Applications of decoupling-type estimates to the cubic NLSE

Bobby Wilson (MIT)

MSRI, May 2017

Wilson Applications of decoupling-type estimates to the cubic NLSE

 \leftarrow \Box

◀ @ ▶ ◀ 듣 ▶ ◀ 듣

ŧ

 OQ

Background

We first consider a complex-valued function, $f : \mathbb{T} \to \mathbb{C}$, defined on the one-dimensional torus, $\mathbb{T} := \mathbb{R}/\mathbb{Z}$,

$$
f(x) = \sum_{n \in \mathbb{Z}} a_n e(nx)
$$

where $a_n \in \mathbb{C}$, $e(y) := e^{2\pi iy}$.

すロト (伊) (唐) (唐) 重 $2Q$ Wilson Applications of decoupling-type estimates to the cubic NLSE

Background

We first consider a complex-valued function, $f : \mathbb{T} \to \mathbb{C}$, defined on the one-dimensional torus, $\mathbb{T} := \mathbb{R}/\mathbb{Z}$,

$$
f(x) = \sum_{n \in \mathbb{Z}} a_n e(nx)
$$

where $a_n \in \mathbb{C}$, $e(y) := e^{2\pi iy}$. Our first question is, for which $p \in [1,\infty]$ and in what sense does the following inequality hold

$$
||f||_{L^p(\mathbb{T})} \leq C_p \left(\sum_{n \in \mathbb{Z}} |a_n|^2 \right)^{1/2}
$$

where $\|f\|_{L^p(\mathbb{T})} = \|f\|_p := \left(\int_{\mathbb{T}} |f|^p \, dm\right)^{1/p}$

→ 伊 ▶ → 君 ▶ Wilson Applications of decoupling-type estimates to the cubic NLSE

Background

Similarly, let $\{I_k\}$ be a disjoint decomposition of $\mathbb Z$. Then we consider the inequality

$$
||f||_p \leq C_p \left(\sum_k ||f_{l_k}||_p^2 \right)^{1/2}
$$

where $f_{I_k}(x) = \sum$ $n \in I_k$ ane(nx). We will refer to inequalities of this form as decoupling inequalities.

Wilson Applications of decoupling-type estimates to the cubic NLSE

(□) (@) (≥) (≥)

重

 OQ

Littlewood-Paley Theorem

For any decomposition, $\{I_k\}$, of $\mathbb Z$, define the square function

$$
Sf(x) := \left(\sum_{k\in\mathbb{Z}_+} |f_{l_k}(x)|^2\right)^{1/2}
$$

◀ □ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ È DQ Applications of decoupling-type estimates to the cubic NLSE

Littlewood-Paley Theorem

For any decomposition, $\{I_k\}$, of $\mathbb Z$, define the square function

$$
Sf(x):=\left(\sum_{k\in\mathbb{Z}_+}|f_{I_k}(x)|^2\right)^{1/2}
$$

Let $\beta \geq \alpha > 1$ and define $\{m_n\}_{n \geq 1} \subset \mathbb{Z}_+$ satisfying $\alpha m_n \leq m_{n+1} \leq \beta m_n$. Let $m_0 = 0$.

Theorem (Littlewood-Paley (1937)) Let $1 < p < \infty$. Consider $I_k = (-m_k, -m_{k-1}] \cup [m_{k-1}, m_k)$, for $k = 1, 2, 3, \dots$ Then

$$
C_{p,\alpha,\beta}^{-1}\left\|Sf\right\|_p\leq\|f\|_p\leq C_{p,\alpha,\beta}\|Sf\|_p
$$

Example: $m_n := 2^n$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

すま♪

∢ 冊

Higher Dimensions

Consider $f: \mathbb{T}^d \to \mathbb{C}$ defined as

$$
f(x) = \sum_{n \in \mathbb{Z}^d} a_n e(n \cdot x)
$$

Theorem (L-P ('37)) Let $1 < p < \infty$, $I_k := \{ n \in \mathbb{Z}^d \mid 2^{k-1} \leq ||n|| < 2^k \}$. Then C_p^{-1} $\mathbb{E}_{p}^{-1}\left\Vert Sf\right\Vert _{p}\leq\left\Vert f\right\Vert _{p}\leq C_{p}\Vert Sf\Vert _{p}$

Note: Rubio de Francia (1985) and Journe (1985) showed that for an arbitrary decomposition of \mathbb{Z}^d , $\{I_k\}$, $1 < p \le 2$,

$$
||f||_p \leq C_p ||Sf||_p
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

K 御 ▶ (重 ▶ (重

Higher Dimensions

For $d > 1$, the geometry of the support of (a_n) becomes important. We will focus on (a_n) supported near hyper-surfaces:

