Applications of decoupling-type estimates to the cubic NLSE

Bobby Wilson (MIT)

MSRI, May 2017

Applications of decoupling-type estimates to the cubic NLSE

Ē

590

< □ ▶

Wilson

Background

We first consider a complex-valued function, $f : \mathbb{T} \to \mathbb{C}$, defined on the one-dimensional torus, $\mathbb{T} := \mathbb{R}/\mathbb{Z}$,

$$f(x) = \sum_{n \in \mathbb{Z}} a_n e(nx)$$

where $a_n \in \mathbb{C}$, $e(y) := e^{2\pi i y}$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Wilson

Background

We first consider a complex-valued function, $f : \mathbb{T} \to \mathbb{C}$, defined on the one-dimensional torus, $\mathbb{T} := \mathbb{R}/\mathbb{Z}$,

$$f(x) = \sum_{n \in \mathbb{Z}} a_n e(nx)$$

where $a_n \in \mathbb{C}$, $e(y) := e^{2\pi i y}$. Our first question is, for which $p \in [1, \infty]$ and in what sense does the following inequality hold

$$\|f\|_{L^p(\mathbb{T})} \leq C_p \left(\sum_{n\in\mathbb{Z}} |a_n|^2\right)^{1/2}$$

where $||f||_{L^{p}(\mathbb{T})} = ||f||_{p} := (\int_{\mathbb{T}} |f|^{p} dm)^{1/p}$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ ≧▶

Background

Similarly, let $\{I_k\}$ be a disjoint decomposition of \mathbb{Z} . Then we consider the inequality

$$||f||_{p} \leq C_{p} \left(\sum_{k} ||f_{l_{k}}||_{p}^{2}\right)^{1/2}$$

where $f_{I_k}(x) = \sum_{n \in I_k} a_n e(nx)$. We will refer to inequalities of this form as *decoupling inequalities*.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶

臣

Littlewood-Paley Theorem

For any decomposition, $\{I_k\}$, of \mathbb{Z} , define the square function

$$Sf(x) := \left(\sum_{k\in\mathbb{Z}_+} |f_{I_k}(x)|^2\right)^{1/2}$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

< □ ▶

Ę

Littlewood-Paley Theorem

For any decomposition, $\{I_k\}$, of \mathbb{Z} , define the square function

$$Sf(x) := \left(\sum_{k\in\mathbb{Z}_+} |f_{I_k}(x)|^2\right)^{1/2}$$

Let $\beta \geq \alpha > 1$ and define $\{m_n\}_{n\geq 1} \subset \mathbb{Z}_+$ satisfying $\alpha m_n \leq m_{n+1} \leq \beta m_n$. Let $m_0 = 0$.

Theorem (Littlewood-Paley (1937)) Let $1 . Consider <math>I_k = (-m_k, -m_{k-1}] \cup [m_{k-1}, m_k)$, for k = 1, 2, 3,Then

$$C_{\boldsymbol{p},\alpha,\beta}^{-1} \left\| Sf \right\|_{\boldsymbol{p}} \le \left\| f \right\|_{\boldsymbol{p}} \le C_{\boldsymbol{p},\alpha,\beta} \left\| Sf \right\|_{\boldsymbol{p}}$$

Example: $m_n := 2^n$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

∢ @ ▶ ∢ ≣ ▶

₹

Higher Dimensions

Consider $f : \mathbb{T}^d \to \mathbb{C}$ defined as

$$f(x) = \sum_{n \in \mathbb{Z}^d} a_n e(n \cdot x)$$

Theorem (L-P ('37))
Let
$$1 , $I_k := \{n \in \mathbb{Z}^d \mid 2^{k-1} \le ||n|| < 2^k\}$. Then
 $C_p^{-1} ||Sf||_p \le ||f||_p \le C_p ||Sf||_p$$$

Note: Rubio de Francia (1985) and Journe (1985) showed that for an arbitrary decomposition of \mathbb{Z}^d , $\{I_k\}$, 1 ,

$$\|f\|_p \le C_p \|Sf\|_p$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ē

Higher Dimensions

For d > 1, the geometry of the support of (a_n) becomes important. We will focus on (a_n) supported near hyper-surfaces:

