_{\text{P a d-plane}} \left(\frac{1}{(\text{diam }S)^d} \int_{S \cap E} \left(\frac{\text{dist}(y,P)}{\text{diam }S} \right)^2 \, d\mathcal{H}^d(y) \right)^{1/2}
$$

If $\mathrm{supp}\, f = B(0,R) \subseteq \mathbb{R}^d$, $||\nabla f||_{\infty} \ll 1$, and Γ is its graph over $B(0,R)$,

$$
||\nabla f||_2^2 = \int_{B(0,R)} |\nabla f|^2 \sim \int_{B(0,R)} (\sqrt{1+|\nabla f|^2}-1)
$$

= $\mathscr{H}^d(\Gamma) - w_d R^d$

K ロ K K 伊 K K ミ K K モ K エ 字 → つ Q Q Q $22/60$

TST for graphs

For $E \subseteq \mathbb{R}^n$ and S a cube or ball, define

$$
\beta_{E,2}^d(S) = \inf_{\text{P a d-plane}} \left(\frac{1}{(\text{diam }S)^d} \int_{S \cap E} \left(\frac{\text{dist}(y,P)}{\text{diam }S} \right)^2 \, d\mathcal{H}^d(y) \right)^{1/2}
$$

If $\mathrm{supp}\, f = B(0,R) \subseteq \mathbb{R}^d$, $||\nabla f||_{\infty} \ll 1$, and Γ is its graph over $B(0,R)$,

$$
||\nabla f||_2^2 = \int_{B(0,R)} |\nabla f|^2 \sim \int_{B(0,R)} (\sqrt{1+|\nabla f|^2}-1)
$$

= $\mathscr{H}^d(\Gamma) - w_d R^d$

Hence,

$$
\mathscr{H}^{d}(\Gamma)\sim ||\nabla f||_{2}^{2}+w_{d}R^{d}\sim \int_{\Gamma}\int_{0}^{\infty}\beta_{\Gamma,2}^{d}(B(x,r))^{2}\frac{dr}{r}d\mathscr{H}^{d}(x)+(\text{diam }\Gamma)^{d}.
$$

K ロ K K 伊 K K ミ K K モ K エ 字 → つ Q Q Q 23 / 60

David-Semmes Theorem

Theorem

Let E ⊆ R *n be Ahlfors d-regular, meaning*

 $\mathscr{H}^{d}(B(x,r) \cap E) \sim r^{d}$ for all $x \in E$, $r > 0$.

Then the following are equivalent:

1. $d\sigma := \beta_{\mathsf{E}}^{\mathsf{a}}$ *E*,2 (*B*(*x*, *r*))² *dx dr r is a* **Carleson measure***, meaning* $\sigma(B(x,r) \times (0,r)) \leq Cr^d$ for all $x \in E$ and $r > 0$.

> (ロ) (個) (ミ) (ミ) = りくぐ 24 / 60

David-Semmes Theorem

Theorem

Let E ⊆ R *n be Ahlfors d-regular, meaning*

 $\mathscr{H}^{d}(B(x,r) \cap E) \sim r^{d}$ for all $x \in E$, $r > 0$.

Then the following are equivalent:

- 1. $d\sigma := \beta_{\mathsf{E}}^{\mathsf{a}}$ *E*,2 (*B*(*x*, *r*))² *dx dr r is a* **Carleson measure***, meaning* $\sigma(B(x,r) \times (0,r)) \leq Cr^d$ for all $x \in E$ and $r > 0$.
- 2. *E* is **uniformly rectifiable**: there is $L > 0$ so that for every $x \in E$ and *r* > 0, there is f : $A ⊆ ℝ^d → ℝⁿ$ L-Lipschitz so that f(A) ⊆ $E ∩ B(x, r)$ and $\mathscr{H}^d(f(A)) \geq L^{-1}r^d$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 25 / 60

 000 00000000

David-Semmes Theorem

Theorem

Let E ⊆ R *n be Ahlfors d-regular, meaning*

 $\mathscr{H}^{d}(B(x,r) \cap E) \sim r^{d}$ for all $x \in E$, $r > 0$.