Wilson Applications of decoupling-type estimates to the cubic NLSE

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv \exists

€

 Ω

Fourier Analysis on \mathbb{R}^d

Let $P^{d-1} = \{(\xi_1, \xi_2, ..., \xi_{d-1}, \xi_1^2 + \xi_2^2)\}$ $2^2 + \cdots + \xi_d^2$ $\vert \xi_i \vert \leq 1$ } $\subset \mathbb{R}^d$. For $a: P^{d-1} \to \mathbb{C}$, and for

$$
Ea(x) := \widehat{ad\sigma} = \int_{P^{d-1}} a(\xi)e(x \cdot \xi) d\sigma(\xi)
$$

we ask, for which p ,

$$
||Ea||_{L^p(\mathbb{R}^d)} \leq C_p ||a||_{L^2(d\sigma)}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

Fourier Analysis on \mathbb{R}^d

Let $P^{d-1} = \{(\xi_1, \xi_2, ..., \xi_{d-1}, \xi_1^2 + \xi_2^2)\}$ $2^2 + \cdots + \xi_d^2$ $\vert \xi_i \vert \leq 1$ } $\subset \mathbb{R}^d$. For $a: P^{d-1} \to \mathbb{C}$, and for

$$
Ea(x) := \widehat{ad\sigma} = \int_{P^{d-1}} a(\xi)e(x \cdot \xi) d\sigma(\xi)
$$

we ask, for which p ,

$$
||Ea||_{L^p(\mathbb{R}^d)} \leq C_p ||a||_{L^2(d\sigma)}
$$

Stein's Restriction conjecture: This holds for $p \geq 2\frac{d+1}{d-1}$ $d-1$. (As well as analogous inequalities for different norms on a)

Wilson Applications of decoupling-type estimates to the cubic NLSE

(□) (@) (h) (h) (

重

 $2Q$

Background on Restriction

Replacing $\|a\|_{L^2(d\sigma)}$ with $\|a\|_{L^q(d\sigma)}$ and considering more general surfaces we have

Tomás-Stein Theorem: Conjecture true for $q=$ 2, $\rho \geq 2\frac{d+1}{d-1}$ $d-1$.

> \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv \exists \blacktriangleright 重 Wilson Applications of decoupling-type estimates to the cubic NLSE

 $2Q$

Background on Restriction

Replacing $\|a\|_{L^2(d\sigma)}$ with $\|a\|_{L^q(d\sigma)}$ and considering more general surfaces we have

- Tomás-Stein Theorem: Conjecture true for $q=$ 2, $\rho \geq 2\frac{d+1}{d-1}$ $d-1$.
- Wolff, Tao, Bennett, Carbery, Bourgain, Guth, Demeter among many others: various results in linear, bilinear, k-linear, multilinear from 1990s-Now.

 \blacktriangleleft \oplus \blacktriangleright \dashv Ξ \blacktriangleright \dashv Ξ \blacktriangleright

Discrete Case

Let $0\leq\delta\leq 1.$ Consider a set of points $\Lambda\subset P^{d-1}$ such that for each pair of points $x, y \in \Lambda$, $||x - y|| > \delta^{1/2}$. Then

$$
||Ea||_{L^p(\mathbb{R}^d)}\leq C_p||a||_{L^2(d\sigma)}
$$

is equivalent to

$$
\left(\frac{1}{|B_R|}\int_{B_R}\left|\sum_{\xi\in\Lambda}a_{\xi}e(\xi\cdot x)\right|^p\right)^{1/p}\leq C_p\delta^{\frac{d}{2p}-\frac{d-1}{4}}\|a_{\xi}\|_{\ell^2(\Lambda)}
$$

where $B_R\subset \mathbb{R}^d$ is a ball of radius $R\sim \delta^{-1/2}.$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◆ロ ▶ → 伊 ▶ → 君 ▶ → 君 ▶ →

重

 OQ

Discrete Case A Littlewood-Paley Formulation

- Let $\mathcal{N}_{\delta} = \{x \in \mathbb{R}^d \mid \text{dist}(x, P^{d-1}) < \delta\}.$
- Let \mathcal{P}_δ be a finitely overlapping cover of \mathcal{N}_δ with curved regions of the form

$$
\theta = \{(\xi_1, ..., \xi_{d-1}, \eta + \xi_1^2 + \cdots + \xi_{d-1}^2 \mid (\xi_1, ..., \xi_{d-1}) \in C_{\theta}, |\eta| \le 2\delta\},\
$$

where $\{\mathcal{C}_{\theta}\} = \{\mathsf{c} + [-\frac{\delta^{1/2}}{2}]$ $\frac{\delta^{1/2}}{2}, \frac{\delta^{1/2}}{2}$ $\left[\frac{1/2}{2}\right]^{d-1}\right\}$ c with $c \in \frac{\delta^{1/2}}{2}$ $\frac{1}{2} \mathbb{Z}^{d-1} \cap [-1,1]^{d-1}.$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