Wilson Appli

Applications of decoupling-type estimates to the cubic NLSE

▲ □ ▶ ▲ 三 ▶ ▲

æ

E

< □ ▶

Fourier Analysis on \mathbb{R}^d

Let $P^{d-1} = \{(\xi_1, \xi_2, ..., \xi_{d-1}, \xi_1^2 + \xi_2^2 + \dots + \xi_{d-1}^2) \mid |\xi_i| \le 1\} \subset \mathbb{R}^d.$ For $a : P^{d-1} \to \mathbb{C}$, and for

$$Ea(x) := \widehat{ad\sigma} = \int_{P^{d-1}} a(\xi) e(x \cdot \xi) \, d\sigma(\xi)$$

we ask, for which *p*,

$$\|\mathsf{E} a\|_{L^p(\mathbb{R}^d)} \leq C_p \|a\|_{L^2(d\sigma)}$$

Applications of decoupling-type estimates to the cubic NLSE

< □ > < □ > < □ > < Ξ > < Ξ > = Ξ

5900

Wilson

Fourier Analysis on \mathbb{R}^d

Let $P^{d-1} = \{ (\xi_1, \xi_2, ..., \xi_{d-1}, \xi_1^2 + \xi_2^2 + \dots + \xi_{d-1}^2) \mid |\xi_i| \le 1 \} \subset \mathbb{R}^d.$ For $a : P^{d-1} \to \mathbb{C}$, and for

$$Ea(x) := \widehat{ad\sigma} = \int_{P^{d-1}} a(\xi) e(x \cdot \xi) \, d\sigma(\xi)$$

we ask, for which *p*,

$$\|\mathsf{E}\mathsf{a}\|_{L^p(\mathbb{R}^d)} \leq C_p \|\mathsf{a}\|_{L^2(d\sigma)}$$

Stein's Restriction conjecture: This holds for $p \ge 2\frac{d+1}{d-1}$. (As well as analogous inequalities for different norms on a)

Wilson Applications of decoupling-type estimates to the cubic NLSE

・ロト ・四ト ・ミト ・ミト

æ

Background on Restriction

Replacing $||a||_{L^2(d\sigma)}$ with $||a||_{L^q(d\sigma)}$ and considering more general surfaces we have

• Tomás-Stein Theorem: Conjecture true for q = 2, $p \ge 2\frac{d+1}{d-1}$.

<□> < □> < □> < □> E Wilson Applications of decoupling-type estimates to the cubic NLSE

< 🗆 🕨

Background on Restriction

Replacing $||a||_{L^2(d\sigma)}$ with $||a||_{L^q(d\sigma)}$ and considering more general surfaces we have

- Tomás-Stein Theorem: Conjecture true for q = 2, $p \ge 2\frac{d+1}{d-1}$.
- Wolff, Tao, Bennett, Carbery, Bourgain, Guth, Demeter among many others: various results in linear, bilinear, k-linear, multilinear from 1990s-Now.

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶

Discrete Case

Let $0 \le \delta \le 1$. Consider a set of points $\Lambda \subset P^{d-1}$ such that for each pair of points $x, y \in \Lambda$, $||x - y|| > \delta^{1/2}$. Then

$$\|\mathsf{E}a\|_{L^p(\mathbb{R}^d)} \leq C_p \|a\|_{L^2(d\sigma)}$$

is equivalent to

$$\left(\frac{1}{|B_R|}\int_{B_R}\left|\sum_{\xi\in\Lambda}a_\xi e(\xi\cdot x)\right|^p\right)^{1/p}\leq C_p\delta^{\frac{d}{2p}-\frac{d-1}{4}}\|a_\xi\|_{\ell^2(\Lambda)}$$

where $B_R \subset \mathbb{R}^d$ is a ball of radius $R \sim \delta^{-1/2}$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Ē

Discrete Case A Littlewood-Paley Formulation

- Let $\mathcal{N}_{\delta} = \{x \in \mathbb{R}^d \mid \operatorname{dist}(x, P^{d-1}) < \delta\}.$
- Let \mathcal{P}_{δ} be a finitely overlapping cover of \mathcal{N}_{δ} with curved regions of the form

$$\theta = \{ (\xi_1, ..., \xi_{d-1}, \eta + \xi_1^2 + \dots + \xi_{d-1}^2 \mid (\xi_1, ..., \xi_{d-1}) \in C_{\theta}, |\eta| \le 2\delta \},\$$

where $\{C_{\theta}\} = \{c + [-\frac{\delta^{1/2}}{2}, \frac{\delta^{1/2}}{2}]^{d-1}\}_c$ with $c \in \frac{\delta^{1/2}}{2} \mathbb{Z}^{d-1} \cap [-1, 1]^{d-1}$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

