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Background

We first consider a complex-valued function, f : T — C, defined on
the one-dimensional torus, T := R/Z,

f(x) =) ane(nx)

nez

where a, € C, e(y) := e*™.
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Background

We first consider a complex-valued function, f : T — C, defined on
the one-dimensional torus, T := R/Z,

f(x) =) ane(nx)

nez

where a, € C, e(y) := e*™.
Our first question is, for which p € [1, o0] and in what sense does
the following inequality hold

1/2
1Nl p(my < Cp (Z an|2>

nez

1
where [|Fllory = [|llp == (Jy F1P dm)*/*
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Background

Similarly, let {/} be a disjoint decomposition of Z. Then we
consider the inequality

1/2
1fllp < Cp (Z ﬂk,%)
k

where fj, (x) = > ¢ ane(nx). We will refer to inequalities of this
form as decoupling inequalities.
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Littlewood-Paley Theorem

For any decomposition, {/x}, of Z, define the square function
1/2

SF(x) = | D Ifi(x)

keZ
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Littlewood-Paley Theorem

For any decomposition, {/x}, of Z, define the square function
1/2

SF(x) = | D Ifi(x)

keZ

Let B > a > 1 and define {m,},>1 C Z satisfying
amp, < mpy1 < fmy,. Let mg = 0.

Theorem (Littlewood-Paley (1937))

Let 1 < p < oo. Consider Iy = (—my, —my_1] U [mg_1, my), for
k=123, ...

Then

Cp_,ci,ﬁ ”Sf”p = HfHP < Cp,a,ﬁ

|5l

Example: m, := 2".
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Higher Dimensions

Consider f : T9 — C defined as

f(x) =Y ane(n-x)

neZd

Theorem (L-P ('37))

Let1 < p<oo, Iy :={necZ9|25"1 < |n| < 2X}. Then

G IS, < Nfllp < GollSFlls

v

Note: Rubio de Francia (1985) and Journe (1985) showed that for
an arbitrary decomposition of Z9, {I,}, 1 < p < 2,

Ifllp < CollSFllp
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Higher Dimensions

For d > 1, the geometry of the support of (a,) becomes
important. We will focus on (a,) supported near hyper-surfaces:
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Fourier Analysis on R¢

Let

Pt ={(&,6, a1, 5+ G+ +E5) | 6] <1} C R
For a: P91 — C, and for

—_—

Ea(x) := ado = /Pd_l a(&)e(x-&)do(§)

we ask, for which p,

1Eal|p(rey < Cpllalli2(do)
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Fourier Analysis on R¢

Let
Pt ={(&,6, a1, 5+ G+ +E5) | 6] <1} C R
For a: P91 — C, and for

L —

Ea(x) := ado = / a(€)e(x-&)do(§)
pd—1
we ask, for which p,
|Eal|pray < Cpllall 2(do)

Stein’s Restriction conjecture: This holds for p > 2%. (As well
as analogous inequalities for different norms on a)
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Background on Restriction

Replacing ||al[;2(40) With ||a[/Le(ds) and considering more general
surfaces we have

@ Tomas-Stein Theorem: Conjecture true for g =2, p > 2%.
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Background on Restriction

Replacing ||al[;2(40) With ||a[/Le(ds) and considering more general
surfaces we have

@ Tomas-Stein Theorem: Conjecture true for g =2, p > 2%.

e Wolff, Tao, Bennett, Carbery, Bourgain, Guth, Demeter
among many others: various results in linear, bilinear, k-linear,
multilinear from 1990s-Now.
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Let 0 < 9 < 1. Consider a set of points A C P91 such that for
each pair of points x,y € A, [|x — y|| > 6'/2. Then

1Eal|p(rey < Cpllall2(do)
Is equivalent to

p\ 1/p

1 d_d-—1
Bal J |2 2ee(€x) < Gt T Jaglleen
R |geN

where Br C R is a ball of radius R ~ §1/2.
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Discrete Case
A Littlewood-Paley Formulation

o Let N5 = {x € R? | dist(x, P91) < §}.