重

ℓ^2 Decoupling A Littlewood-Paley Formulation

Let $f:\mathbb{R}^d\to\mathbb{C}$, $f(\xi)=\int a(\xi)e(\xi\cdot x)\,dx$ and supp $a\subset\mathcal{N}_\delta.$ If we define the square function as

$$
Sf(x):=\left(\sum_{\theta}|f_{\theta}(x)|^2\right)^{1/2}
$$

we wonder whether

$$
||f||_{L^p(\mathbb{R}^d)} \leq C_{p,\delta}||Sf||_{L^p(\mathbb{R}^d)}
$$

holds.

 \leftarrow \Box K 伊 ▶ K 君 ▶ K 君 ▶ 重 $2Q$

Wilson Applications of decoupling-type estimates to the cubic NLSE

.

ℓ^2 Decoupling A Littlewood-Paley Formulation

Let $f:\mathbb{R}^d\to\mathbb{C}$, $f(\xi)=\int a(\xi)e(\xi\cdot x)\,dx$ and supp $a\subset\mathcal{N}_\delta.$ If we define the square function as

$$
Sf(x):=\left(\sum_{\theta}|f_{\theta}(x)|^2\right)^{1/2}
$$

we wonder whether

$$
||f||_{L^p(\mathbb{R}^d)} \leq C_{p,\delta}||Sf||_{L^p(\mathbb{R}^d)}
$$

holds. Particularly

$$
||f||_{L^{p}(\mathbb{R}^{d})} \leq C_{p} \delta^{-\varepsilon} ||Sf||_{L^{p}(\mathbb{R}^{d})} \qquad p \in [2, 2\frac{d+1}{d-1})
$$

$$
||f||_{L^{p}(\mathbb{R}^{d})} \leq C_{p} \delta^{-\frac{d-1}{4} + \frac{d+1}{2p} - \varepsilon} ||Sf||_{L^{p}(\mathbb{R}^{d})} \qquad p \in [2\frac{d+1}{d-1}, \infty)
$$

This is unresolved.

Wilson Applications of decoupling-type estimates to the cubic NLSE

(伊) (ミ) (ミ)

重

 OQ

.

ℓ^2 Decoupling

However, we have the decoupling form of this result

Theorem (Bourgain-Demeter (2014))

Let S be a compact C^2 hypersurface in \mathbb{R}^d with positive definite second fundamental form. If supp $\mathsf{a}\subset \mathcal{N}_\delta$ then for $\mathsf{p}\geq 2$ and $\varepsilon>0$

$$
\|f\|_p \leq C_p \delta^{-\varepsilon} \left(1 + \delta^{-\frac{d-1}{4} + \frac{d+1}{2p}}\right) \left(\sum_{\theta \in \mathcal{P}_{\delta}} \|f_{\theta}\|_p^2 \right)^{1/2}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ @ ▶ ◀ 듣 ▶ ◀ 듣

4 0 8

Consider the Cauchy problem

$$
\begin{cases}\n iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{T}^d, t \ge 0 \\
 u(x, 0) = u_0(x) \in H^2(\mathbb{T}^d),\n\end{cases}
$$
\n(1)

すロト (御) (書) (書) (書) Ε. $2Q$ Applications of decoupling-type estimates to the cubic NLSE

Consider the Cauchy problem

$$
\begin{cases}\n iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{T}^d, t \ge 0 \\
 u(x, 0) = u_0(x) \in H^2(\mathbb{T}^d),\n\end{cases}
$$
\n(1)

Definition

 (1) is said to be locally well-posed in $H^s(\mathbb{T}^d)$ if for any initial data $u_0 \in H^s(\mathbb{T}^d)$ there exists a time $\mathcal{T} = \mathcal{T}(\|u_0\|_{H^s})$ such that a unique solution to the initial value problem exists on the time interval [0, $\mathcal{T}]$. We also require that $u(t,x)\in \mathcal{C}^0_t$ $t^0 H_{\mathsf{x}}^{\mathsf{s}}$ $C^s_\times([0, T] \times \mathbb{T}^d).$ If $T = \infty$ we say that a Cauchy problem is globally well-posed.

Wilson Applications of decoupling-type estimates to the cubic NLSE

4 何 ▶ - 4 ∃ ▶

Let $S(t)$ be the solution operator for the linear Schrödinger equation: $iu_t + \Delta u = 0$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶

È

 OQ

Let $S(t)$ be the solution operator for the linear Schrödinger equation: $iu_t + \Delta u = 0$.

