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An approximation theorem of Bourgain and Brezis

I We work on Rn where n ≥ 2.

I Let Ẇ k,p be the homogeneous Sobolev space on Rn, that is
the completion of the space of all C∞c functions under the
norm

‖f ‖Ẇ k,p := ‖∇k f ‖Lp
if k ∈ N.

I It is well-known that Ẇ k,p embeds into L
np

n−kp if 1 ≤ p < n
k ,

and that the embedding fails if p = n
k

(e.g. Ẇ 1,n does not embed into L∞ on Rn).

I Nevertheless, Bourgain and Brezis proved the following
remarkable theorem, that says a general Ẇ 1,n function can be
‘well-approximated’ by a bounded function on Rn.



Theorem (Bourgain-Brezis)

Given any δ > 0, there exists a constant Cδ such that for any
function f ∈ Ẇ 1,n, there exists a function F ∈ L∞ ∩ Ẇ 1,n

satisfying
n−1∑

i=1

‖∂i f − ∂iF‖Ln ≤ δ‖∇f ‖Ln

and
‖∇F‖Ln + ‖F‖L∞ ≤ Cδ‖∇f ‖Ln .

I The derivatives of F approximates the derivatives of f in all
but one direction!

I This is the starting point of a long journey, and key to the
proofs of many important results. We will list three shortly.



Outline of the talk

I Three consequences of this approximation theorem

I Some subsequent development

I A new approximation theorem for a whole range of critical
Sobolev spaces Ẇ α,p(Rn), where αp = n; this is joint work
with Pierre Bousquet, Emmanuel Russ and Yi Wang

I Indeed our theorem also works for a whole range of critical
Triebel-Lizorkin spaces Ḟα,p

q on Rn, with αp = n.



Three consequences of the approximation theorem for Ẇ 1,n

I First comes the solution of the following PDE.

Proposition (Bourgain-Brezis)

For any function f ∈ Ln, there exists a vector field Y ∈ Ẇ 1,n ∩ L∞

such that
div Y = f

with ‖∇Y ‖Ln + ‖Y ‖L∞ . ‖f ‖Ln .

I By ‖∇Y ‖Ln we mean sum of the Ẇ 1,n norms of the
components of Y ; same for ‖Y ‖L∞ .

I Can always find Y ∈ Ẇ 1,n by Hodge decomposition, but
Ẇ 1,n fails to embed into L∞.

I But the equation is underdetermined: if Y is a solution, so is
Y plus any divergence free vector field.

I The claim is one can find a solution that is not just in Ẇ 1,n,
but also bounded, by adding a divergence free vector field.



I More generally consider the Hodge-de Rham complex on Rn.

I A differential `-form on Rn is of the form

u =
∑

J

uJdxJ

where the sum is over all multiindices J = (j1, . . . , j`) of
length `, with 1 ≤ j1 < · · · < j` ≤ n,

dxJ := dx j1 ∧ · · · ∧ dx j` ,

and uJ is a function on Rn for each such J.

I The exterior derivative d maps `-forms to (`+ 1) forms, via

du =
n∑

j=1

∂uJ

∂x j
dx j ∧ dxJ

if u is as above.



I d maps `-forms with Ẇ 1,n coefficients to (`+ 1)-forms with
Ln coefficients.

I A (`+ 1)-form f ∈ Ln is said to be in the image of d , if

f = dX

for some `-form X ∈ Ẇ 1,n.

Theorem (Bourgain-Brezis)

If ` 6= 0, then for any (`+ 1)-form f ∈ Ln that is in the image of d,
there exists a `-form Y ∈ Ẇ 1,n ∩ L∞ such that

dY = f

with ‖∇Y ‖Ln + ‖Y ‖L∞ . ‖f ‖Ln .

I The case ` = n − 1 is the earlier proposition about the
equation div Y = f .



I Next comes the following compensation phenomenon.

I For two Banach spaces A and B, their sum is a Banach space
A + B = {a + b : a ∈ A, b ∈ B}, with norm

‖u‖A+B = inf{‖a‖A + ‖b‖B : u = a + b, a ∈ A, b ∈ B}.