@ Let Ps be a finitely overlapping cover of N5 with curved
regions of the form

0 = {(517 ---7€d—1777 -+ f% +e g?‘l—l | (51? "'agd—l) S C97 |77| < 25}7

\ 4
Y /
L ,,/
Ny

where {Cy} = {c + [~ 5=, 2191} with ¢ € £279-1 0 [—1,1]¢-L.
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¢? Decoupling
A Littlewood-Paley Formulation

Let f: RY — C, f(¢) = [a(&)e(€ - x) dx and supp a C Nj. If we
define the square function as

1/2
SF(x) = (Z |f9(X)2> .
0

we wonder whether

11l ray < Cpoll STl Lp(ra)

holds.
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¢? Decoupling
A Littlewood-Paley Formulation

Let f: RY — C, f(¢) = [a(&)e(€ - x) dx and supp a C Nj. If we
define the square function as

1/2
X) = (Z |f9(x)2> .
0

11l Lo(ray < Cp,

we wonder whether

holds. Particularly

11l o ey < € 5_dHSf”LP R) p e 2,257)
11l o (ray < Cpo +$_‘€||~’5"||Lp(Rd) p € 251, 0)

This is unresolved.
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¢? Decoupling

However, we have the decoupling form of this result

Theorem (Bourgain-Demeter (2014))

Let S be a compact C? hypersurface in RY with positive definite
second fundamental form. If supp a C Ns then for p > 2 and e > 0

1/2

d—1, d+1
Illo < Gobo== (140755 ) | 37 1112
0cPs
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Applications

Nonlinear Schrodinger Equation

Consider the Cauchy problem

iuy + Au — |u)?u =0, x€T9t>0 (1)
u(x,0) = up(x) € Hz(Td),
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Applications

Nonlinear Schrodinger Equation

Consider the Cauchy problem

iuy + Au — |u)?u =0, x€T9t>0 (1)
u(x,0) = up(x) € Hz(Td),

Definition

(1) is said to be locally well-posed in H*(T?) if for any initial data
ug € H5(TY) there exists a time T = T(||uo||ns) such that a
unique solution to the initial value problem exists on the time
interval [0, T]. We also require that u(t,x) € COH3([0, T] x T¢9).
If T = oo we say that a Cauchy problem is globally well-posed.
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Applications

Nonlinear Schrodinger Equation

Let S(t) be the solution operator for the linear Schrodinger
equation: iu; + Au = 0.
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Applications

Nonlinear Schrodinger Equation

Let S(t) be the solution operator for the linear Schrodinger
equation: iu; + Au = 0.

Note that for

¢cezd
IEI<N

S(t)uo(x) = ) a(€)e(¢ - x — 27||&]*)

cezd
IEII<N
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Applications

Nonlinear Schrodinger Equation

For d = 2, global well-posedness for s > 1 (Bourgain 1993) can be
reduced to showing

In(t)S(t)uoll 2 (rxre) < CN[|do|e (2)

for supp fip C [N, N]?, n € C®°(R) compactly supported.
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Applications

Nonlinear Schrodinger Equation

For d = 2, global well-posedness for s > 1 (Bourgain 1993) can be
reduced to showing

In(t)S(t)uoll 2 (rxre) < CN[|do|e (2)

for supp fip C [N, N]?, n € C®°(R) compactly supported.
Observation: The space-time Fourier support of S(t)ug lies in

P/2V — {(51752752%_'_’5%) € Z3 ‘ |€I‘ < N}
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Applications

Nonlinear Schrodinger Equation

For d = 2, global well-posedness for s > 1 (Bourgain 1993) can be
reduced to showing

In(t)S(t)uoll 2 (rxre) < CN[|do|e (2)

for supp fip C [N, N]?, n € C®°(R) compactly supported.
Observation: The space-time Fourier support of S(t)ug lies in

P = {(€1, 6,61 + ) € Z° | €] < N}
Thus, our problem reduces to showing

Y ace(§-x)|| < CN°llagllee

2
¢ep?, .
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Applications

Nonlinear Schrodinger Equation

For s < 1 (in which case the Energy/Hamiltonian may not exist)
there have been many results including

@ Bourgain's High-Low Method (1993)

@ Colliander, Keel, Staffilani, Takaoka and Tao, I-Method
(2001-2002)
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Applications

Nonlinear Schrodinger Equation

For s < 1 (in which case the Energy/Hamiltonian may not exist)
there have been many results including

@ Bourgain's High-Low Method (1993)

@ Colliander, Keel, Staffilani, Takaoka and Tao, I-Method
(2001-2002)

@ De Silva, Pavlovic, Staffilani, Tzirakis (2006) showed GWP for
s > £ using a bilinear version of (2):

1n(t)S(t)uoS(t)voll2 (mxr2) < CN3lTolle2 | Volle2

for supp o C {3N; < |¢] < 3N} and
supp Vg C {%NQ < €] < %Nz}. Where N> < Nj.
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Applications