Note that for

$$
u_0(x) = \sum_{\substack{\xi \in \mathbb{Z}^d \\ \|\xi\| \leq N}} a(\xi) e(\xi \cdot x)
$$

$$
S(t)u_0(x) = \sum_{\substack{\xi \in \mathbb{Z}^d \\ \|\xi\| \leq N}} a(\xi)e(\xi \cdot x - 2\pi \|\xi\|^2 t)
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ ロ ▶ ◀ 御 ▶ ◀ 듣 ▶ ◀ 듣 ▶

重

 OQ

For $d = 2$, global well-posedness for $s \ge 1$ (Bourgain 1993) can be reduced to showing

$$
\|\eta(t)S(t)u_0\|_{L^4_{t,x}(\mathbb{R}\times\mathbb{T}^2)}\leq CN^{\varepsilon}\|\hat{u}_0\|_{\ell^2}\qquad\qquad(2)
$$

for supp $\hat{\mathbf{\mu}}_0 \subset [-N,N]^2, \ \eta \in C^\infty(\mathbb{R})$ compactly supported.

Wilson Applications of decoupling-type estimates to the cubic NLSE

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv \exists \blacktriangleright

重

 OQ

For $d = 2$, global well-posedness for $s \ge 1$ (Bourgain 1993) can be reduced to showing

$$
\|\eta(t)S(t)u_0\|_{L^4_{t,x}(\mathbb{R}\times\mathbb{T}^2)}\leq CN^{\varepsilon}\|\hat{u}_0\|_{\ell^2}\qquad\qquad(2)
$$

for supp $\hat{u}_0 \subset [-N,N]^2, \ \eta \in C^\infty(\mathbb{R})$ compactly supported. Observation: The space-time Fourier support of $S(t)u_0$ lies in

$$
P_N^2 = \{(\xi_1, \xi_2, \xi_1^2 + \xi_2^2) \in \mathbb{Z}^3 \mid |\xi_i| \leq N\}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

K 伊 ▶ K 君 ▶ K 君 ▶

4 0 8

For $d = 2$, global well-posedness for $s \ge 1$ (Bourgain 1993) can be reduced to showing

$$
\|\eta(t)S(t)u_0\|_{L^4_{t,x}(\mathbb{R}\times\mathbb{T}^2)}\leq CN^{\varepsilon}\|\hat{u}_0\|_{\ell^2}\qquad\qquad(2)
$$

for supp $\hat{u}_0 \subset [-N,N]^2, \ \eta \in C^\infty(\mathbb{R})$ compactly supported. Observation: The space-time Fourier support of $S(t)u_0$ lies in

$$
P_N^2 = \{(\xi_1, \xi_2, \xi_1^2 + \xi_2^2) \in \mathbb{Z}^3 \mid |\xi_i| \leq N\}
$$

Thus, our problem reduces to showing

$$
\left\|\sum_{\xi\in P_N^2}a_{\xi}e(\xi\cdot x)\right\|_4\leq CN^{\varepsilon}\|a_{\xi}\|_{\ell^2}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

∢ 伊 ▶ (全) → (全

For $s < 1$ (in which case the Energy/Hamiltonian may not exist) there have been many results including

- Bourgain's High-Low Method (1993)
- Colliander, Keel, Staffilani, Takaoka and Tao, I-Method (2001-2002)

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv \exists \blacktriangleright Wilson Applications of decoupling-type estimates to the cubic NLSE

唾

 $2Q$

4 0 8

For $s < 1$ (in which case the Energy/Hamiltonian may not exist) there have been many results including

- Bourgain's High-Low Method (1993)
- Colliander, Keel, Staffilani, Takaoka and Tao, I-Method (2001-2002)
- De Silva, Pavlovic, Staffilani, Tzirakis (2006) showed GWP for $s>\frac{2}{3}$ $\frac{2}{3}$ using a bilinear version of (2) :

 $\|\eta(t) S(t) u_0 S(t) v_0\|_{L^2_t}$ $\mathcal{C}_{t,x}(\mathbb{R}\times\mathbb{T}^2) \leq \mathsf{CN}_2^\varepsilon\|\hat{\mathsf{u}}_0\|_{\ell^2}\|\hat{\mathsf{v}}_0\|_{\ell^2}$

for supp $\hat{u}_0 \subset \{\frac{1}{2}N_1 \leq |\xi| \leq \frac{3}{2}N_1\}$ and supp $\hat{v}_0 \subset \{\frac{1}{2}N_2 \leq |\xi| \leq \frac{3}{2}N_2\}$. Where $N_2 \ll N_1$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