Then the following are equivalent:

- 1. $d\sigma := \beta_{\mathsf{E}}^{\mathsf{a}}$ *E*,2 (*B*(*x*, *r*))² *dx dr r is a* **Carleson measure***, meaning* $\sigma(B(x,r) \times (0,r)) \leq Cr^d$ for all $x \in E$ and $r > 0$.
- 2. *E* is **uniformly rectifiable**: there is $L > 0$ so that for every $x \in E$ and *r* > 0, there is f : $A ⊆ ℝ^d → ℝⁿ$ L-Lipschitz so that f(A) ⊆ $E ∩ B(x, r)$ and $\mathscr{H}^d(f(A)) \geq L^{-1}r^d$.

This is like the TST in the sense that it gives a condition for when **a big piece of** *E* is contained in a Lipschitz surface, rather than all of it.

> K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @ 26 / 60

How far we can get with $\beta_{\rm F}^d$ *E*,2

Theorem

Let $E\subseteq \mathbb{R}^n$ have $0<\mathscr{H}^d(E)<\infty.$ Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_0^1 \beta_E^2$ $\frac{2}{E,2}(B(x,r))^2 \frac{dr}{r} < \infty$.

> **Kロメ K団 X K ミメ K ミメーミー のQ Q** 27 / 60

The Analyst's Traveling Salesman Theorem (TST)

ΟΘΟΟ

ΟΘΟΟΟΘΟ

ΟΘΟΟΟΘΟΟΘΟ *ΘΟΟΟΘΟΟ*

Μαίο Παραστεία της Μαίο Παραστεία της Παραστείας της Μαίο Παραστείας της Παραστείας της Παραστείας της Παραστείας 0000 0000000

How far we can get with $\beta_{\rm F}^d$ *E*,2

Theorem

Let $E\subseteq \mathbb{R}^n$ have $0<\mathscr{H}^d(E)<\infty.$ Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_0^1 \beta_E^2$ $\frac{2}{E,2}(B(x,r))^2 \frac{dr}{r} < \infty$.

Theorem (Edelen, Naber, Valtorta, '16) If μ is Radon on \mathbb{R}^n , $\theta^d_*(\mu, x) \leq b$ and $\int_0^1 \beta^d_\mu$ $\int_{\mu,2}^d (B(x,r))^2 \frac{dr}{r} \leq M$ for μ -a.e. $x \in B(0, 1)$ *, then* $\mu(B(x, r)) \lesssim (b + M)r^d$ for $x \in B(0, 1)$ *, r* > 0*.*

28 / 60

 000 00000000

How far we can get with $\beta_{\rm F}^d$ *E*,2

Theorem

Let $E\subseteq \mathbb{R}^n$ have $0<\mathscr{H}^d(E)<\infty.$ Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_0^1 \beta_E^2$ $\frac{2}{E,2}(B(x,r))^2 \frac{dr}{r} < \infty$.

Theorem (Edelen, Naber, Valtorta, '16)

If μ is Radon on \mathbb{R}^n , $\theta^d_*(\mu, x) \leq b$ and $\int_0^1 \beta^d_\mu$ $\int_{\mu,2}^d (B(x,r))^2 \frac{dr}{r} \leq M$ for μ -a.e. $x \in B(0, 1)$ *, then* $\mu(B(x, r)) \lesssim (b + M)r^d$ for $x \in B(0, 1)$ *, r* > 0*.*

There are also other β -numbers defined for measures and results that characterize the 1-rectifiable structure of the measure (Badger and Schul,'16).

