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Analyst’s traveling salesman theorem

For a cube Q C R" of sidelength ¢(Q) and E C R" compact, let

width of smallest tube containing EN Q

-
.-
-
-
-
Prae
-
Pra
-
-
- -
- -~
- -~
- -
-
.-
P, Prae
- -
. -
. A
-
=

-
p -
- -
-
- -
- -
- -
< -
by -
- -
- s
- s
- -
-
4
-
.-
-
.-
.-
E -
-
-
-

2/60



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New 3-numbers and TST

(o] le]e] (e]e]e)
0000000 0000000

Analyst’s Traveling Salesman Theorem

Theorem (Jones ’90; Okikiolu, '92; Schul, ’07)
Let E C R".
1. There is a curve I’ containing E so that

AN S [diamE+ >~ Be(3Q)%(Q)

Q dyadic
QNE+#0D

3/60



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New 3-numbers and TST

(o] le]e] (0]0]e)
0000000 0000000

Analyst’s Traveling Salesman Theorem
Theorem (Jones ’90; Okikiolu, '92; Schul, ’07)

Let E C R".
1. There is a curve I’ containing E so that

AN S [diamE+ >~ Be(3Q)%(Q)

Q dyadic
QNE+#0D

2. Conversely, ifT is a curve, then

diaml+ Y 5r(3Q)%(Q) < '(I).

Q dyadic
QNI=#£0
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Analyst’s Traveling Salesman Theorem
Theorem (Jones ’90; Okikiolu, '92; Schul, ’07)

Let E C R".
1. There is a curve I’ containing E so that

AN S [diamE+ >~ Be(3Q)%(Q)

Q dyadic
QNE+#D

2. Conversely, ifT is a curve, then

diaml+ Y 5r(3Q)%(Q) < '(I).

Q dyadic
QNI=#£0

Hence, for curves I', we have

AT ~diamT + ) Br(3Q)%(Q).

Q dyadic
QNr=£0
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Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on Q2 C C simply connected is absolutely continuous w.r.t.
arclength on 02 N T, I any rectifiable curve.

6/60



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New B-numbers and TST
(o]e] e}

(o]e]e;
0000000 0000000

Applications of the TST
Theorem (Bishop, Jones, '90)

Harmonic measure on Q2 C C simply connected is absolutely continuous w.r.t.
arclength on 02 N T, I any rectifiable curve.

Theorem (Bishop, Jones, ’97)

LetT C R? be a curve s.t. 5r(Q) > ¢ whenever Q is centered on T then
diml > 1 4 c<°.
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Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on Q2 C C simply connected is absolutely continuous w.r.t.
arclength on 92N T, I any rectifiable curve.

Theorem (Bishop, Jones, '97)

LetT C R? be a curve s.t. 5r(Q) > ¢ whenever Q is centered on T then

diml > 1 + ce.

Theorem (A., Schul, '12)

There is C > 0 so that if T C R” is a connected set, there isT D T
C-quasiconvex so that () <, 2 (I).

r

i b
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Applications of the TST: ¢?-flatness

A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.
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Applications of the TST: ¢?-flatness

A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z 5r(30)2 < oo fors#'-ae xer.

xeQ
Q dyadic
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Applications of the TST: ¢?-flatness

A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)° < ¢ for ' -a.e. x €T,

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then I' = f([0, 1]), where f is Lipschitz.
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Applications of the TST: ¢?-flatness

A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)° < ¢ for ' -a.e. x €T,

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then I' = f([0, 1]), where f is Lipschitz.

e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x € I, 5r(3Q) | 0 as Q > x decreases.
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A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)° < ¢ for ' -a.e. x €T,
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Let I' be a Lipschitz curve. Then I' = f([0, 1]), where f is Lipschitz.

e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x € I, 5r(3Q) | 0 as Q > x decreases.

e However, this isn’t enough to imply rectifiability.
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Applications of the TST: ¢?-flatness

A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(?»C?)2 < oo for#'-ae xer.

xeQ
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Let I' be a Lipschitz curve. Then I' = f([0, 1]), where f is Lipschitz.

e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x € I, 5r(3Q) | 0 as Q > x decreases.

e However, this isn’t enough to imply rectifiability.

e The corollary tells us that the flathess must be decaying fast enough to
characterize rectifiability.
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Applications of the TST: ¢?-flatness

A set E C R" is d-rectifiable if it can be covered up to .7#?-measure zero by
Lipschitz images of R¢.

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(?»C?)2 < oo for#'-ae xer.

