An improved bound on the Hausdorff dimension of Besicovitch sets in \mathbb{R}^3 : Joshua Zahl, 19 May 2017 joint work with Nets Katz

A Besicovitch set in \mathbb{R}^n is a compact set containing a line segment pointing in every direction.

Conjecture. Every Besicovitch set in \mathbb{R}^n must have Hausdorff dimension n.

Theorem. (Katz, Zahl) Every Kakeya set in \mathbb{R}^3 has H-dimension $\geq \frac{5}{2} + \epsilon_0$, where $\epsilon_0 > 0$.

Let $\delta > 0$. A tube is a δ -neighborhood of a unit line segment.

Definition. A set Π of tubes satisfies the Wolff axioms if (1) every tube in Π is in B(0,1), (2) for every rectangular prism R of dimensions (2,s,t), at most $\delta^{-2}st$ tubes from Π are contained in R.

Theorem. (Katz, Zahl) Let Π be a set of tubes that satisfy the Wolff axiom. If $|\Pi| = \delta^{-2}$, then $\delta^{\frac{1}{2}-\epsilon_0} \leq |\cup_{T \in \Pi} T|$.

For each of the tubes, let Y(T)T. If $\sum_{T\in\Pi}|Y(T)|>\lambda$ then

$$\lambda^c \delta^{\frac{1}{2} - \epsilon_0} \lesssim |\cup_{T \in \Pi} Y(T)| \tag{1}$$

Theorem. (Katz, Laba, Tao) Let Π be a set of δ^{-2} tubes pointing in δ -separated directions. Then,

$$|\cup_{T\in\Pi} T| \ge \delta^{\frac{1}{2}-\epsilon_1} \text{ or }$$
$$|\cup_{T\in\Pi} N_{s^{\frac{1}{2}}}(T)| \ge (\delta^{\frac{1}{2}})^{\frac{1}{2}-\epsilon_1}.$$

Heisenberg Group: $\mathbb{H} = \{(x, y, z) \in \mathbb{C}^3, Im(z) = Im(x\overline{y})\}$ If $a, b \in \mathbb{R}, c \in \mathbb{C}$, the line $(0, w, b) + \mathbb{C}(1, a, \overline{w}) \subset \mathbb{H}$.

Let $R = \mathbb{F}_p[t]/(t^2)$. If $a \in R, a = a_1 + a_2 t$ where $a_1, a_2 \in \mathbb{F}_p$.

$$\begin{split} X &= \{(x_1 + x_2 t, y_1 + y_2 t, z_1 + z_2 t) | z_2 = x_1 y_2 - y_1 x_2 \}.\\ \text{If } a, b, c, d \in \mathbb{F}_p, \ ad - bc = 1, \ \text{then} \ (a + \alpha at, b + \alpha bt) + R(c + \alpha ct, d + \alpha dt) X.\\ \Pi &: \mathbb{R}^3 \to \mathbb{F}_p^3, \ \Pi(x) = \mathbb{F}_p^3. \end{split}$$

Vague Theorem. If Π is a counter example to the above theorem, then it is either the Heisenberg or SL_2 example.

A regulus is a (quadric) surface in \mathbb{R}^3 that is doubly ruled by lines.

If L_1, L_2, L_3 are skew lines then the union of the lines incident to L_1, L_2, L_3 form a regulus.

 $H(T_0)$ is the "hairbrush of T_0 ", the set of tubes from Π that hit T_0 .

A regulus strip is a set of the form $N_{\delta}(Z) \cap N_{\delta^{\frac{1}{2}}}(L) \cap B(0,1)$, where $N_{\delta}(Z)$ is

a regulus and $N_{\delta^{\frac{1}{2}}}(L)$ is a line in Z.

If T is a SL_2 type set Π is a disjoint union of $\delta^{-\frac{1}{2}}$ sets each of which is contained in a regulus strip.

Lines in $\mathbb{R}^3 \leftrightarrow \text{points in } \mathbb{R}^4$. Tubes in $\mathbb{R}^3 \leftrightarrow \delta$ -balls in \mathbb{R}^4 If T is a SL_2 type counter example then image(T) in \mathbb{R}^4 is contained in $N_{\delta^{\frac{1}{2}}}(Z(p))$. P(a, b, c, d) = ad - bc - 1.