I For any locally integrable function v on Rn, we define

‖v‖
Ẇ
−1, n

n−1
= sup

{∫

Rn

v ϕ dx : ϕ ∈ C∞c , ‖∇ϕ‖Ln = 1

}
.

I We can thus discuss the L1 + Ẇ−1, n
n−1 norm of a C∞

function, or C∞ vector field.



Theorem (Bourgain-Brezis)

If u is a C∞ vector field and div u = 0, then for any vector field
Φ ∈ C∞c ,

∣∣∣∣
∫

Rn

u · Φ dx

∣∣∣∣ . ‖u‖L1+Ẇ
−1, n

n−1
‖∇Φ‖Ln .

I In particular, since ‖u‖
L1+Ẇ

−1, n
n−1
≤ ‖u‖L1 , this says

∣∣∣∣
∫

Rn

u · Φ dx

∣∣∣∣ . ‖u‖L1‖∇Φ‖Ln ,

if u is a divergence-free vector field on Rn.

I The latter inequality would be trivial if Ẇ 1,n embeds into L∞.
So this is some remedy of failure of this critical Sobolev
embedding when one test a Ẇ 1,n vector field against
something divergence free (inequality fails otherwise).



Theorem (Bourgain-Brezis)

If u is a C∞ vector field and div u = 0, then for any vector field
Φ ∈ C∞c ,

∣∣∣∣
∫

Rn

u · Φ dx

∣∣∣∣ . ‖u‖L1+Ẇ
−1, n

n−1
‖∇Φ‖Ln .

I In particular, since ‖u‖
L1+Ẇ

−1, n
n−1
≤ ‖u‖L1 , this says

∣∣∣∣
∫

Rn

u · Φ dx

∣∣∣∣ . ‖u‖L1‖∇Φ‖Ln ,

if u is a divergence-free vector field on Rn.

I Van Schaftingen gave a simple and elegant proof of the latter
inequality. This would also give a simple proof of a special
case of the earlier proposition, namely a solution to the
equation div Y = f with Y ∈ L∞, if f ∈ Ln.

I But the proof of the full theorem remains quite involved.



I Finally comes a Gagliardo-Nirenberg inequality for differential
forms.

I Recall Gagliardo-Nirenberg: If a function u ∈ C∞c (Rn), then

‖u‖Ln/(n−1) . ‖∇u‖L1 .

I Let d∗ be the adjoint of d under the standard L2 inner
product of differential forms on Rn.

Theorem (Bourgain-Brezis)

Suppose 0 ≤ ` ≤ n − 2. Then for any `-form u ∈ C∞c with
d∗u = 0, we have

‖u‖
L

n
n−1

. ‖du‖
L1+Ẇ

−1, n
n−1

.



Theorem (Bourgain-Brezis)

Suppose 0 ≤ ` ≤ n − 2. Then for any `-form u ∈ C∞c with
d∗u = 0, we have

‖u‖
L

n
n−1

. ‖du‖
L1+Ẇ

−1, n
n−1

.

I In particular, since ‖du‖
L1+Ẇ

−1, n
n−1
≤ ‖du‖L1 , we have

‖u‖
L

n
n−1

. ‖du‖L1

whenever u is a C∞c `-form on Rn, 0 ≤ ` ≤ n − 2, with
d∗u = 0.

I Since d∗ of a function is always zero, when ` = 0 this is just
Gagliardo-Nirenberg.

I Lanzani and Stein gave a proof of the latter inequality in a
similar spirit of Van Schaftingen.



Some subsequent development (partial list)
I There has been lots of work around the L1 inequalities we

discussed.
I For example, the inequality

∣∣∣∣
∫

Rn

u · Φ dx

∣∣∣∣ . ‖u‖L1‖∇Φ‖Ln whenever div u = 0

has been generalized in various ways:
I The norm ‖∇Φ‖Ln can be replaced by a critical Besov or

Triebel-Lizorkin norm of Φ, such as ‖Φ‖Ẇα,p with αp = n
(Van Schaftingen)

I Rn can be replaced by homogeneous groups, such as the
Heisenberg group (Chanillo-Van Schaftingen)

I Rn can be replaced by any globally Riemannian symmetric
spaces of non-compact type, such as the hyperbolic spaces or
SL(n,R)/SO(n,R) (Chanillo-Van Schaftingen-Y.)