Nonlinear Schrodinger Equation, Continuous Case

In 1998, Bourgain considered the following Cauchy problem

iug + Au — |u?u =0, x€R%t>0 (3)
u(x,0) = up(x) € H5(R?), s>2/3
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Applications

Nonlinear Schrodinger Equation, Continuous Case

In 1998, Bourgain considered the following Cauchy problem
iug + Au — |u?u =0, x€R%t>0 (3)
u(x,0) = up(x) € H5(R?), s>2/3

Well-posedness here can be reduced to the following refined
Strichartz estimate:

1
IS(8)uS(E)volluz (rxre) < € (42)7 1uollizge) I voll 2gez)

for supp g C {|&] ~ N1} and supp Vg C {|¢| ~ Nao}. Where
Ny < Nj.
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Applications

Nonlinear Schrodinger Equation, Continuous Case Proof

The proof follows simply enough in the continuous case.

By Parseval and Cauchy-Schwarz

IS(£)a0S(£)vo2; (s ey < Cluol3lvol [ sup, zlvw]

where

Arg = {& e R? | |&a] ~ No and [&]* + ¢ — &]* =7}
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Applications

Nonlinear Schrodinger Equation, Continuous Case Proof

The proof follows simply enough in the continuous case.

By Parseval and Cauchy-Schwarz

IS(£)a0S(£)vo2; (s ey < Cluol3lvol [ sup, zlvw]

where

Arg = {& e R? | |&a] ~ No and [&]* + ¢ — &]* =7}

Then L1(A-¢) S No/Ny.
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Applications

Nonlinear Schrodinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the
continuous case estimate:
If ug and vy are A-periodic functions for A > 1, then
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Applications

Nonlinear Schrodinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the
continuous case estimate:
If ug and vy are A-periodic functions for A > 1, then

In(£)SA(t)uoSx(t)voll 2 (rx(amyz) < CAN2) [ dolle2 Vo]l 2
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Applications

Nonlinear Schrodinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the
continuous case estimate:

If ug and vy are A-periodic functions for A > 1, then
In(£)SA(t)uoSx(t)voll 2 (rx(amyz) < CAN2) [ dolle2 Vo]l 2

For A\ > 1

1

In(£)Sx(£)uoSx(£)volli2 (exrzye) < € (3 + 42) 7 1olleell o]l
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Applications

Nonlinear Schrodinger Equation, Two Counting Lemmas

Lemma

Let C be a circle of radius R. If v is an arc on C of length
| < (%R)1/3, then ~ contains at most two lattice points.

Lemma

Let K be a convex domain in R?. If
N()\) = #{Z° N \K}

then, for A > 1

N(\) = M| K| 4+ O()).
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Applications

Nonlinear Schrodinger Equation

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the
simple detail that on T?,

g1+ecl

which implies that Fourier truncated solutions are time-periodic
and thus the time variable dual variable can be taken to be
discrete.
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Applications

Nonlinear Schrodinger Equation

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the
simple detail that on T?,

g1+ecl

which implies that Fourier truncated solutions are time-periodic
and thus the time variable dual variable can be taken to be
discrete.

For irrational tori these methods surprisingly don't work. The

methods used to prove B-D '14 and Bourgain-Guth 2011 need to
be applied to recover similar estimates.
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Applications

Nonlinear Schrodinger Equation

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the
simple detail that on T?,

g1+ecl

which implies that Fourier truncated solutions are time-periodic
and thus the time variable dual variable can be taken to be
discrete.

For irrational tori these methods surprisingly don't work. The
methods used to prove B-D '14 and Bourgain-Guth 2011 need to
be applied to recover similar estimates.

Definition

Let v, .., ag—1 € [1/2,1], we define a d—dimensional torus T¢ as
T =T x ;T x --- x ag_1T. We say that the torus is irrational if
the vector (1,1, ....,ag_1) is irrational, i.e.

m-(1,0aq,....,aq4—1) = 0 admits no solutions for m € Z¢.
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Applications

Nonlinear Schrodinger Equation

Theorem (Fan, Staffilani, Wang, W. (2016))

Let ¢1,p2 € L>(TS) be two initial data, n(t) be a time cut-off

function, suppn C [0, 1], assume suppop; C {k: k ~ N;}, i=1,2,
for some large N1 > N,, then

(1 N 2
1n(2)Sx(t)pa - n(t)Sx(t) @22, S N> T m P11l 2|2 12

(4)

.
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Applications

Nonlinear Schrodinger Equation

Theorem (Fan, Staffilani, Wang, W. (2016))

Let ¢1,p2 € L>(TS) be two initial data, n(t) be a time cut-off
function, suppn C [0, 1], assume suppop; C {k: k ~ N;}, i=1,2,
for some large N1 > N,, then

(1 N 2
1n(2)Sx(t)pa - n(t)Sx(t) @22, S N> T m P11l 2|2 12

(4)

For A > Nj, the same estimate follows (without the N5 loss) for
general compact manifolds due to Hani (2012).