K 伊 ▶ K 君 ▶ K 君 ▶

Applications Nonlinear Schrödinger Equation, Continuous Case

In 1998, Bourgain considered the following Cauchy problem

$$
\begin{cases}\n iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{R}^2, t \ge 0 \\
 u(x, 0) = u_0(x) \in H^s(\mathbb{R}^2), & x > 2/3\n\end{cases}
$$
\n(3)

Applications of decoupling-type estimates to the cubic NLSE

◆ロ→ ◆*団***→ → ミ**→ → 草→

唐

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Applications Nonlinear Schrödinger Equation, Continuous Case

In 1998, Bourgain considered the following Cauchy problem

$$
\begin{cases}\n iu_t + \Delta u - |u|^2 u = 0, & x \in \mathbb{R}^2, t \ge 0 \\
 u(x, 0) = u_0(x) \in H^s(\mathbb{R}^2), & s > 2/3\n\end{cases}
$$
\n(3)

Well-posedness here can be reduced to the following refined Strichartz estimate:

$$
||S(t)u_0S(t)v_0||_{L^2_{t,x}(\mathbb{R}\times\mathbb{R}^2)}\leq C\left(\frac{N_2}{N_1}\right)^{\frac{1}{2}}\|u_0\|_{L^2(\mathbb{R}^2)}\|v_0\|_{L^2(\mathbb{R}^2)}
$$

for supp $\hat{u}_0\subset\{|\xi|\sim N_1\}$ and supp $\hat{v}_0\subset\{|\xi|\sim N_2\}.$ Where $N_2 < N_1$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ ...

目

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Applications Nonlinear Schrödinger Equation, Continuous Case Proof

The proof follows simply enough in the continuous case.

By Parseval and Cauchy-Schwarz

$$
||S(t)u_0S(t)v_0||^2_{L^2_{t,x}(\mathbb{R}\times\mathbb{R}^2)} \leq C||u_0||_2^2||v_0||_2^2\left[\sup_{\tau, |\xi|\sim N_1} \mathcal{L}^1(A_{\tau,\xi})\right]
$$

where

$$
\mathcal{A}_{\tau,\xi}:=\left\{\xi_1\in\mathbb{R}^2\,\,|\,\,|\xi_1|\sim \mathcal{N}_2\,\,\text{and}\,\,|\xi_1|^2+|\xi-\xi_1|^2=\tau\right\}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

重

 OQ

Applications Nonlinear Schrödinger Equation, Continuous Case Proof

The proof follows simply enough in the continuous case.

By Parseval and Cauchy-Schwarz

$$
||S(t)u_0S(t)v_0||^2_{L^2_{t,x}(\mathbb{R}\times\mathbb{R}^2)} \leq C||u_0||_2^2||v_0||_2^2\left[\sup_{\tau, |\xi|\sim N_1} \mathcal{L}^1(A_{\tau,\xi})\right]
$$

where

$$
A_{\tau,\xi} := \left\{ \xi_1 \in \mathbb{R}^2 \mid |\xi_1| \sim N_2 \text{ and } |\xi_1|^2 + |\xi - \xi_1|^2 = \tau \right\}
$$

Then $\mathcal{L}^1(A_{\tau,\xi}) \lesssim \mathcal{N}_2/\mathcal{N}_1$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

K 伊 ▶ K 君 ▶ K 君 ▶

重

 OQ

Applications Nonlinear Schrödinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the continuous case estimate:

If u_0 and v_0 are λ -periodic functions for $\lambda \geq 1$, then

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

重

 $2Q$

Applications Nonlinear Schrödinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the continuous case estimate:

If u_0 and v_0 are λ -periodic functions for $\lambda \geq 1$, then

 $\|\eta(t)S_\lambda(t)u_0S_\lambda(t)v_0\|_{L^2_t}$ $\mathcal{L}_{t,x}^2(\mathbb{R}\times (\lambda\mathbb{T})^2) \leq \, C\big(\lambda \mathcal{N}_2\big)^\varepsilon \|\hat{\mathcal{U}}_0\|_{\ell^2} \|\hat{\mathcal{V}}_0\|_{\ell^2},$

Wilson Applications of decoupling-type estimates to the cubic NLSE

∢ 伊 ≯ -∢ 重 ≯ -∢

€

Applications Nonlinear Schrödinger Equation, Approximation of Continuous Case

The results of De Silva, Pavlovic, Staffilani, Tzirakis recover the continuous case estimate:

If u_0 and v_0 are λ -periodic functions for $\lambda \geq 1$, then

$$
\|\eta(t)S_\lambda(t)u_0S_\lambda(t)v_0\|_{L^2_{t,x}(\mathbb{R}\times(\lambda\mathbb{T})^2)}\leq C(\lambda N_2)^\varepsilon\|\hat u_0\|_{\ell^2}\|\hat v_0\|_{\ell^2}
$$