《曰》《卽》《臣》《臣》

æ

ℓ^2 Decoupling A Littlewood-Paley Formulation

Let $f : \mathbb{R}^d \to \mathbb{C}$, $f(\xi) = \int a(\xi)e(\xi \cdot x) dx$ and supp $a \subset \mathcal{N}_{\delta}$. If we define the square function as

$$Sf(x) := \left(\sum_{ heta} |f_{ heta}(x)|^2\right)^{1/2}$$

we wonder whether

$$\|f\|_{L^p(\mathbb{R}^d)} \leq C_{p,\delta} \|Sf\|_{L^p(\mathbb{R}^d)}$$

holds.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

ℓ^2 Decoupling A Littlewood-Paley Formulation

Let $f : \mathbb{R}^d \to \mathbb{C}$, $f(\xi) = \int a(\xi)e(\xi \cdot x) dx$ and supp $a \subset \mathcal{N}_{\delta}$. If we define the square function as

$$Sf(x) := \left(\sum_{ heta} |f_{ heta}(x)|^2\right)^{1/2}$$

we wonder whether

$$\|f\|_{L^p(\mathbb{R}^d)} \leq C_{p,\delta} \|Sf\|_{L^p(\mathbb{R}^d)}$$

holds. Particularly

$$\|f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{p} \delta^{-\varepsilon} \|Sf\|_{L^{p}(\mathbb{R}^{d})} \qquad p \in [2, 2\frac{d+1}{d-1}) \\ \|f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{p} \delta^{-\frac{d-1}{4} + \frac{d+1}{2p} - \varepsilon} \|Sf\|_{L^{p}(\mathbb{R}^{d})} \quad p \in [2\frac{d+1}{d-1}, \infty)$$

This is unresolved.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲ □ ▶ ▲ 三 ▶ ▲

臣

E

ℓ^2 Decoupling

However, we have the decoupling form of this result

Theorem (Bourgain-Demeter (2014))

Let S be a compact C^2 hypersurface in \mathbb{R}^d with positive definite second fundamental form. If supp $a \subset \mathcal{N}_{\delta}$ then for $p \geq 2$ and $\varepsilon > 0$

$$\|f\|_{p} \leq C_{p}\delta^{-\varepsilon} \left(1 + \delta^{-\frac{d-1}{4} + \frac{d+1}{2p}}\right) \left(\sum_{\theta \in \mathcal{P}_{\delta}} \|f_{\theta}\|_{p}^{2}\right)^{1/2}$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

<□> < □> < □> < □

< 🗆 🕨

Consider the Cauchy problem

$$\begin{cases} iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{T}^d, t \ge 0\\ u(x,0) = u_0(x) \in H^2(\mathbb{T}^d), \end{cases}$$
(1)

Applications of decoupling-type estimates to the cubic NLSE

Ð,

うくで

Consider the Cauchy problem

$$\begin{cases} iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{T}^d, t \ge 0 \\ u(x,0) = u_0(x) \in H^2(\mathbb{T}^d), \end{cases}$$
(1)

Definition

(1) is said to be locally well-posed in $H^{s}(\mathbb{T}^{d})$ if for any initial data $u_{0} \in H^{s}(\mathbb{T}^{d})$ there exists a time $T = T(||u_{0}||_{H^{s}})$ such that a unique solution to the initial value problem exists on the time interval [0, T]. We also require that $u(t, x) \in C_{t}^{0}H_{x}^{s}([0, T] \times \mathbb{T}^{d})$. If $T = \infty$ we say that a Cauchy problem is globally well-posed.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲ 伊 ▶ ▲ 三 ▶

Let S(t) be the solution operator for the linear Schrödinger equation: $iu_t + \Delta u = 0$.

> Wilson Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

₹

Let S(t) be the solution operator for the linear Schrödinger equation: $iu_t + \Delta u = 0$.