> K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @ 29 / 60

The Analyst's Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST main Results: New β-numbers and TST 0000 000000

 000 0000000

What we'd like to do

Recall that the TST says a set *E* is contained in a curve of length at most

diam $E + \sum$ *Q* dyadic $Q ∩ Γ ≠ ∅$ $\beta_E(\text{3}Q)^2\ell(Q)$

and the above is $\lesssim \mathscr{H}^1(E)$ if E is a curve.

We'd like something like this to hold for a *d*-dimensional surface *E*, so we need a β number so that

> (ロ) (個) (ミ) (ミ) = りくぐ 30 / 60

 000 0000000

What we'd like to do

Recall that the TST says a set *E* is contained in a curve of length at most

diam $E + \sum$ *Q* dyadic $Q ∩ Γ ≠ ∅$ $\beta_E(\text{3}Q)^2\ell(Q)$

and the above is $\lesssim \mathscr{H}^1(E)$ if E is a curve.

We'd like something like this to hold for a *d*-dimensional surface *E*, so we need a β number so that

1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)

> (ロ) (個) (ミ) (ミ) = りくぐ 31 / 60

 000 00000000

What we'd like to do

Recall that the TST says a set *E* is contained in a curve of length at most

diam $E + \sum$ *Q* dyadic $Q ∩ Γ ≠ ∅$ $\beta_E(\text{3}Q)^2\ell(Q)$

and the above is $\lesssim \mathscr{H}^1(E)$ if E is a curve.

We'd like something like this to hold for a *d*-dimensional surface *E*, so we need a β number so that

- 1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)
- 2. we can deduce *E* has finite measure in terms of its beta numbers and bound its area,

Kロト K団 K K ミト K ミト ニョー の Q (^ 32 / 60

 000 0000000

What we'd like to do

Recall that the TST says a set *E* is contained in a curve of length at most

diam $E + \sum$ *Q* dyadic $Q ∩ Γ ≠ ∅$ $\beta_E(\text{3}Q)^2\ell(Q)$

and the above is $\lesssim \mathscr{H}^1(E)$ if E is a curve.

We'd like something like this to hold for a *d*-dimensional surface *E*, so we need a β number so that

- 1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)
- 2. we can deduce *E* has finite measure in terms of its beta numbers and bound its area,
- 3. we can bound a square sum of β numbers in terms of $\mathscr{H}^{d}(E),$

KO K K @ K K B K K B K X B K Y Q Q Q 33 / 60

The Analyst's Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST (The Analyst's New β-numbers and TST 0000 000000

 000 00000000

What we'd like to do

Recall that the TST says a set *E* is contained in a curve of length at most

diam $E + \sum$ *Q* dyadic $Q ∩ Γ ≠ ∅$ $\beta_E(\text{3}Q)^2\ell(Q)$

and the above is $\lesssim \mathscr{H}^1(E)$ if E is a curve.

We'd like something like this to hold for a *d*-dimensional surface *E*, so we need a β number so that

- 1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)
- 2. we can deduce *E* has finite measure in terms of its beta numbers and bound its area,
- 3. we can bound a square sum of β numbers in terms of $\mathscr{H}^{d}(E),$
- 4. we can't use β_{∞} .

34 / 60

A new β-number

Recall that

$$
\beta_{E,2}^d(S)^2 = \inf_{P \text{ a d-plane}} \frac{1}{(\text{diam }S)^d} \int_{S \cap E} \left(\frac{\text{dist}(y,P)}{\text{diam }S}\right)^2 d\mathcal{H}^d(y)
$$

=
$$
\inf_{P \text{ a d-plane}} \frac{1}{(\text{diam }S)^d} \int_0^\infty \mathcal{H}^d\left(\left\{x \in S \cap E : \left(\frac{\text{dist}(y,P)}{\text{diam }S}\right)^2 > t\right\}\right) dt.
$$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 35 / 60