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then I' = f([0, 1]), where f is Lipschitz.

e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x € I, 5r(3Q) | 0 as Q > x decreases.

e However, this isn’t enough to imply rectifiability.

e The corollary tells us that the flathess must be decaying fast enough to
characterize rectifiability.

e |t also gives us more information for rectifiable sets: Not only does
Br(3Q) | 0, but at a square summable rate!
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Higher dimensional g’s are not adequate for TST

If ECR”, d < n, and we define

d . diSt(X, P)
wo(Q) =infd sup ——=—*~
(@ =ni{ s

then the first direction of the TST holds for d = 2 (Pajot, '96) and for d > 2
under some assumptions (David-Toro, '12), but not the other.

- Pisa d—plane}
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Higher dimensional g’s are not adequate for TST

If ECR”, d < n, and we define

d . diSt(X, P)
o(Q) =inf< sup ——~—=
Pee(Q) {Xegﬁ’o 10

then the first direction of the TST holds for d = 2 (Pajot, '96) and for d > 2
under some assumptions (David-Toro, '12), but not the other.

- Pisa d—plane}

Theorem (Jones, Fang)
There is a 3-dimensional Lipschitz graph T in [0,1]* so that

> Be(3Q)%U(Q)° = 0.

Qclo,14
QNE#()

Thus, in generalizing either the TST or the Bishop-Jones corollary, we need a
new S-number.

17/60



The Analyst’'s Traveling Salesman Theorem (TST)
0®00000

Dorronsoro’s theorem, '85

Let f € W?(R?) and define (recall f fdu = 5y J fA1)

o(x.r) = inf { <]£(X ,) (f(}/) —rA(y))2 dy) g . Alis linear }

||Vf||§~// o(x, 12 dx.
rRA JoO r

Then

A
R f
A 1
/\/ /\\//\\/ E
. B(x,r) o
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TST for graphs

For S, E C R", define

1/2
d e 1 dist(y, P)\° . q
6E’2(S) o Palc[glane ((dlam S)d SNE ( diam S = (y)
Theorem (Dorronsoro)

Letf:RY — R"9 be L-Lipschitz (L very small) and T C R" be its graph.

Then - d
;
|| 8aBc )y S do ) o VA
rJo
or equivalently,

> BLa(BQ%UQ)T ~. |IVH5.

QNI #0
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TST for graphs

For E C R” and S a cube or ball, define

0 en 1 dist(y, P)\* , 4
Bea(S) =l ((diam S)d SﬂE( diam S ) dA=)

1/2
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TST for graphs

For E C R” and S a cube or ball, define

1/2
1 dist(y, P)

2
d _ i ‘
Be2(S) = inf (W SQE( diam S ) = (y)>

If supp f = B(0, R) C R?, ||Vf||s < 1, and T is its graph over B(0, R),
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TST for graphs

For E C R” and S a cube or ball, define

J e 1 dist(y, P)\? , _a
Be2(S) = e e ((diam S) Jsne ( diam S ) dA=y)

If supp f = B(0, R) C R?, ||Vf||s < 1, and T is its graph over B(0, R),

Hwn%:/ |Vf|2~/ (VTTIVIE-1)
B(0,R) B(0,R)

= () — wyR®

1/2
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TST for graphs

For E C R” and S a cube or ball, define

1/2
1 dist(y, P)

2
d _ i ‘
Be2(S) = inf (W SQE( diam S ) = (y)>

If supp f = B(0, R) C R?, ||Vf||s < 1, and T is its graph over B(0, R),

VI :/ V2 ~/ (VTTIVIE-1)
B(0,R) B(0,R)
= () — wyR®

Hence,

ffd(r)~||VfH§+wde~// 3€,2(B(x,r))2$d%d(x)+(diamr)d.
rJo
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David-Semmes Theorem

Theorem
Let E C R" be Ahlfors d-regular, meaning

A B(x,r)NE)~r® forallxeE, r>0.

Then the following are equivalent:

1. do := BE,(B(x,r))?dx< is a Carleson measure, meaning
o(B(x,r) x (0,r)) < Cr? forallx € E andr > 0.
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Theorem
Let E C R" be Ahlfors d-regular, meaning

A B(x,r)NE)~r® forallxeE, r>0.

Then the following are equivalent:

1. do := BE,(B(x,r))?dx< is a Carleson measure, meaning
o(B(x,r) x (0,r)) < Cr? forallx € E andr > 0.