Note that for

$$u_0(x) = \sum_{\substack{\xi \in \mathbb{Z}^d \\ \|\xi\| \le N}} a(\xi) e(\xi \cdot x)$$

$$S(t)u_0(x) = \sum_{\substack{\xi \in \mathbb{Z}^d \\ \|\xi\| \le N}} a(\xi)e(\xi \cdot x - 2\pi \|\xi\|^2 t)$$

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

590

E

Wilson

For d = 2, global well-posedness for $s \ge 1$ (Bourgain 1993) can be reduced to showing

$$\|\eta(t)S(t)u_0\|_{L^4_{t,x}(\mathbb{R}\times\mathbb{T}^2)} \le CN^{\varepsilon}\|\hat{u}_0\|_{\ell^2}$$
(2)

for supp $\hat{u}_0 \subset [-N, N]^2$, $\eta \in C^{\infty}(\mathbb{R})$ compactly supported.

Wilson Applications of decoupling-type estimates to the cubic NLSE

<□> < □> < □> < □>

臣

590

< 🗆 🕨

For d = 2, global well-posedness for $s \ge 1$ (Bourgain 1993) can be reduced to showing

$$\|\eta(t)S(t)u_0\|_{L^4_{t,x}(\mathbb{R}\times\mathbb{T}^2)} \le CN^{\varepsilon}\|\hat{u}_0\|_{\ell^2}$$
(2)

for supp $\hat{u}_0 \subset [-N, N]^2$, $\eta \in C^{\infty}(\mathbb{R})$ compactly supported. Observation: The space-time Fourier support of $S(t)u_0$ lies in

$$P_N^2 = \{ (\xi_1, \xi_2, \xi_1^2 + \xi_2^2) \in \mathbb{Z}^3 \mid |\xi_i| \le N \}$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

<日 ▶ < □ ▶ < □ >

For d = 2, global well-posedness for $s \ge 1$ (Bourgain 1993) can be reduced to showing

$$\|\eta(t)S(t)u_0\|_{L^4_{t,x}(\mathbb{R}\times\mathbb{T}^2)} \le CN^{\varepsilon}\|\hat{u}_0\|_{\ell^2}$$
(2)

for supp $\hat{u}_0 \subset [-N, N]^2$, $\eta \in C^{\infty}(\mathbb{R})$ compactly supported. Observation: The space-time Fourier support of $S(t)u_0$ lies in

$$P_N^2 = \{ (\xi_1, \xi_2, \xi_1^2 + \xi_2^2) \in \mathbb{Z}^3 \mid |\xi_i| \le N \}$$

Thus, our problem reduces to showing

$$\left\|\sum_{\xi\in P_N^2}a_{\xi}e(\xi\cdot x)\right\|_{4}\leq CN^{\varepsilon}\|a_{\xi}\|_{\ell^2}$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□ ▶ ▲ 三 ▶ ▲

For s < 1 (in which case the Energy/Hamiltonian may not exist) there have been many results including

- Bourgain's High-Low Method (1993)
- Colliander, Keel, Staffilani, Takaoka and Tao, I-Method (2001-2002)

Wilson Applications of decoupling-type estimates to the cubic NLSE

- 4 回 🕨 🔺 星 🕨 - 4 星 🕨

臣

5900

< 🗆 🕨

For s < 1 (in which case the Energy/Hamiltonian may not exist) there have been many results including

- Bourgain's High-Low Method (1993)
- Colliander, Keel, Staffilani, Takaoka and Tao, I-Method (2001-2002)
- De Silva, Pavlovic, Staffilani, Tzirakis (2006) showed GWP for $s > \frac{2}{3}$ using a bilinear version of (2):

 $\|\eta(t)S(t)u_0S(t)v_0\|_{L^2_{t,x}(\mathbb{R}\times\mathbb{T}^2)} \le CN_2^{\varepsilon}\|\hat{u}_0\|_{\ell^2}\|\hat{v}_0\|_{\ell^2}$

for supp $\hat{u}_0 \subset \{\frac{1}{2}N_1 \le |\xi| \le \frac{3}{2}N_1\}$ and supp $\hat{v}_0 \subset \{\frac{1}{2}N_2 \le |\xi| \le \frac{3}{2}N_2\}$. Where $N_2 \ll N_1$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶

Applications Nonlinear Schrödinger Equation, Continuous Case

In 1998, Bourgain considered the following Cauchy problem

$$\begin{cases} iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{R}^2, t \ge 0\\ u(x,0) = u_0(x) \in H^s(\mathbb{R}^2), & s > 2/3 \end{cases}$$
(3)

Applications of decoupling-type estimates to the cubic NLSE

《曰》《卽》《言》《言》

æ

Applications Nonlinear Schrödinger Equation, Continuous Case

In 1998, Bourgain considered the following Cauchy problem

$$\begin{cases} iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{R}^2, t \ge 0\\ u(x,0) = u_0(x) \in H^s(\mathbb{R}^2), & s > 2/3 \end{cases}$$
(3)

Well-posedness here can be reduced to the following refined Strichartz estimate:

$$\|S(t)u_0S(t)v_0\|_{L^2_{t,x}(\mathbb{R}\times\mathbb{R}^2)} \leq C\left(\frac{N_2}{N_1}\right)^{\frac{1}{2}} \|u_0\|_{L^2(\mathbb{R}^2)} \|v_0\|_{L^2(\mathbb{R}^2)}$$

for supp $\hat{u}_0 \subset \{|\xi| \sim N_1\}$ and supp $\hat{v}_0 \subset \{|\xi| \sim N_2\}$. Where $N_2 < N_1$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Đ.

Applications Nonlinear Schrödinger Equation, Continuous Case Proof

The proof follows simply enough in the continuous case.

By Parseval and Cauchy-Schwarz

$$\|S(t)u_0S(t)v_0\|^2_{L^2_{t,x}(\mathbb{R}\times\mathbb{R}^2)} \leq C\|u_0\|^2_2\|v_0\|^2_2 \left|\sup_{\tau,\,|\xi|\sim N_1}\mathcal{L}^1(A_{\tau,\xi})\right|$$

where

$$A_{\tau,\xi} := \left\{ \xi_1 \in \mathbb{R}^2 \mid |\xi_1| \sim N_2 \text{ and } |\xi_1|^2 + |\xi - \xi_1|^2 = \tau \right\}$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□ ▶ ▲ 三 ▶ ▲

臣

Ē

590

< □

Applications Nonlinear Schrödinger Equation, Continuous Case Proof

The proof follows simply enough in the continuous case.

By Parseval and Cauchy-Schwarz

$$\|S(t)u_0S(t)v_0\|^2_{L^2_{t,x}(\mathbb{R}\times\mathbb{R}^2)} \leq C\|u_0\|^2_2\|v_0\|^2_2 \left|\sup_{\tau,\,|\xi|\sim N_1}\mathcal{L}^1(A_{\tau,\xi})\right|$$

where

$$A_{\tau,\xi} := \left\{ \xi_1 \in \mathbb{R}^2 \mid |\xi_1| \sim N_2 \text{ and } |\xi_1|^2 + |\xi - \xi_1|^2 = \tau \right\}$$

Then $\mathcal{L}^1(A_{ au,\xi}) \lesssim N_2/N_1$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

◆ □ ▶ ◆ 三 ▶ ◆

≣►

E

Applications Nonlinear Schrödinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the continuous case estimate:

If u_0 and v_0 are λ -periodic functions for $\lambda \geq 1$, then

Wilson Applications of decoupling-type estimates to the cubic NLSE

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

E

5900

< □ ▶

Applications Nonlinear Schrödinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the continuous case estimate:

If u_0 and v_0 are λ -periodic functions for $\lambda \geq 1$, then

 $\|\eta(t)S_{\lambda}(t)u_0S_{\lambda}(t)v_0\|_{L^2_{t,x}(\mathbb{R}\times(\lambda\mathbb{T})^2)} \leq C(\lambda N_2)^{\varepsilon}\|\hat{u}_0\|_{\ell^2}\|\hat{v}_0\|_{\ell^2}$

Wilson Applications of decoupling-type estimates to the cubic NLSE

▲□ ▶ ▲ 三 ▶ ▲

Applications Nonlinear Schrödinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the continuous case estimate:

If u_0 and v_0 are λ -periodic functions for $\lambda \geq 1$, then

$$\|\eta(t)S_{\lambda}(t)u_0S_{\lambda}(t)v_0\|_{L^2_{t,x}(\mathbb{R}\times(\lambda\mathbb{T})^2)} \leq C(\lambda N_2)^{\varepsilon}\|\hat{u}_0\|_{\ell^2}\|\hat{v}_0\|_{\ell^2}$$