A new β-number

Recall that

$$
\hat{\beta}_{E,2}^{d}(S)^{2} = \inf_{P \text{ a d-plane}} \frac{1}{(\text{diam }S)^{d}} \int_{S \cap E} \left(\frac{\text{dist}(y, P)}{\text{diam }S}\right)^{2} d\mathcal{H}_{\infty}^{d}(y)
$$

$$
= \inf_{P \text{ a d-plane}} \frac{1}{(\text{diam }S)^{d}} \int_{0}^{\infty} \mathcal{H}_{\infty}^{d}\left(\left\{x \in S \cap E : \left(\frac{\text{dist}(y, P)}{\text{diam }S}\right)^{2} > t\right\}\right) dt.
$$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 36 / 60

A TST for "nice" surfaces

Theorem (A., Schul) Let $E \subseteq \mathbb{R}^n$ be so that for all $x \in E$ and $r \in (0, \text{diam } E)$, $\mathscr{H}_{\infty}^{d}(E \cap B(x,r)) \geq c r^{d}$.

Then

$$
\mathscr{H}^d(E) \lesssim (\textnormal{diam}\, E)^d + \sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E,2}^d (3Q)^2 \ell(Q)^d.
$$

Moreover, for "nice" surfaces,

$$
(\text{diam }E)^d+\sum_{Q\cap E\neq\emptyset}\hat{\beta}_{E,2}^d(3Q)^2\ell(Q)^d\lesssim\mathscr{H}^d(E).
$$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 37 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST
 \overline{OOOO}
 $\overline{OOOOOOO}$

 $\circ\circ\bullet$ 0000000

Nice surfaces

 ϵ -Reifenberg flat sets: Let $\delta > 0$, $E \subseteq \mathbb{R}^n$ be so that, for all $x \in E$ and $0 < r < \delta$ diam *E*, there is a *d*-plane $P_{x,r}$ so that

> dist $\frac{dist(E \cap B(x,r), P_{x,r} \cap B(x,r)) \leq \epsilon r.$

For these kinds of sets, we have

$$
(\text{diam }E)^d + \sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E,2}^d (3Q)^2 \ell(Q)^d \sim_{\delta} \mathcal{H}^d(E)
$$

Kロト K団 K K ミト K ミト ニョー の Q (^ 38 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST** (OOOO) **Main Results: New β-numbers and TST** 0000 0000000

0000000

Nice surfaces

 ϵ -Reifenberg flat sets: Let $\delta > 0$, $E \subseteq \mathbb{R}^n$ be so that, for all $x \in E$ and $0 < r < \delta$ diam *E*, there is a *d*-plane $P_{x,r}$ so that

$$
\text{dist}(E \cap B(x,r), P_{x,r} \cap B(x,r)) \leq \epsilon r.
$$

For these kinds of sets, we have

$$
(\text{diam }E)^d + \sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E,2}^d (3Q)^2 \ell(Q)^d \sim_{\delta} \mathcal{H}^d(E)
$$

Proof: Let \mathscr{D}_k denote Christ-David cubes on *E* of sidelength *k*. Let $\mathscr{D} = \bigcup \mathscr{D}_k$, and for $Q \in \mathscr{D}$, let B_Q be a large ball around Q .

If $Q_0 \in \mathcal{D}_0$ and $\varepsilon > 0$ small enough, we'll show

$$
\sum_{B\subseteq Q_0}\hat{\beta}_E(B_0)^2\ell(R)^d\lesssim \mathscr{H}^d(E).
$$

K ロ → K @ ▶ K 콜 ▶ K 콜 ▶ - 콜 → 9 Q @ 39 / 60

Sketch of proof for Reifenberg flat sets

• Let P_Q be the best approximating plane to E in B_Q .