For $\lambda \gg 1$

$$
\|\eta(t)S_\lambda(t)u_0S_\lambda(t)v_0\|_{L^2_{t,x}(\mathbb{R}\times(\lambda\mathbb{T})^2)}\leq C\left(\tfrac{1}{\lambda}+\tfrac{N_2}{N_1}\right)^{\frac{1}{2}}\|\hat{u}_0\|_{\ell^2}\|\hat{v}_0\|_{\ell^2}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

准

 $2Q$

4 0 8

Applications Nonlinear Schrödinger Equation, Two Counting Lemmas

Lemma

Let C be a circle of radius R. If γ is an arc on C of length $|\gamma| < (\frac{3}{4})$ $(\frac{3}{4}R)^{1/3}$, then γ contains at most two lattice points.

Lemma

Let K be a convex domain in \mathbb{R}^2 . If

$$
N(\lambda)=\#\{\mathbb{Z}^2\cap\lambda\mathsf{K}\}\
$$

then, for $\lambda \gg 1$

$$
N(\lambda)=\lambda^2|K|+O(\lambda).
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

Ε

◆ロト ◆伊ト ◆ミト

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the simple detail that on \mathbb{T}^2 ,

$$
\xi_1^2+\xi_2^2\in\mathbb{Z}
$$

which implies that Fourier truncated solutions are time-periodic and thus the time variable dual variable can be taken to be discrete.

Wilson Applications of decoupling-type estimates to the cubic NLSE

∢伊 ≯ ∢ 重 ≯

重

É

 $2Q$

 \leftarrow

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the simple detail that on \mathbb{T}^2 ,

$$
\xi_1^2+\xi_2^2\in\mathbb{Z}
$$

which implies that Fourier truncated solutions are time-periodic and thus the time variable dual variable can be taken to be discrete.

For irrational tori these methods surprisingly don't work. The methods used to prove B-D '14 and Bourgain-Guth 2011 need to be applied to recover similar estimates.

∢ 伊 ≯ (ミ) →

The methods of De Silva, Pavlovic, Staffilani, Tzirakis rely on the simple detail that on \mathbb{T}^2 ,

$$
\xi_1^2+\xi_2^2\in\mathbb{Z}
$$

which implies that Fourier truncated solutions are time-periodic and thus the time variable dual variable can be taken to be discrete.

For irrational tori these methods surprisingly don't work. The methods used to prove B-D '14 and Bourgain-Guth 2011 need to be applied to recover similar estimates.

Definition

Let $\alpha_1,..,\alpha_{d-1}\in[1/2,1]$, we define a d –dimensional torus \mathbb{T}^d as $\mathbb{T}^d = \mathbb{T} \times \alpha_1 \mathbb{T} \times \cdots \times \alpha_{d-1} \mathbb{T}.$ We say that the torus is irrational if the vector $(1,\alpha_1,....,\alpha_{d-1})$ is irrational, i.e. $m \cdot (1, \alpha_1,, \alpha_{d-1}) = 0$ admits no solutions for $m \in \mathbb{Z}^d$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

Theorem (Fan, Staffilani, Wang, W. (2016))

Let $\phi_1, \phi_2 \in L^2(\mathbb{T}_\lambda^d)$ $_{\lambda}^{\mathsf{d}})$ be two initial data, $\eta(t)$ be a time cut-off function, supp $\eta \subset [0,1]$, assume supp $\phi_i \subset \{k : k \sim N_i\}$, i = 1,2, for some large $N_1 \geq N_2$, then

$$
\|\eta(t)S_{\lambda}(t)\phi_1\cdot\eta(t)S_{\lambda}(t)\phi_2\|_{L^2_{x,t}} \lesssim N_2^{\varepsilon}\left(\frac{1}{\lambda}+\frac{N_2^{d-1}}{N_1}\right)^{\frac{1}{2}}\|\phi_1\|_{L^2}\|\phi_2\|_{L^2}
$$
\n(4)

Wilson Applications of decoupling-type estimates to the cubic NLSE

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv \exists \blacktriangleright

4 0 8

Theorem (Fan, Staffilani, Wang, W. (2016))

Let $\phi_1, \phi_2 \in L^2(\mathbb{T}_\lambda^d)$ $_{\lambda}^{\mathsf{d}})$ be two initial data, $\eta(t)$ be a time cut-off function, supp $\eta \subset [0,1]$, assume supp $\phi_i \subset \{k : k \sim N_i\}$, i = 1,2, for some large $N_1 \geq N_2$, then

$$
\|\eta(t)S_{\lambda}(t)\phi_1\cdot\eta(t)S_{\lambda}(t)\phi_2\|_{L^2_{x,t}} \lesssim N_2^{\varepsilon}\left(\frac{1}{\lambda}+\frac{N_2^{d-1}}{N_1}\right)^{\frac{1}{2}}\|\phi_1\|_{L^2}\|\phi_2\|_{L^2}
$$
\n(4)

For $\lambda \geq N_1$, the same estimate follows (without the N_2^{ε} $2^{\frac{1}{2}}$ loss) for general compact manifolds due to Hani (2012).