For $\lambda \gg 1$

$$\|\eta(t)S_{\lambda}(t)u_{0}S_{\lambda}(t)v_{0}\|_{L^{2}_{t,x}(\mathbb{R}\times(\lambda\mathbb{T})^{2})} \leq C\left(\frac{1}{\lambda}+\frac{N_{2}}{N_{1}}\right)^{\frac{1}{2}}\|\hat{u}_{0}\|_{\ell^{2}}\|\hat{v}_{0}\|_{\ell^{2}}$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

<日 > < □ > < □ > < □ >

臣

5900

< 🗆 🕨

Applications Nonlinear Schrödinger Equation, Two Counting Lemmas

Lemma

Let C be a circle of radius R. If γ is an arc on C of length $|\gamma| < (\frac{3}{4}R)^{1/3}$, then γ contains at most two lattice points.

Lemma

Let K be a convex domain in \mathbb{R}^2 . If

$$N(\lambda) = \#\{\mathbb{Z}^2 \cap \lambda K\}$$

then, for $\lambda \gg 1$

$$N(\lambda) = \lambda^2 |K| + O(\lambda).$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

E

▲□▶ ▲□▶ ▲目▼

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the simple detail that on $\mathbb{T}^2,$

$$\xi_1^2 + \xi_2^2 \in \mathbb{Z}$$

which implies that Fourier truncated solutions are time-periodic and thus the time variable dual variable can be taken to be discrete.

Wilson Applications of decoupling-type estimates to the cubic NLSE

▲□ ▶ ▲ ■ ▶

э.

E

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the simple detail that on \mathbb{T}^2 ,

$$\xi_1^2 + \xi_2^2 \in \mathbb{Z}$$

which implies that Fourier truncated solutions are time-periodic and thus the time variable dual variable can be taken to be discrete.

For irrational tori these methods surprisingly don't work. The methods used to prove B-D '14 and Bourgain-Guth 2011 need to be applied to recover similar estimates.

▲□ ▶ ▲ 三 ▶ ▲

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the simple detail that on $\mathbb{T}^2,$

$$\xi_1^2 + \xi_2^2 \in \mathbb{Z}$$

which implies that Fourier truncated solutions are time-periodic and thus the time variable dual variable can be taken to be discrete.

For **irrational** tori these methods surprisingly don't work. The methods used to prove B-D '14 and Bourgain-Guth 2011 need to be applied to recover similar estimates.

Definition

Let $\alpha_1, ..., \alpha_{d-1} \in [1/2, 1]$, we define a *d*-dimensional torus \mathbb{T}^d as $\mathbb{T}^d = \mathbb{T} \times \alpha_1 \mathbb{T} \times \cdots \times \alpha_{d-1} \mathbb{T}$. We say that the torus is irrational if the vector $(1, \alpha_1, ..., \alpha_{d-1})$ is irrational, i.e. $m \cdot (1, \alpha_1, ..., \alpha_{d-1}) = 0$ admits no solutions for $m \in \mathbb{Z}^d$.

Wi

nar

Theorem (Fan, Staffilani, Wang, W. (2016))

Let $\phi_1, \phi_2 \in L^2(\mathbb{T}^d_{\lambda})$ be two initial data, $\eta(t)$ be a time cut-off function, $supp \eta \subset [0, 1]$, assume $supp \phi_i \subset \{k : k \sim N_i\}$, i = 1, 2, for some large $N_1 \geq N_2$, then

$$\|\eta(t)S_{\lambda}(t)\phi_{1}\cdot\eta(t)S_{\lambda}(t)\phi_{2}\|_{L^{2}_{x,t}} \lesssim N_{2}^{\varepsilon}\left(\frac{1}{\lambda}+\frac{N_{2}^{d-1}}{N_{1}}\right)^{\frac{1}{2}}\|\phi_{1}\|_{L^{2}}\|\phi_{2}\|_{L^{2}}$$
(4)

Wilson

Applications of decoupling-type estimates to the cubic NLSE

<日 → < □ > < □ > < □ >

< 🗆 🕨

Theorem (Fan, Staffilani, Wang, W. (2016))