W
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Applications

Nonlinear Schrodinger Equation

Theorem (Fan, Staffilani, Wang, W. (2016))

Given A > 1, Ny > Ny > 1. Let 1 be supported on P where

£| ~ 1, and let f, be supported on P where |&| ~ % Let

Q = {(t,x) € [0, NZ] x [0,(AN1)?]9}. For a finitely overlapping
covering of the ball B of caps {0}, |#| = -, we have the

ANq 7’
following estimate: for any small € > 0,

IEAER] 2

vg(WQ)

1/2

- D
Se (N2)"AY/2 ()\Jr /2\/1> L] > 1Bl |
j=1

1
6= 5=

where wq is a weight adapted to €.
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Applications: Key Tools

Let v < 1. For i = 1,2, define f; such that supp f; C B; N P, where
B; is a ball of radius v centered at (0,1,1) and By is a ball of
radius v centered at the origin.

Lemma
For a covering, {7;}, of supp f; with (v, v?)- “plates”. If R > v~—2,
then
[ IERERPwe, S Y [ 1Efn Bl P,
T1,72 )
Lemma

For a covering, {0;}, of supp f; with finitely overlapping balls of
radius v=2. If R > v—2, then

/|EflEf2|2WBR Svit Yy /|Ef1,elEfz,92|2WBR-

A
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NLSE
Long-Term Estimates

Strichartz estimates for arbitrarily long time shown to be better for
irrational tori due to Deng, Germain, Guth (2017).
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NLSE
Long-Term Estimates

Strichartz estimates for arbitrarily long time shown to be better for
irrational tori due to Deng, Germain, Guth (2017).

¢? Decoupling and conservation of mass imply
< NE =2\ T1/p
IS lle (o, mxrey S NT(L+ N2 2 ) TP F][ 2

if supp £ C [—N, N]¢.
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NLSE
Long-Term Estimates

Conjecture (Deng, Germain, Guth (2017))

Let d > 2. For generic (a1, ...,aq_1), for e > 0, one has

1
T\
1+<N9<p)>

d_d+2
1S(E) Il oo, 7jxmey S NE(L+ N2 7)) £l 2

for N >1, T > 1, where

0. e, 2(dj—2))’
d r2(d
o) =1 9(p-242), pe[G2p),
| 2d — 2, p € [6,00).
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NLSE
Some ldeas about Irrationality

||5(t)f||i4([0’T]de) = /Td/ |4 dt dx
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NLSE
Some ldeas about Irrationality

HS(t)f”i“([O,T]xTC’) - /Td/ |4 dt dx

: 2
/]I‘d/ ( f X + t”f” )) (Z §(§)e(_£ DX — t§2)>

3

)
= [, X 0aeeat) [ el +l? - 6] ~ ) de dx
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NLSE
Some ldeas about Irrationality

||5(t)f||i4([0’T]de) = /Td/ |4 dt dx

: 2
/]I‘d/ ( f X + t”f” )) (Z §(§)e(_£ DX — t§2)>

3

/ Z P 60,63, 54 / (t[Hng2 + H52H2 H£3H2 — Hf4”2]) dt dx

Ee, 60.65,6,(T)
_ q) X 1,82+:83,64 dX
/Td 2 %aess R Bl - 6= Tal
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NLSE
Some ldeas about Irrationality

We must control

1
1€2l% + 1182117 — 1€31* — [I€all?

= [k - (1, oz%, e a%_l)]_l
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NLSE
Some ldeas about Irrationality

We must control

1
1€2l% + 1182117 — 1€31* — [I€all?

— [k . (1, Oé%, cees a%_l)]_l
which can be done using a Diophantine condition such as

‘kl —+ Od%kz + -+ Oé?/_lkd‘
> 1
~ (ko] + -+ |kg])9 " og([ka| + - - - + |ka])?
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Thank you for listening
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