Wilson Applications of decoupling-type estimates to the cubic NLSE

→ 伊 ▶ → 唐 ▶ → 唐

Theorem (Fan, Staffilani, Wang, W. (2016))

Given $\lambda \geq 1$, $N_1 \geq N_2 \geq 1$. Let f_1 be supported on P where $|\xi|\sim 1$, and let f_2 be supported on P where $|\xi|\sim \frac{N_2}{N_1}$. Let $\Omega=\{(t,x)\in[0,N_1^2$ $\left\{ \left[2\right] \times\left[0,(\lambda N_{1})^{2}\right] ^{d}\right\}$. For a finitely overlapping covering of the ball B of caps $\{\theta\}$, $|\theta| = \frac{1}{\lambda h}$ $\frac{1}{\lambda N_1}$, we have the following estimate: for any small $\varepsilon > 0$,

$$
\|Ef_1Ef_2\|_{L^2_{avg}(w_{\Omega})}\n\lesssim_{\varepsilon} (N_2)^{\varepsilon} \lambda^{d/2} \left(\frac{1}{\lambda} + \frac{N_2^{d-1}}{N_1} \right)^{1/2} \prod_{j=1}^2 \left(\sum_{|\theta|=\frac{1}{\lambda N_1}} \|Ef_{j,\theta}\|_{L^4_{avg}(w_{\Omega})}^2 \right)^{1/2},
$$

where w_{Ω} is a weight adapted to Ω .

Wilson Applications of decoupling-type estimates to the cubic NLSE

◆ 句

Applications: Key Tools

Let $v < 1$. For $i = 1, 2$, define f_i such that supp $f_i \subset B_i \cap P$, where B_1 is a ball of radius v centered at $(0, 1, 1)$ and B_2 is a ball of radius v centered at the origin.

Lemma

For a covering, $\{\tau_i\}$, of supp f_i with (v, v^2) - "plates". If $R > v^{-2}$, then

$$
\int |Ef_1Ef_2|^2 w_{B_R} \lesssim \sum_{\tau_1,\tau_2} \int |Ef_{1,\tau_1}Ef_{2,\tau_2}|^2 w_{B_R}.
$$

Lemma

For a covering, $\{\theta_i\}$, of supp f_i with finitely overlapping balls of radius v^{-2} . If $R > v^{-2}$, then

$$
\int |Ef_1Ef_2|^2w_{B_R} \lesssim v^{-1} \sum_{|\theta_i|=v^2} \int |Ef_{1,\theta_1}Ef_{2,\theta_2}|^2w_{B_R}.
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

Strichartz estimates for arbitrarily long time shown to be better for irrational tori due to Deng, Germain, Guth (2017).

> K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ │ 할 │ ◆ 9 Q (º Wilson Applications of decoupling-type estimates to the cubic NLSE

Strichartz estimates for arbitrarily long time shown to be better for irrational tori due to Deng, Germain, Guth (2017).

 ℓ^2 Decoupling and conservation of mass imply

$$
||S(t)f||_{L^p_{t,x}([0,T]\times\mathbb{T}^d)} \lesssim N^{\varepsilon}(1+N^{\frac{d}{2}-\frac{d+2}{p}})T^{1/p}||f||_{L^2}
$$

if supp $\hat{f} \subset [-N,N]^d$.

Wilson Applications of decoupling-type estimates to the cubic NLSE

(□) (d) (d) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)

重

 $2Q$

NLSE Long-Term Estimates

Conjecture (Deng, German, Guth (2017))
\nLet
$$
d \ge 2
$$
. For generic $(\alpha_1, ..., \alpha_{d-1})$, for $\varepsilon > 0$, one has
\n
$$
||S(t)f||_{L^p([0, T] \times \mathbb{T}^d)} \lesssim N^{\varepsilon} (1 + N^{\frac{d}{2} - \frac{d+2}{p}}) \left[1 + \left(\frac{T}{N^{\theta(p)}}\right)^{\frac{1}{p}}\right] ||f||_{L^2}
$$
\nfor $N \ge 1$, $T \ge 1$, where
\n
$$
\theta(p) = \begin{cases}\n0, & p \in [2, \frac{2(d+2)}{d}), \\
\frac{d}{2}(p - \frac{2(d+2)}{d}), & p \in [\frac{2(d+2)}{d}, 6), \\
2d - 2, & p \in [6, \infty).\n\end{cases}
$$