Let $\phi_1, \phi_2 \in L^2(\mathbb{T}^d_{\lambda})$ be two initial data, $\eta(t)$ be a time cut-off function, $supp \eta \subset [0, 1]$, assume $supp \phi_i \subset \{k : k \sim N_i\}$, i = 1, 2, for some large $N_1 \geq N_2$, then

$$\|\eta(t)S_{\lambda}(t)\phi_{1}\cdot\eta(t)S_{\lambda}(t)\phi_{2}\|_{L^{2}_{x,t}} \lesssim N_{2}^{\varepsilon}\left(\frac{1}{\lambda}+\frac{N_{2}^{d-1}}{N_{1}}\right)^{\frac{1}{2}}\|\phi_{1}\|_{L^{2}}\|\phi_{2}\|_{L^{2}}$$
(4)

For $\lambda \ge N_1$, the same estimate follows (without the N_2^{ε} loss) for general compact manifolds due to Hani (2012).

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Theorem (Fan, Staffilani, Wang, W. (2016)) Given $\lambda \ge 1$, $N_1 \ge N_2 \ge 1$. Let f_1 be supported on P where $|\xi| \sim 1$, and let f_2 be supported on P where $|\xi| \sim \frac{N_2}{N_1}$. Let $\Omega = \{(t, x) \in [0, N_1^2] \times [0, (\lambda N_1)^2]^d\}$. For a finitely overlapping covering of the ball B of caps $\{\theta\}$, $|\theta| = \frac{1}{\lambda N_1}$, we have the following estimate: for any small $\varepsilon > 0$,

$$\begin{split} \|Ef_1 Ef_2\|_{L^2_{avg}(w_{\Omega})} \\ \lesssim_{\varepsilon} (N_2)^{\varepsilon} \lambda^{d/2} \left(\frac{1}{\lambda} + \frac{N_2^{d-1}}{N_1}\right)^{1/2} \prod_{j=1}^2 \left(\sum_{|\theta| = \frac{1}{\lambda N_1}} \|Ef_{j,\theta}\|_{L^4_{avg}(w_{\Omega})}^2\right)^{1/2}, \end{split}$$

where w_{Ω} is a weight adapted to Ω .

Wilson

Applications of decoupling-type estimates to the cubic NLSE

 \equiv \rightarrow

< 4 1 → <

 $\bullet \square \bullet$

Applications: Key Tools

Let v < 1. For i = 1, 2, define f_i such that supp $f_i \subset B_i \cap P$, where B_1 is a ball of radius v centered at (0, 1, 1) and B_2 is a ball of radius v centered at the origin.

Lemma

For a covering, $\{\tau_i\}$, of supp f_i with (v, v^2) - "plates". If $R > v^{-2}$, then

$$\int |Ef_1 Ef_2|^2 w_{B_R} \lesssim \sum_{\tau_1, \tau_2} \int |Ef_{1, \tau_1} Ef_{2, \tau_2}|^2 w_{B_R}.$$

Lemma

For a covering, $\{\theta_i\}$, of supp f_i with finitely overlapping balls of radius v^{-2} . If $R > v^{-2}$, then

$$\int |Ef_1 Ef_2|^2 w_{B_R} \lesssim v^{-1} \sum_{|\theta_i|=v^2} \int |Ef_{1,\theta_1} Ef_{2,\theta_2}|^2 w_{B_R}.$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

Strichartz estimates for arbitrarily long time shown to be better for irrational tori due to Deng, Germain, Guth (2017).

> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ Wilson Applications of decoupling-type estimates to the cubic NLSE

Strichartz estimates for arbitrarily long time shown to be better for irrational tori due to Deng, Germain, Guth (2017).

 ℓ^2 Decoupling and conservation of mass imply

$$\|S(t)f\|_{L^p_{t,x}([0,T] imes \mathbb{T}^d)} \lesssim N^{\varepsilon}(1+N^{rac{d}{2}-rac{d+2}{p}})T^{1/p}\|f\|_{L^2}$$

if supp $\hat{f} \subset [-N,N]^d$.