イロト (御) (著) (著) (著) の Q Q 40 / 60

 000 0000000

Sketch of proof for Reifenberg flat sets

- Let P_Q be the best approximating plane to E in B_Q .
- Construct $S_0 \subseteq \mathcal{D}$ by putting $Q_0 \in S$ and adding $Q \in \mathcal{D}$ to *S* if its parent is in S and $\angle (P_Q, P_{Q_0}) < \alpha.$ Remove a few bottom cubes so that minimal cubes in *S* close to each other have comparable sizes. Let *Stop*(1) be these minimal cubes and $Total(1) = S_0$.

K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 41 / 60

 000 0000000

Sketch of proof for Reifenberg flat sets

- Let P_Q be the best approximating plane to E in B_Q .
- Construct $S_0 \subseteq \mathcal{D}$ by putting $Q_0 \in S$ and adding $Q \in \mathcal{D}$ to *S* if its parent is in S and $\angle (P_Q, P_{Q_0}) < \alpha.$ Remove a few bottom cubes so that minimal cubes in *S* close to each other have comparable sizes. Let *Stop*(1) be these minimal cubes and $Total(1) = S_0$.
- For each *R* ∈ *Stop*(*N*), make a stopping-time region *S^R* by putting $R \in S_R$ and adding cubes *Q* to S_R if *Q*'s parent is in S_R and if $\angle (P_Q, P_R) < \alpha$. Again, remove some minimal cubes, then let

$$
Stop(N + 1) = \bigcup_{R \in Stop(N)} \text{minimal cubes in } S_R.
$$

Total($N + 1$) = cubes not contained in any cube from $Stop(N + 1)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 42 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST

ΟΘΟΟΟΟΟ

ΟΘΟΟΟΟΟ

• We can use David-Toro to construct a surface *E^N* so that

$$
\text{dist}(x, E_N) \lesssim \inf_{x \in Q \in \text{Total}(N)} \epsilon \ell(Q) \text{ for all } x \in E
$$

and E_N is a C_{ϵ} -Lip graph near Q (i.e. in B_Q) over P_Q .

• If we never stop over *x* in our *N*-th stopping time, $x \in E_N \cap E$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$ 43 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST

ΟΘΟΟΟΟΟ

ΟΘΟΟΟΟΟ

• We can use David-Toro to construct a surface *E^N* so that

$$
\text{dist}(x, E_N) \lesssim \inf_{x \in Q \in \text{Total}(N)} \epsilon \ell(Q) \text{ for all } x \in E
$$

and E_N is a C_{ϵ} -Lip graph near Q (i.e. in B_Q) over P_Q .

• If we never stop over *x* in our *N*-th stopping time, $x \in E_N \cap E$.

K ロ ▶ K 倒 ▶ K 言 ▶ K 言 ▶ │ 言 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$ 44 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST

ΟΘΟΟΟΟΟ

ΟΘΟΟΟΟΟ

• We can use David-Toro to construct a surface *E^N* so that

$$
\text{dist}(x, E_N) \lesssim \inf_{x \in Q \in \text{Total}(N)} \epsilon \ell(Q) \text{ for all } x \in E
$$

and E_N is a C_{ϵ} -Lip graph near Q (i.e. in B_Q) over P_Q .

• If we never stop over *x* in our *N*-th stopping time, $x \in E_N \cap E$.

K ロ ▶ K 倒 ▶ K 言 ▶ K 言 ▶ │ 言 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$ 45 / 60

 000 0000000

• We can use David-Toro to construct a surface E_N so that

$$
\text{dist}(x, E_N) \lesssim \inf_{x \in Q \in \text{Total}(N)} \epsilon \ell(Q) \text{ for all } x \in E
$$

and E_N is a C_{ϵ} -Lip graph near Q (i.e. in B_Q) over P_Q .