I But very few results along the lines of the full theorem, where
one considers L1 + Ẇ−1, n

n−1 in place of L1.



New results

I Joint work with Pierre Bousquet, Emmanuel Russ, Yi Wang

I We prove an approximation theorem not just for Ẇ 1,n, but for
a range of Sobolev or Triebel-Lizorkin spaces on Rn that
barely fail to embed into L∞.

I Let S ′ be the space of tempered distributions on Rn, and P
be the subspace of all polynomials on Rn.

I We write Z ′ for the quotient space S ′(Rn)/P.

I Pick a Schwartz function ∆ on Rn, so that ∆̂ is supported on
the annulus 1/2 ≤ |ξ| ≤ 2, and

∑
j∈Z ∆̂(2−jξ) = 1.

I For α ∈ R and p, q ∈ (1,∞), we say that f is in the
homogeneous Triebel-Lizorkin space Ḟα,p

q , if f ∈ Z ′ and

‖f ‖Ḟα,pq
:=
∥∥∥∥2αj∆j f (x)

∥∥
`q

∥∥
Lp
<∞,

where ∆j f (x) := f ∗∆j(x) and ∆j(x) := 2jn∆(2jx).



‖f ‖Ḟα,pq
:=
∥∥∥∥2αj∆j f (x)

∥∥
`q

∥∥
Lp

I When α = k ∈ N and q = 2, the space Ḟα,p
q is isomorphic to

the homogeneous Sobolev space Ẇ k,p, with

‖f ‖
Ḟ k,p
2
' ‖∇k f ‖Lp .

I When α ∈ (0, 1) and q = p, the space Ḟα,p
q is isomorphic to a

fractional Sobolev space Ẇ α,p, with

‖f ‖Ḟα,pp
'
(∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y |n+αp dxdy

)1/p

.

I When α > 0, 1 < q <∞ and 1 < p < n/α, the space Ḟα,p
q

embeds continuously into Lnp/(n−αp).
I But when αp = n, Ḟα,p

q fails to embed into L∞.



Theorem (Bousquet-Russ-Wang-Y.)

Suppose α > 0, p, q ∈ (1,∞) and αp = n. Let κ be the largest
positive integer that satisfies

κ < min{p, n}.

Then for every δ > 0, there exists a constant Cδ, such that for
every f ∈ Ḟα,p

q (Rn), there exists F ∈ Ḟα,p
q ∩ L∞(Rn) satisfying

κ∑

i=1

‖∂i f − ∂iF‖Ḟα−1,p
q (Rn)

≤ δ‖f ‖Ḟα,pq (Rn)

and
‖F‖Ḟα,pq (Rn) + ‖F‖L∞(Rn) ≤ Cδ‖f ‖Ḟα,pq (Rn).

I This reduces to the result of Bourgain and Brezis if α = 1,
p = n and q = 2.



Corollary (Bousquet-Russ-Wang-Y.)

Suppose α > 0, p, q ∈ (1,∞) and αp = n. Let κ be the largest
positive integer that satisfies

κ < min{p, n}.

Let ` ∈ N satisfy ` ∈ [n − κ, n − 1]. Then for any `-form ϕ ∈ Ḟα,p
q

on Rn, there exists an `-form ψ ∈ Ḟα,p
q ∩ L∞ on Rn, such that

dψ = dϕ,

and
‖ψ‖Ḟα,pq

+ ‖ψ‖L∞ . ‖dϕ‖
Ḟα−1,p
q

.

I The special case of this corollary when ` = n − 1, p ≥ 2,
q ∈ [2, p] and α > 1/2 is an earlier result of Bousquet,
Mironescu and Russ.



Corollary (Bousquet-Russ-Wang-Y.)

Suppose α > 0, p, q ∈ (1,∞) and αp = n. Let κ be the largest
positive integer that satisfies

κ < min{p, n}.