2. E is uniformly rectifiable: there is L > 0 so that for every x € E and
r>0,thereisf: ACR? — R" L-Lipschitz so that f(A) C EN B(x,r)
and #°(f(A)) > L~'r?,
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David-Semmes Theorem

Theorem
Let E C R" be Ahlfors d-regular, meaning

A B(x,r)NE)~r® forallxeE, r>0.

Then the following are equivalent:

1. do := BE,(B(x,r))?dx< is a Carleson measure, meaning
o(B(x,r) x (0,r)) < Cr? forallx € E andr > 0.

2. E is uniformly rectifiable: there is L > 0 so that for every x € E and
r>0,thereisf: ACR? — R" L-Lipschitz so that f(A) C EN B(x,r)
and #°(f(A)) > L~'r?,

This is like the TST in the sense that it gives a condition for when a big piece
of E is contained in a Lipschitz surface, rather than all of it.
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How far we can get with 3¢ ,

Theorem
Let E CR" have 0 < s#°(E) < co. Then E is d-rectifiable if (Tolsa, '15) and

only if (A., Tolsa, °15) [ 52 ,(B(x,r))*% < co.
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How far we can get with 3¢ ,

Theorem

Let E CR" have 0 < s#°(E) < co. Then E is d-rectifiable if (Tolsa, '15) and
only if (A., Tolsa, °15) [ 52 ,(B(x,r))*% < co.

Theorem (Edelen, Naber, Valtorta, '16)
If 11 is Radon on R", 69(u, x) < b and [ 89 ,(B(x,r))?% < M for u-a.e.
x € B(0,1), then u(B(x, r)) < (b+ M)r® forx € B(0,1), r > 0.
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How far we can get with 3¢ ,

Theorem
Let E CR" have 0 < s#°(E) < co. Then E is d-rectifiable if (Tolsa, '15) and

only if (A., Tolsa, °15) [ 52 ,(B(x,r))*% < co.

Theorem (Edelen, Naber, Valtorta, '16)
If 11 is Radon on R", 69(u, x) < b and [ 89 ,(B(x,r))?% < M for u-a.e.
x € B(0,1), then u(B(x, r)) < (b+ M)r® forx € B(0,1), r > 0.

There are also other S-numbers defined for measures and results that
characterize the 1-rectifiable structure of the measure (Badger and Schul,;16).
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What we'd like to do

Recall that the TST says a set E is contained in a curve of length at most

damE+ > Be(3Q)°4(Q)

Q dyadic
QNr#o

and the above is < 7' (E) if E is a curve.

We'd like something like this to hold for a d-dimensional surface E, so we
need a 5 number so that
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2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,
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What we'd like to do

Recall that the TST says a set E is contained in a curve of length at most

damE+ > Be(3Q)°4(Q)

Q dyadic
QNr#o

and the above is < 7' (E) if E is a curve.

We'd like something like this to hold for a d-dimensional surface E, so we
need a 5 number so that
1. we don’t need to assume E has finite d-measure (or any prescribed
measure)
2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,
3. we can bound a square sum of 5 numbers in terms of #%(E),
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What we'd like to do

Recall that the TST says a set E is contained in a curve of length at most

damE+ > Be(3Q)°4(Q)

Q dyadic
QNr#o

and the above is < 7' (E) if E is a curve.

We'd like something like this to hold for a d-dimensional surface E, so we
need a 5 number so that

1. we don’t need to assume E has finite d-measure (or any prescribed
measure)

2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,

3. we can bound a square sum of 5 numbers in terms of #%(E),

4. we can’t use f.
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Main Results: New B-numbers and TST
[ Jele]

A new S-number

Recall that
d o . 1 / dist(y, P) ° d
5E’2(S) o Paldr-]JIane (dlam S)d SNE ( diam S arx (y)

o 1 o [ dist(y, P)\?
—pa'ﬂane(diamS)d/O o ({XGSHE'(diamS >t |t
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A new S-number

Recall that

Ad o . 1 dist(y, P) ° d
Be2(S)" = Paldr—glane (diam S)9 Jgk ( diam S a2 y)

- 1 ° ~(dist(y, P)\?
o Palcjr-li;flane (dlam S)d /0 %oo ({X €SNE: ( diam S > 1 at.
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A TST for "nice” surfaces

Theorem (A., Schul)
Let E C R" be so that for all x € E and r € (0,diam E),

A2 (EnB(x,r)) > cr’.
Then

A°(E) S (diamE)? + >~ BE(3Q)%(Q)°.
QNE#(
Moreover, for "nice” surfaces,

(diamE)* + Y BE.(3Q)%U(Q)7 < #°(E).
QNE+#D
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Nice surfaces

c-Reifenberg flat sets: Let § > 0, E C R" be so that, for all x € E and
0 < r < §diam E, there is a d-plane Py, so that

dist(E N B(x,r), Pxr N B(x,r)) < er.