K ロ K K 日 X K ミ X K ミ X H → C ミ → K Q Q Q → Wilson Applications of decoupling-type estimates to the cubic NLSE

$$
||S(t)f||^4_{L^4([0,T]\times\mathbb{T}^d)} = \int_{\mathbb{T}^d} \int_0^T |S(t)f(x)|^4 dt dx
$$

Kロト K個 K K ミト K ミト ニヨー の R (V) Wilson Applications of decoupling-type estimates to the cubic NLSE

$$
||S(t)f||^4_{L^4([0,T]\times\mathbb{T}^d)} = \int_{\mathbb{T}^d} \int_0^T |S(t)f(x)|^4 dt dx
$$

$$
= \int_{\mathbb{T}^d} \int_0^{\mathcal{T}} \left(\sum_{\xi} a(\xi) e(\xi \cdot x + t ||\xi||^2) \right)^2 \left(\sum_{\xi} \overline{a}(\xi) e(-\xi \cdot x - t ||\xi||^2) \right)^2
$$

=
$$
\int_{\mathbb{T}^d} \sum \Phi_{\xi_1, \xi_2, \xi_3, \xi_4}(x) \int_0^{\mathcal{T}} e(t ||\xi_1||^2 + ||\xi_2||^2 - ||\xi_3||^2 - ||\xi_4||^2) dt dx
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

Kロト K個 K K ミト K ミト ニヨー の R (V)

$$
||S(t)f||^4_{L^4([0,T]\times\mathbb{T}^d)} = \int_{\mathbb{T}^d} \int_0^T |S(t)f(x)|^4 dt dx
$$

$$
= \int_{\mathbb{T}^d} \int_0^T \left(\sum_{\xi} a(\xi) e(\xi \cdot x + t ||\xi||^2) \right)^2 \left(\sum_{\xi} \overline{a}(\xi) e(-\xi \cdot x - t ||\xi||^2) \right)^2
$$

=
$$
\int_{\mathbb{T}^d} \sum \Phi_{\xi_1, \xi_2, \xi_3, \xi_4}(x) \int_0^T e(t ||\xi_1||^2 + ||\xi_2||^2 - ||\xi_3||^2 - ||\xi_4||^2) dt dx
$$

$$
=\int_{\mathbb{T}^d} \sum \Phi_{\xi_1,\xi_2,\xi_3,\xi_4}(x) \frac{E_{\xi_1,\xi_2,\xi_3,\xi_4}(T)}{\|\xi_1\|^2+\|\xi_2\|^2-\|\xi_3\|^2-\|\xi_4\|^2}\,dx
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

Kロト K個 K K ミト K ミト ニヨー の R (V)

We must control

$$
\frac{1}{\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2} = [k \cdot (1, \alpha_1^2, ..., \alpha_{d-1}^2)]^{-1}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

We must control

$$
\frac{1}{\|\xi_1\|^2 + \|\xi_2\|^2 - \|\xi_3\|^2 - \|\xi_4\|^2} = [k \cdot (1, \alpha_1^2, ..., \alpha_{d-1}^2)]^{-1}
$$

which can be done using a Diophantine condition such as

$$
|k_1 + \alpha_1^2 k_2 + \dots + \alpha_{d-1}^2 k_d|
$$

\n
$$
\geq \frac{1}{(|k_1| + \dots + |k_d|)^{d-1} \log(|k_1| + \dots + |k_d|)^{2d}}
$$

Wilson Applications of decoupling-type estimates to the cubic NLSE

◆ロ→ ◆*団***→ → ミ**→ → 草→

重

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Thank you for listening

Wilson Applications of decoupling-type estimates to the cubic NLSE

Kロト K個 K K ミト K ミト ニヨー の R (V)

Applications of decoupling type estimates to the cubic NLSE 18 May 2017 Bobby Wilson $H(u) = \frac{1}{2} \int |\nabla u|^2 + \frac{1}{4} \int |u|^4$ Parabola $0 = 8 \times 8^{1/2}$ count lattice points in body which is not necessarily Convex f_{x} $1D$ Strichartz estimate for free $||\xi_1||^2 + ||\xi_2||^2 - ||\xi_3||^2$ $=\sum_{i} t^{2}$ lose v⁻¹ $|{\xi_1}'|^2 + |{\xi_2}'|^2 - |{\xi_3}'|^2$ $\frac{1}{\sqrt{2}}$ v 2 \Box