If u = (u1, . . . , uκ+1) has components in C∞c (Rn) with

κ+1∑

i=1

∂iui = 0,

then for any ϕ = (ϕ1, . . . , ϕκ+1) with components in Ḟα,p
q (Rn), we

have ∣∣∣∣
∫

Rn

〈u, ϕ〉dx

∣∣∣∣ . ‖u‖L1+Ḟ−α,p
′

q′
‖ϕ‖Ḟα,pq

.



Corollary (Bousquet-Russ-Wang-Y.)

Suppose α > 0, p, q ∈ (1,∞) and αp = n. Let κ be the largest
positive integer that satisfies

κ < min{p, n}.

Let ` be an integer with 0 ≤ ` ≤ κ− 1. Then for any smooth and
compactly supported `-form u on Rn with d∗u = 0, we have

‖u‖
Ḟ 1−α,p′
q′

. ‖du‖
L1+Ḟ−α,p

′
q′

.

Corollary (Bousquet-Russ-Wang-Y.)

Suppose p, q ∈ (1,∞). Then for any smooth function u with
compact support on Rn, we have

‖u‖
Ḟ
1− n

p′ ,p
q

. ‖∇u‖
L1+Ḟ

− n
p′ ,p

q

.



The proof of Bourgain and Brezis

I Below we review the strategy of the original proof of Bourgain
and Brezis for their approximation theorem, and explain the
new difficulties we had to overcome to prove our
approximation theorem.

I Let f ∈ Ẇ 1,n on Rn. While f may not be in L∞, Bernstein’s
inequality shows that each Littlewood-Paley piece of f is in
L∞:

‖∆j f ‖L∞ ≤ C‖∇f ‖Ln .
I Thus if f = ∆j f for some j , i.e. if f is localized in a frequency

band, then one can prove the approximation theorem by
simply setting F = f .

I Since in general f =
∑

j ∆j f , the difficulty in the general case
is to sum up the different frequencies.



I To sum up the different frequencies, the following ‘partition of
unity’ identity is useful:

I Given any N numbers a1, . . . , aN , we have

1 =
N∑

j=1

aj
∏

j ′>j

(1− aj ′) +
N∏

j=1

(1− aj)

I This is nothing but

1 = aN + (1− aN)

= aN + aN−1(1− aN) + (1− aN−1)(1− aN)

= aN + aN−1(1− aN) + aN−2(1− aN−1)(1− aN)

+ (1− aN−2)(1− aN−1)(1− aN)

= . . .



1 =
N∑

j=1

aj
∏

j ′>j

(1− aj ′) +
N∏

j=1

(1− aj)

I In particular, if {aj}j∈Z is a sequence with 0 ≤ aj ≤ 1 for all j ,
then ∑

j

aj
∏

j ′>j

(1− aj ′) ≤ 1.

I Suppose from now on f ∈ Ẇ 1,n and ‖∇f ‖Ln is small (so that
‖∆j f ‖L∞ ≤ 1 for all j , as possible by Bernstein’s inequality).

I One is then tempted to set

F =
∑

j

∆j f
∏

j ′>j

(1− |∆j ′f |)

as an approximation of f =
∑

j ∆j f =
∑

j ∆j f · 1, for at least
F is automatically in L∞.



I This approach is doomed to fail, for the construction of F
does not distinguish between the good directions ∂1, . . . , ∂n−1
from the bad direction ∂n, while the goal was to construct F
so that ‖∂i (f − F )‖Ln is particularly small when 1 ≤ i ≤ n− 1.

I The way out: Bourgain and Brezis introduced a family of
controlling functions ωj ’s, so that for any j ∈ Z, we have

|∆j f (x)| ≤ ωj(x) ≤ ‖∆j f ‖L∞

|∂iωj(x)| . 2j−σωj(x) for i = 1, . . . , n − 1,

and
|∂nωj(x)| . 2jωj(x).

Here σ is a large parameter depending on the small number δ.



|∆j f (x)| ≤ ωj(x) ≤ ‖∆j f ‖L∞
|∂iωj(x)| . 2j−σωj(x) for i = 1, . . . , n − 1,

|∂nωj(x)| . 2jωj(x).