- If we never stop over *x* in our *N*-th stopping time, $x \in E_N \cap E$.
- For $Q \in Stop(N)$, $\Gamma_Q^N := B_Q \cap E_{N+1}$ is a graph above $B_Q \cap P_Q$ with $\mathsf{respect\ to\ a\ } C\alpha$ -Lipschitz function $\mathsf{A}_Q^{\mathsf{N}}:\mathsf{P}_Q\to\mathsf{P}_Q^{\perp}.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 唐 OQ 46 / 60

 000 0000000

• We can use David-Toro to construct a surface E_N so that

$$
\textnormal{dist}(x, E_N) \lesssim \inf_{x \in \mathsf{Q} \in \textnormal{Total}(N)} \epsilon \ell(Q) \quad \text{for all } x \in E
$$

and E_N is a C_{ϵ} -Lip graph near Q (i.e. in B_Q) over P_Q .

- If we never stop over *x* in our *N*-th stopping time, $x \in E_N \cap E$.
- For $Q \in Stop(N)$, $\Gamma_Q^N := B_Q \cap E_{N+1}$ is a graph above $B_Q \cap P_Q$ with $\mathsf{respect\ to\ a\ } C\alpha$ -Lipschitz function $\mathsf{A}_Q^\mathsf{N}:\mathsf{P}_Q\to\mathsf{P}_Q^\perp$. Note that

 $|DA^N_Q|\gtrsim \alpha\chi_{\pi_{P_Q}(R)}$ when $R\in Stop(N+1).$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 唐 OQ 47 / 60

Sketch of proof for Reifenberg flat sets

Lemma

 \sum *N* \sum *Q*∈*Stop*(*N*) $\ell(Q)^d \lesssim \mathscr{H}^d(E).$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 48 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST
 $\frac{000}{000}$ 00000000

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N}\sum_{Q\in Stop(N)} \ell(Q)^d \lesssim \mathscr{H}^d(E).
$$

• Say $Q \in Type(1, N)$ if $Q \in Stop(N)$ and

 $\mathscr{H}^{d}(\Gamma_{Q}^{N}) - |B_{Q} \cap P_{Q}| < C \varepsilon \ell(Q)^{d}.$

イロト (御) (著) (著) (著) の Q Q 49 / 60

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N}\sum_{Q\in Stop(N)} \ell(Q)^d \lesssim \mathscr{H}^d(E).
$$

• Say *Q* ∈ *Type*(1, *N*) if *Q* ∈ *Stop*(*N*) and

$$
\mathscr{H}^{d}(\Gamma^N_Q)-|B_Q\cap P_Q|
$$

Then for $\varepsilon \ll \alpha$,

$$
\sum_{\substack{R \in \text{Stop}(N+1) \\ R \subseteq Q}} \ell(R)^d \lesssim \int_{P_Q} \chi_{\pi_{P_Q}(R)} \lesssim \alpha^{-2} \int_{P_Q} |DA_Q^N|^2
$$

$$
\sim \alpha^{-2}(\mathcal{H}^d(\Gamma_Q^N) - |B_Q \cap P_Q|) < \frac{C \varepsilon}{\alpha^2} \ell(Q)^d \ll \ell(Q)^d
$$

イロト (御) (著) (著) (著) の Q Q 50 / 60

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N}\sum_{Q\in Stop(N)} \ell(Q)^d \lesssim \mathscr{H}^d(E).
$$

• Say $Q \in Type(1, N)$ if $Q \in Stop(N)$ and

$$
\mathscr{H}^{d}(\Gamma^N_Q)-|B_Q\cap P_Q|
$$

Then for $\varepsilon \ll \alpha$,

$$
\sum_{R \in \text{Stop}(N+1)} \ell(R)^d \lesssim \int_{P_Q} \chi_{\pi_{P_Q}(R)} \lesssim \alpha^{-2} \int_{P_Q} |DA_Q^N|^2
$$

$$
\sim \alpha^{-2}(\mathcal{H}^d(\Gamma_Q^N) - |B_Q \cap P_Q|) < \frac{C \varepsilon}{\alpha^2} \ell(Q)^d \ll \ell(Q)^d
$$