Haus

For these kinds of sets, we have

(diam E)Y + Y BE.(3Q)%UQ)° ~s H#°(E)
QNE+#0
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Nice surfaces

c-Reifenberg flat sets: Let § > 0, E C R" be so that, for all x € E and
0 < r < §diam E, there is a d-plane Py, so that

dist(E N B(x,r), Pxr N B(x,r)) < er.

Haus

For these kinds of sets, we have

(diam E)Y + Y BE.(3Q)%UQ)° ~s H#°(E)
QNE+#0

Proof: Let 2« denote Christ-David cubes on E of sidelength k. Let
2 =|J %k, and for Q € Z,let Bq be a large ball around Q.

If Qo € 29 and € > 0 small enough, we’ll show

> Be(Ba)*U(R)® < #°(E).

RCQ,
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Sketch of proof for Reifenberg flat sets

e Let Py be the best approximating plane to E in Bg.
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Sketch of proof for Reifenberg flat sets

e Let Py be the best approximating plane to E in Bg.

e Construct Sp C 2 by putting Qy € S and adding Q € 2 to S if its parent
isin S and Z(Pq, Pq,) < a. Remove a few bottom cubes so that minimal
cubes in S close to each other have comparable sizes. Let Stop(1) be
these minimal cubes and Total(1) = So.
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Sketch of proof for Reifenberg flat sets

Let Pg be the best approximating plane to E in Bg.

Construct Sp C 2 by putting Qy € S and adding Q € Z to S if its parent
isin S and Z(Pq, Pq,) < a. Remove a few bottom cubes so that minimal
cubes in S close to each other have comparable sizes. Let Stop(1) be
these minimal cubes and Total(1) = So.

For each R € Stop(N), make a stopping-time region Sg by putting
R € Sr and adding cubes Q to Sg if Q’'s parent is in Sg and if
/(Pq, Pr) < a. Again, remove some minimal cubes, then let

Stop(N+1)= | J  minimal cubes in Sp.
Re Stop(N)

Total(N + 1) = cubes not contained in any cube from Stop(N + 1).

42/60



Main Results: New 3-numbers and TST

O@00000

e \We can use David-Toro to construct a surface Epn so that

dist(x, En) < inf  e/(Q) forallx e E
xe Qe Total(N)

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.

e If we never stop over x in our N-th stopping time, x € Ey N E.
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e We can use David-Toro to construct a surface Ey so that

dist(x, En) < inf  e/(Q) forallx e E
xe Qe Total(N)

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.

e If we never stop over x in our N-th stopping time, x € Exy N E.

QCE

/
En \ En- 1
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e We can use David-Toro to construct a surface Ep so that

dist(x, En) < inf  €l(Q) forallx e E
xe Qe Total(N)

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.
¢ If we never stop over x in our N-th stopping time, x € Exy N E.

e For Q € Stop(N), Ty := Bo N En.1 is a graph above Bg N Pq with
respect to a Ca-Lipschitz function AY : Pq — P5.

X+ AB(x)

/_\/T\/\/\—Q‘C\E
——’——————7 ;
En \E N-+1

X PQ
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e We can use David-Toro to construct a surface Epn so that

dist(x, En) < inf  el(Q) forallx e E
xe Qe Total(N)

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.
e |f we never stop over x in our N-th stopping time, x € Ey N E.

e For Q € Stop(N), I'}y := Bo N En .+ is a graph above Bg N Pq with
respect to a Ca-Lipschitz function A : Pq — P5. Note that

|DAS| > QXrp (r) When R € Stop(N +1).

X + A¥(x)
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Sketch of proof for Reifenberg flat sets
Lemma

Y > «Q)F $(E).

N Qe Stop(N)
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Sketch of proof for Reifenberg flat sets
Lemma

Y > «Q)F $(E).