I One is then tempted to construct the approximating function
F by setting

F =
∑

j

∆j f
∏

j ′>j

(1− ωj ′).

In that case, F would be automatically in L∞, but this still
would not work: indeed, we have

f − F =
∑

j

ωjµj , where µj :=
∑

j ′<j

∆j ′f
∏

j ′<j ′′<j

(1− ωj ′′).

Note that ‖µj‖L∞ ≤ 1 for all j .



f − F =
∑

j

ωjµj , with ‖µj‖L∞ ≤ 1 for all j .

I So to estimate ‖∂i (f − F )‖Ln for i = 1, . . . , n − 1, we may

need to bound a term like
∥∥∥
∑

j |∂iωj ||µj |
∥∥∥
Ln
≤
∥∥∥
∑

j |∂iωj |
∥∥∥
Ln
.

I Recall |∂iωj | . 2j−σωj for i = 1, . . . , n− 1, with σ large. Thus
we are led to estimate

2−σ

∥∥∥∥∥∥
∑

j

2jωj

∥∥∥∥∥∥
Ln

.

I But there is no hope estimating the above Ln norm: the Ln

norm is even bigger than
∥∥∥
∑

j 2j |∆j f |
∥∥∥
Ln
, while we want a

bound like ‖‖2j |∆j f |‖`2‖Ln ' ‖∇f ‖Ln by Littlewood-Paley
inequality.



I There is another clever way out: if instead of
∥∥∥
∑

j 2jωj

∥∥∥
Ln

we

need only estimate
∥∥∥
∑

j 2jωjχEj

∥∥∥
Ln
, where

Ej :=



x ∈ Rn : 2jωj(x) >

∑

k<j

2kωk(x)



 ,

then since pointwisely we have

∑

j

2jωjχEj
≤ 2 sup

j
2jωj ,

which for comparison is smaller than 2‖2jωj‖`2 , we have some
hope of estimating its Ln norm.



I So Bourgain and Brezis wrote

f =
∑

j

∆j f =
∑

j

∆j f χEj
+
∑

j

∆j f χE c
j

:= h + g ,

and approximated each of h and g by functions in Ẇ 1,n ∩ L∞

using ideas we discussed above;

I Indeed, the above heuristics suggests that one can construct
h̃ ∈ Ẇ 1,n ∩ L∞ such that ‖∂i (h − h̃)‖Ln is under control.

I It turns out that one can also construct g̃ ∈ Ẇ 1,n ∩ L∞ such
that ‖∂i (g − g̃)‖Ln is under control.

I They concluded the proof by setting F := g̃ + h̃.



Difficulty #1: α > 1

I First, Bourgain and Brezis used the following definition of ωj :
for x = (x ′, xn) ∈ Rn, they defined

ωj(x) := sup
y∈Rn

|∆j f (y)|e−2j−σ |x ′−y ′|e−2j |xn−yn|.

I As such ωj is supremum of smooth functions in x , which is in
general at best Lipschitz.

I When we prove an approximation theorem for Ḟα,p
q with

α > 1 (e.g. Ẇ k,p for k > 1), we naturally needed to
differentiate ωj more than once.

I So we used a different construction: morally speaking, we
defined ωj using a discrete `p convolution:

ωj(x) :=


 ∑

r∈2−jZn

(
|∆j f (r)|e−2j−σ |x ′−r ′|e−2j |xn−rn|

)p



1/p

.



I With the definition of ωj in place, we define the sets Ej by

Ej :=



x ∈ Rn : 2jαωj(x) >

∑

k<j

2kαωk(x)



 ,

and split

f =
∑

j

∆j f =
∑

j

∆j f χEj
+
∑

j

∆j f χE c
j

:= h + g ;

I We’d try to construct g̃ and h̃ in Ḟα,p
q ∩ L∞ such that

‖∂i (g − g̃)‖
Ḟα−1,p
q

and ‖∂i (h − h̃)‖
Ḟα−1,p
q

are both small, if i = 1, . . . , κ.



Difficulty #2: q > p

I The success of such approach depends on being able to bound

∥∥∥∥∥sup
j

2αjωj

∥∥∥∥∥
Lp

by a reasonably small multiple of ‖f ‖Ḟα,pq
.