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲圖▶ ▲필▶ ▲필▶

Ē

NLSE Long-Term Estimates

Conjecture (Deng, Germain, Guth (2017))
Let
$$d \ge 2$$
. For generic $(\alpha_1, ..., \alpha_{d-1})$, for $\varepsilon > 0$, one has
 $\|S(t)f\|_{L^p([0,T]\times\mathbb{T}^d)} \lesssim N^{\varepsilon}(1+N^{\frac{d}{2}-\frac{d+2}{p}}) \left[1+\left(\frac{T}{N^{\theta(p)}}\right)^{\frac{1}{p}}\right] \|f\|_{L^2}$
for $N \ge 1$, $T \ge 1$, where
 $\theta(p) = \begin{cases} 0, & p \in [2, \frac{2(d+2)}{d}), \\ \frac{d}{2}\left(p-\frac{2(d+2)}{d}\right), & p \in [\frac{2(d+2)}{d}, 6), \\ 2d-2, & p \in [6,\infty). \end{cases}$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 - のへぐ

$$||S(t)f||_{L^{4}([0,T]\times\mathbb{T}^{d})}^{4} = \int_{\mathbb{T}^{d}}\int_{0}^{T}|S(t)f(x)|^{4} dt dx$$

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 - のへぐ

Wilson

$$\|S(t)f\|_{L^{4}([0,T]\times\mathbb{T}^{d})}^{4} = \int_{\mathbb{T}^{d}}\int_{0}^{T}|S(t)f(x)|^{4} dt dx$$

$$= \int_{\mathbb{T}^d} \int_0^T \left(\sum_{\xi} a(\xi) e(\xi \cdot x + t \|\xi\|^2) \right)^2 \left(\sum_{\xi} \bar{a}(\xi) e(-\xi \cdot x - t \|\xi\|^2) \right)^2$$
$$= \int_{\mathbb{T}^d} \sum \Phi_{\xi_1,\xi_2,\xi_3,\xi_4}(x) \int_0^T e(t[\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2]) \, dt \, dx$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 - のへぐ

$$\|S(t)f\|_{L^{4}([0,T]\times\mathbb{T}^{d})}^{4} = \int_{\mathbb{T}^{d}}\int_{0}^{T}|S(t)f(x)|^{4} dt dx$$

$$= \int_{\mathbb{T}^d} \int_0^T \left(\sum_{\xi} a(\xi) e(\xi \cdot x + t \|\xi\|^2) \right)^2 \left(\sum_{\xi} \bar{a}(\xi) e(-\xi \cdot x - t \|\xi\|^2) \right)^2$$
$$= \int_{\mathbb{T}^d} \sum \Phi_{\xi_1,\xi_2,\xi_3,\xi_4}(x) \int_0^T e(t[\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2]) \, dt \, dx$$

$$= \int_{\mathbb{T}^d} \sum \Phi_{\xi_1,\xi_2,\xi_3,\xi_4}(x) \frac{E_{\xi_1,\xi_2,\xi_3,\xi_4}(T)}{\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2} \, dx$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 - のへぐ

We must control

$$\frac{1}{\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2} = [k \cdot (1, \alpha_1^2, ..., \alpha_{d-1}^2)]^{-1}$$

▲□▶▲금▶▲콜▶▲콜▶ 콜 ∽९ペ
 Applications of decoupling-type estimates to the cubic NLSE

Wilson

We must control

$$\frac{1}{\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2} = [k \cdot (1, \alpha_1^2, ..., \alpha_{d-1}^2)]^{-1}$$

which can be done using a Diophantine condition such as

$$|k_{1} + \alpha_{1}^{2}k_{2} + \dots + \alpha_{d-1}^{2}k_{d}| \\ \gtrsim \frac{1}{(|k_{1}| + \dots + |k_{d}|)^{d-1}\log(|k_{1}| + \dots + |k_{d}|)^{2d}}$$

Wilson

Applications of decoupling-type estimates to the cubic NLSE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

æ

Thank you for listening

Wilson Applications of decoupling-type estimates to the cubic NLSE

Applications of decoupling type estimates to the cubic NLSE 18 May 2017 Bobby Wilson $H(\alpha) = \frac{1}{2} \int |\nabla u|^2 + \frac{1}{4} \int |u|^4$ Parabola 0=8×8'2 count lattice points in body which is not necessarily convex 1 Xo 10 Strichartz estimate for free $||\xi_1|^2 + ||\xi_2||^2 - ||\xi_3||^2$ $= \sum_{i=1}^{n} \pm K_{i}^{2}$ lose v-1 13/12+15212-15312 1 v2 v2