• If $Z(Q) \subseteq Q$ are points not contained in a cube from $Stop(N + 1)$,

$$
\sum_{N}\sum_{Q\in \mathit{Type}(1,N)}\ell(Q)^d\lesssim \sum_{N}\sum_{Q\in \mathit{Type}(1,N)}\mathscr{H}^d(Z(Q))\leq \mathscr{H}^d(E).
$$

51 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST
 $\frac{000}{000}$

Sketch of proof for Reifenberg flat sets

• Say *Q* ∈ *Type*(2, *N*) if *Q* ∈ *Stop*(*N*) and

 $\mathscr{H}^{d}(\Gamma_{Q}^{N}) - |B_{Q} \cap P_{Q}| \geq C \varepsilon \ell(Q)^{d}.$

イロト (御) (著) (著) (著) の Q Q 52 / 60

 000 00000000

Sketch of proof for Reifenberg flat sets

• Say *Q* ∈ *Type*(2, *N*) if *Q* ∈ *Stop*(*N*) and

 $\mathscr{H}^{d}(\Gamma_{Q}^{N}) - |B_{Q} \cap P_{Q}| \geq C \varepsilon \ell(Q)^{d}.$

• Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".

K ロ K K 伊 K K ミ K K モ K エ 字 → つ Q Q Q 53 / 60

 000 00000000

Sketch of proof for Reifenberg flat sets

• Say $Q \in \text{Type}(2, N)$ if $Q \in \text{Stop}(N)$ and

$$
\mathscr{H}^{d}(\Gamma_{Q}^{N})-|B_{Q}\cap P_{Q}|\geq C\varepsilon\ell(Q)^{d}.
$$

- Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".
- \bullet $\mathscr{H}^{d}(\Gamma_{Q}^{N})\approx\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))$ and $|B_{Q}\cap P_{Q}|\approx\mathscr{H}^{d}(B_{Q}\cap E_{N})|$ for $\varepsilon>0$ small, and so for *C* large

$$
\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))-\mathscr{H}^{d}(E_{N}\cap B_{Q})>\varepsilon\ell(Q)^{d}.
$$

Kロト K団 K K ミト K ミト ニョー の Q (^ 54 / 60

 000 00000000

Sketch of proof for Reifenberg flat sets

• Say *Q* ∈ *Type*(2, *N*) if *Q* ∈ *Stop*(*N*) and

$$
\mathscr{H}^{d}(\Gamma_{Q}^{N})-|B_{Q}\cap P_{Q}|\geq C\varepsilon\ell(Q)^{d}.
$$

- Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".
- \bullet $\mathscr{H}^{d}(\Gamma_{Q}^{N})\approx\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))$ and $|B_{Q}\cap P_{Q}|\approx\mathscr{H}^{d}(B_{Q}\cap E_{N})|$ for $\varepsilon>0$ small, and so for *C* large

$$
\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))-\mathscr{H}^{d}(E_{N}\cap B_{Q})>\varepsilon\ell(Q)^{d}.
$$

Then

$$
\sum_{Q \in \text{Type}(2,N)} \ell(Q)^d \lesssim_{\varepsilon} \sum_{Q \in \text{Type}(2,N)} (\mathscr{H}^d(F_N(B_Q \cap E_N)) - \mathscr{H}^d(E_N \cap B_Q))
$$
\n
$$
= \sum_{Q \in \text{Type}(2,N)} \int_{B_Q \cap E_N} (J_{F_N} - 1) \lesssim \int_{E_N} (J_{F_N} - 1)
$$
\n
$$
= \mathscr{H}^d(E_{N+1}) - \mathscr{H}^d(E_N)
$$

55 / 60

 000 00000000

Sketch of proof for Reifenberg flat sets

• Say *Q* ∈ *Type*(2, *N*) if *Q* ∈ *Stop*(*N*) and

$$
\mathscr{H}^{d}(\Gamma_{Q}^{N})-|B_{Q}\cap P_{Q}|\geq C\varepsilon\ell(Q)^{d}.
$$

- Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".
- \bullet $\mathscr{H}^{d}(\Gamma_{Q}^{N})\approx\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))$ and $|B_{Q}\cap P_{Q}|\approx\mathscr{H}^{d}(B_{Q}\cap E_{N})|$ for $\varepsilon>0$ small, and so for *C* large

$$
\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))-\mathscr{H}^{d}(E_{N}\cap B_{Q})>\varepsilon\ell(Q)^{d}.
$$

Then

$$
\sum_{Q \in \text{Type}(2,N)} \ell(Q)^d \lesssim_{\varepsilon} \sum_{Q \in \text{Type}(2,N)} (\mathcal{H}^d(F_N(B_Q \cap E_N)) - \mathcal{H}^d(E_N \cap B_Q))
$$
\n
$$
\text{MapDe } J_{F_N} - 1 < 0! = \sum_{Q \in \text{Type}(2,N)} \int_{B_Q \cap E_N} (J_{F_N} - 1) \lesssim \int_{E_N} (J_{F_N} - 1)
$$
\n
$$
= \mathcal{H}^d(E_{N+1}) - \mathcal{H}^d(E_N) + \text{Error}(N)
$$
\n
$$
\text{Since } \mathcal{H}^d(E_N) = \mathcal{H}^d(E_N) - \mathcal{H}^d(E_N) + \text{Error}(N) \text{ for all } \mathcal{H}^d \text{ is the } \mathcal{
$$

Sketch of proof for Reifenberg flat sets

• Use Dorronsoro to show

$$
\sum_{R\in S_Q}\beta_{\Gamma^N_Q}(3R)^2\ell(R)^d\lesssim \ell(Q)^d\text{ whenever }Q\in Stop(N).
$$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 57 / 60

Sketch of proof for Reifenberg flat sets

• Use Dorronsoro to show

$$
\sum_{R\in S_Q}\beta_{\Gamma_Q^N}(3R)^2\ell(R)^d\lesssim \ell(Q)^d\text{ whenever }Q\in Stop(N).
$$

• These approximate

$$
\sum_{R \in \subseteq Q_0} \beta_E(3R)^2 \ell(R)^d = \sum_{N} \sum_{Q \in Stop(N)} \sum_{R \in S_Q} \beta_E(3R)^2 \ell(R)^d
$$

$$
\lesssim \sum_{N} \sum_{Q \in Stop(N)} \sum_{R \in S_Q} \beta_{\Gamma^N_Q}(3R)^2 \ell(R)^d + Error
$$

$$
\lesssim \sum_{N} \sum_{Q \in Stop(N)} \ell(Q)^d + Error
$$

$$
\lesssim \mathcal{H}^d(E).
$$

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 58 / 60

The Analyst's Traveling Salesman Theorem (TST) **Main Results: New β-numbers and TST**

Main Results: New β-numbers and TST
 $\frac{0000}$ 00000000

 00000000

Future Work

- 1. Most quantitative rectifiability results are for Ahlfors regular sets, but maybe we don't need this.
- 2. What other kinds of sets are "nice"?

イロト (御) (著) (著) (著) の Q Q 59 / 60

Thanks!

イロト (個) (ミ) (ミ) (ミ) ミーのQ (V) 60 / 60

An analyst's traveling salesman theorem for large dimensional objects. Jonas Azzam 18 May 2017

Theorem (Bishop, Jones, '90) Harmonic measure on RE C simply connected is absolutely continuous w.r.t. arclengthon dRAT. Many rectisiable curve.

TST: E is contained in a curve of length at most diam $E + \frac{1}{\omega} \beta_E (3\omega^2 l(\omega))$
and the above is $2n \Gamma \pm \phi$ $5\frac{1}{2}$ (E) is E is a curve

Semmes Surfaces