I There is an easy argument when q ≤ p, since then we have an
embedding `q ↪→ `p.

I But this is not so easy when q > p (which arises, for instance,
when we want to prove an approximation theorem for Ẇ k,p

on Rn with n/2 < k < n, since then q = 2 > n/k = p).

I It turns out that we needed to use a vector-valued bound for a
‘shifted’ maximal function when q > p.



I It is well-known that the shifted maximal function satisfies a
scalar Lp bound:

Lemma
Let ϕ be the characteristic function of the unit ball centered at the
origin in Rn, and r ∈ Rn. Then ϕ(r + ·) is the characteristic
function of a unit ball centered at r . Define

kj(x) = 2jnϕ(r + 2jx), and Mf (x) = sup
j∈Z
|f | ∗ kj(x).

Then for 1 < p <∞, we have the following inequality:

‖Mf ‖Lp . [log(2 + |r |)]1/p ‖f ‖Lp .



Lemma
More generally, let ϕ be any non-negative integrable function on
Rn, satisfying ∫

Rn

ϕ(y)dy . 1,

∫

|y |≥R
ϕ(y)dy . R−1 for all R ≥ 1,

and ∫

Rn

|ϕ(y − x)− ϕ(y)|dy . |x | for all x ∈ Rn.

For r ∈ Rn, let kj(x) = 2jnϕ(r + 2jx), Mf (x) = supj∈Z |f | ∗ kj(x).
Then for 1 < p, q <∞, we have the following vector-valued
inequality:

‖‖Mfi‖`q‖Lp . [log(2 + |r |)]1/p ‖‖fi‖`q‖Lp .



I The proof of this lemma proceeds via a lemma of Zó; indeed
one proves that

∫

|y |≥4|x |
sup
j∈Z
|kj(y − x)− kj(y)|dy . log(2 + |r |).

I This shows

‖Mf ‖Lp . [log(2 + |r |)]1/p‖f ‖Lp ,

and more generally the vector-valued bound

‖‖Mfi‖`q‖Lp . [log(2 + |r |)]1/p ‖‖fi‖`q‖Lp .

I With this lemma about shifted maximal function in hand, one
can control

∥∥supj 2αjωj

∥∥
Lp

, and finish the proof of the
theorem when α is a positive integer.



Difficulty #3: fractional values of α

I Recall we had split the problem of approximating f by setting

Ej :=



x ∈ Rn : 2αjωj(x) >

∑

k<j

2αkωk(x)





and writing

f =
∑

j

∆j f χEj
+
∑

j

∆j f χE c
j

:= h + g ;

we’d construct an approximating function h̃ and g̃ for h and g
respectively.



I The way Bourgain and Brezis estimated ‖∂i (h − h̃)‖Ln was to
write h − h̃ as a sum of products, and then apply Leibniz rule
to evaluate ∂i (h − h̃), before computing its Ln norm.

I When α > 0 is not an integer, we would need to estimate

‖∂i (h − h̃)‖
Ḟα−1,p
q

and the above argument needs to be replaced by a fractional
version of Leibniz rule.

I It is a bit more complicated than that, since we need to
differentiate a sum of products, and we want to keep the sum
inside the Ḟα−1,p

q norm.

I In addition, we needed to be careful in extracting some
additional cancellations from certain Littlewood-Paley
projections when α ∈ (0, 1).



Difficulty #4: α ∈ (0, 1/2]

I Recall

Ej :=



x ∈ Rn : 2αjωj(x) >

∑

k<j

2αkωk(x)





and we split

f =
∑

j

∆j f χEj
+
∑

j

∆j f χE c
j

:= h + g .

I The sets Ej depends on α, and one can check that the smaller
the α is, the smaller the sets Ej become.

I Thus when α is small, the function g is big, and it is relatively
harder to approximate g by a function g̃ ∈ Ḟα,p

q ∩ L∞.
I It turns out that we do need a new estimate for

‖∂i (g − g̃)‖
Ḟα−1,p
q

when α ∈ (0, 1/2].


