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Basic definitions and notations Different A2 and A∞ conditons

Definition

We say that a weight w satisfies the martingale A2 condition and write
w ∈ AD2 if

[w ]
2,D := sup

I∈D
〈w〉

I
〈w−1〉

I
<∞.

Definition

We say that a weight w satisfies the classical A2 condition and write
w ∈ Acl

2 if
[w ]cl2 = sup

I⊆[0,1]
〈w〉

I
〈w−1〉

I
<∞,

where the supremum runs over all intervals I ⊂ [0, 1].

K.D., P.I., S.P., A.V., S.T. (MSRI) Lower square function estimates May 19th, 2017 2 / 19



Basic definitions and notations Different A2 and A∞ conditons

Definition

For an interval I define the localized maximal function M
I
,

M
I
f (x) := 1

I
(x) sup

J⊆I : x∈J
|〈f 〉

J
|,

where the supremum runs over all intervals J ⊂ I containing x .
For an interval I ∈ D define also the martingale localized maximal function
MD

I
,

MDI f (x) = 1
I
(x) sup

J∈D(I ): x∈J

∣∣〈f 〉
J

∣∣

Definition

We say that a weight w satisfies the classical A∞ condition and write
w ∈ Acl

∞ if

[w ]∞,cl = sup
I⊆[0,1]

〈MIw〉I
〈w〉

I

<∞.

where MI f is the localized classical maximal function defined above.
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Basic definitions and notations Different A2 and A∞ conditons

frame title

Definition

We say that a weight w satisfies the semiclassical A∞ condition and write
w ∈ Ascl

∞ if

[w ]∞,scl = sup
I∈D

〈M
I
w〉

I

〈w〉
I

<∞,

where again MI f is the classical maximal function localized to I ∈ D.

Definition

We say that w ∈ AD∞ if

[w ]∞,D = sup
I∈D

〈MDI w〉
I

〈w〉
I

<∞,

where MDI f is the martingale maximal function localized to I ∈ D.
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Basic definitions and notations Known facts

Clearly from the previous definitions

[w ]∞,cl > [w ]∞,scl > [w ]∞,D

Proposition

For any atomic filtration

[w ]∞,D ≤ 4[w ]
2,D (1)
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Basic definitions and notations Main results

Theorem

‖f ‖
L2(w)

. [w ]1/2
2,D [w ]1/2∞,D‖Sf ‖L2(w)

≤ 2[w ]1
2,D‖Sf ‖L2(w)

. (2)

Theorem

Assumption w ∈ Acl
∞ is not sufficient for an estimate

‖f ‖
L2(w)

≤ C ([w ]∞,cl)‖Sf ‖L2(w)
.

Theorem

For the n-adic filtration

‖f ‖
L2(w)

. n[w ]1/2∞,scl‖Sf ‖L2(w)
.

Stronger result holds even for ‖Mf ‖Lp(w)
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Failure of concavity for a Bellman function

x2 − y

x2w(2− 1

vw
− log(vw)

2Q
)− 40Qwy
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Failure of concavity for a Bellman function
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Failure of concavity for a Bellman function
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Failure of concavity for a Bellman function
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Counter example for the A2 lower bound

We want to make the expression

∑

I∈D(I0)

αI
−α

I
+(〈w〉I+ − 〈w〉I−)2

αI
−〈w〉I+ + αI

+〈w〉I−
|I | =

∑

I∈D(I0)

(〈w〉I+ − 〈w〉I−)2( 〈w〉I+
αI
+

+
〈w〉I−
αI
−

) |I |

as large as possible.

Instead of choosing a filtration F and a weight w(x) we choose a filtration
F and successively find w by starting with its roughest approximation
w0 = E (w | F0) and that of v0 = E (w−1 | F0).
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Counter example for the A2 lower bound

The filtration F we choose has to be very unbalanced.

(w0, v0)

(w1
⋆, v1

⋆) (w1, v1)

(w2
⋆, v2

⋆) (w2, v2)

(w3
⋆, v3

⋆) (w3, v3)

(w4
⋆, v4

⋆) ···

(wn+1
⋆ , vn+1

⋆ ) (wn+1, vn+1)
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Counter example for the A2 lower bound
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Counter example for the A2 lower bound

We want a big jump on the left and a small jump on the right, with a
balanced denominator in the contribution

(w1 − w?
1 )2

w1
α0

+
w?
1
α?
0

|I0|

with w1
α0
∼ w?

1
α?
0

.

From the picture we see (for large w0) that w?
1 ∼ 1

w0
and w1 − w?

1 ∼ w0

and with α?0 ∼ 1
w2
0

.

Finally for one step
(w1 − w?

1 )2

w1
α1

+
w?
1
α?
1

|I0| & w0|I0|
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Counter example for the A2 lower bound

Lead by this, take Q0 � 1. Set on the diagonal
w0 = 〈w〉I0 = v0 = 〈w−1〉I0 =

√
Q0 we choose α?0 = 1/Q0.

This allows us to easily calculate that w1 ∼ (1 + 1/Q0)w0 and
v1 ∼ (1− 1/Q0)v0 so that we know how far we have gone down already
after this first step: Q1 ∼ (1− 1/Q2

0 )Q0

and after k steps, as long as we Qk ≥ Q0/2 we have Qk ∼ (1− c/Q2
0 )kQ0.

As long as we stay high enough the contributions do not change very much

uk |Ik | ≥ (1− c/Q2
0 )ku0|I0|

both happen on the order of Q2
0 times.
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Counter example for the A2 lower bound

Why is this weight in Acl
2 . Set X = (w , v) and γ(t) = 〈X 〉[t,1]

γ(a)

γ(b)

〈
X
〉

[a, b]
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Counter example for the A∞ lower bound No bounds in terms of A∞

Take w(x) = x on Ω = [0, 1] and the filtration

[0, 1]

[0, ε] [ε, 1]

[ε, 2ε] [2ε, 1]

[2ε, 3ε] [3ε, 1]

...

[(k− 2)ε, (k− 1)ε] [(k− 1)ε, 1]

[(k− 1)ε, kε] [kε, 1]

Take ε = 1/N, compute 〈w〉I±k and αI±k
. It follows for any N

∑

I∈D(I0)

αI
−α

I
+(〈w〉I+ − 〈w〉I−)2

αI
−〈w〉I+ + αI

+〈w〉I−
|I | &

N∑

k=1

(1− k/N)3

k
&

N∑

k=1

1− 3k/N

k
& lnN
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