N Qe Stop(N)

e Say Q € Type(1, N) if Q € Stop(N) and
2913 — |Ba N Pg| < Cet(Q)°.
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Sketch of proof for Reifenberg flat sets
Lemma
Y > «Q)F $(E).
N Qe Stop(N)
e Say Q € Type(1, N) if Q € Stop(N) and
2913 — |Ba N Pg| < Cet(Q)°.
Then for e < q,

> URYS [ e 5o [ (DAY
afe Pq

Re Stop(N+1)
RCQ

~ a3 (°(rg) — |Ba N Pgl) < %e(o)d < Q)"
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Sketch of proof for Reifenberg flat sets
Lemma
Y > «Q)F $(E).
N Qe Stop(N)
e Say Q € Type(1,N) if Q € Stop(N) and
2913 — |Ba N Pg| < Cet(Q)°.
Then for ¢ < a,

S URY S [ xepm Sat [ 1DAY
afe Pq

Re Stop(N+1)
RCQ

_ C
$(#°(T8) — 1Ban Pal) < Q)7 < £(Q)°

o If Z(Q) C Q are points not contained in a cube from Stop(N + 1),
Y wa’s> Y #N2zQ) < #E).
N Qe Type(1,N) N Qe Type(1,N)
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Sketch of proof for Reifenberg flat sets

e Say Q € Type(2, N) if Q € Stop(N) and
AH(TY) — |Bg N Pg| > Cet(Q)°.
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Sketch of proof for Reifenberg flat sets

e Say Q € Type(2,N) if Q € Stop(N) and

AH(TY) — |Bg N Pg| > Cet(Q)°.

e Define a map Fn : Ex — En1 by "looking up at En1 from Ep”.
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000000

Sketch of proof for Reifenberg flat sets

e Say Q € Type(2,N) if Q € Stop(N) and
AH(TY) — |Bg N Pg| > Cet(Q)°.

e Define amap Fyn : Exy — Eny1 by "looking up at En 1 from Ep”.

o KUY ~ H#(Fn(Bg N En)) and |Bg N Pg| ~ #%(Bg N Ey)| fore > 0
small, and so for C large

A9 (Fn(Ba N EN)) — 2%(En N Bg) > el(Q)°.
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000000

Sketch of proof for Reifenberg flat sets
e Say Q € Type(2, N) if Q € Stop(N) and
A°(FY) — |Ba N Pg| > Cet(Q)°.

e Define amap Fy : Ex — Eny1 by "looking up at En.1 from Ep”.

o (Y ~ 9 Fn(Bo N En)) and |Bg N Pg| ~ #%(Bg N Ey)| fore >0
small, and so for C large

A% (Fn(Bg N En)) — 2°(En N Bg) > e(Q)°.
Then

Y wQSe Y (#°(Fn(Ban En)) — #°(En N Bg))
Qe Type(2,N) Qe Type(2,N)

- /BQmEN(JF”_”S (e 1)

Qe Type(2,N)
= H(Enpt) — #°(EN)
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000000

Sketch of proof for Reifenberg flat sets
e Say Q € Type(2, N) if Q € Stop(N) and
A°(FY) — |Bo N Pg| > Cet(Q)°.

e Define amap Fy : Ex — Eny1 by "looking up at En.1 from Ep”.

o U (Y) ~ 79 (Fn(Bgn En)) and |Bg N Po| ~ #%(Bg N Ex)| fore > 0
small, and so for C large

A9 (Fn(Ba N EN)) — 22%(En N Bg) > el(Q)°.

Then
Y. UQTZe Y ((Fu(Ban En)) — #°(En N Bo))
Qe Type(2,N) Qe Type(2,N)
Maybe Jr, —1<0l= 3 / (JFN—1),§/(JFN—1)
BQﬁEN EN

Qe Type(2,N)
= H(Enpt) — #°(EN) + Error(N)
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Sketch of proof for Reifenberg flat sets

e Use Dorronsoro to show

> Bru(3R)*(R)’ < £(Q)° whenever Q & Stop(N).

RGSQ
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O000e00

Sketch of proof for Reifenberg flat sets

e Use Dorronsoro to show

> Bru(3R)*(R)’ < £(Q)° whenever Q & Stop(N).

RGSQ

e These approximate

> BEGRZUR =D Y ) Be(BR)*U(R)°

ReC @y N QeStop(N) ReSq

S>> Y Bu(BRPUR)? + Error

N QeStop(N) ReSg

<S>0 > «Q)T + Error

N Qe Stop(N)
< #(E).
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O0000e0

Future Work

1. Most quantitative rectifiability results are for Ahlfors regular sets, but
maybe we don’t need this.

2. What other kinds of sets are "nice”?
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Thanks!

Sa
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