On the failure of lower square function estimates in the non-homogeneous weighted setting

K. Domelevo, P. Ivanisvili, S. Petermichl, A. Volberg, S. Treil

MSRI, Berkeley,

May 19th, 2017

Definition

We say that a weight w satisfies the martingale A_2 condition and write $w \in A_2^D$ if

$$
[w]_{2,\mathcal{D}} := \sup_{I \in \mathcal{D}} \langle w \rangle_I \langle w^{-1} \rangle_I < \infty.
$$

Definition

We say that a weight w satisfies the classical A_2 condition and write $w \in A_2^{\text{cl}}$ $\frac{c_1}{2}$ if

$$
[w]_2^{\text{cl}} = \sup_{I \subseteq [0,1]} \langle w \rangle_I \langle w^{-1} \rangle_I < \infty,
$$

where the supremum runs over all intervals $I \subset [0,1]$.

Basic definitions and notations Different A_2 and A_{∞} conditons

Definition

For an interval *I* define the *localized* maximal function $M_{\textit{I}}$,

$$
M_{\mathcal{J}}f(x) := \mathbf{1}_{\mathcal{J}}(x) \sup_{J \subseteq \mathcal{I}: x \in J} |\langle f \rangle_{J}|,
$$

where the supremum runs over all intervals $J \subset I$ containing x.

For an interval $I \in \mathcal{D}$ define also the *martingale* localized maximal function M^D_i I ,

$$
M_I^{\mathcal{D}}f(x) = \mathbf{1}_I(x) \sup_{J \in \mathcal{D}(I): x \in J} |\langle f \rangle_J|
$$

Definition

We say that a weight w satisfies the classical A_{∞} condition and write $w \in A_{\infty}^{\mathsf{cl}}$ if

$$
[w]_{\infty, \text{cl}} = \sup_{I \subseteq [0,1]} \frac{\langle M_I w \rangle_I}{\langle w \rangle_I} < \infty.
$$

where $M_l f$ is the localized classical maximal function defined above. K.D., P.I., S.P., A.V., S.T. (MSRI) Lower square function estimates May 19th, 2017 3/19 Basic definitions and notations Different A_2 and A_{∞} conditons

frame title

Definition

We say that a weight w satisfies the semiclassical A_{∞} condition and write $w \in A_\infty^{\text{scl}}$ if

$$
[w]_{\infty,\mathrm{scl}} = \sup_{I \in \mathcal{D}} \frac{\langle M_{I} w \rangle_{I}}{\langle w \rangle_{I}} < \infty,
$$

where again $M_l f$ is the classical maximal function localized to $l \in \mathcal{D}$.

Definition

We say that $w \in A_\infty^\mathcal D$ if

$$
[w]_{\infty,\mathcal{D}} = \sup_{I \in \mathcal{D}} \frac{\langle M_I^{\mathcal{D}} w \rangle_I}{\langle w \rangle_I} < \infty,
$$

where M_I^Df is the martingale maximal function localized to $I\in\mathcal{D}.$

K.D., P.I., S.P., A.V., S.T. (MSRI) Lower square function estimates May 19th, 2017 4 / 19

Clearly from the previous definitions

$$
[w]_{\infty,\mathsf{cl}} \geqslant [w]_{\infty,\mathsf{scl}} \geqslant [w]_{\infty,\mathcal{D}}
$$

Proposition

For any atomic filtration

$$
[w]_{\infty,\mathcal{D}} \le 4[w]_{2,\mathcal{D}}
$$

(1)

Theorem

$$
||f||_{L^{2}(w)} \lesssim [w]_{2,\mathcal{D}}^{1/2}[w]_{\infty,\mathcal{D}}^{1/2}||Sf||_{L^{2}(w)} \leq 2[w]_{2,\mathcal{D}}^{1}||Sf||_{L^{2}(w)}.
$$
 (2)

Theorem

Assumption $w \in A_\infty^{\mathsf{cl}}$ is not sufficient for an estimate

$$
||f||_{L^{2}(w)} \leq C([w]_{\infty,cl})||Sf||_{L^{2}(w)}.
$$

Theorem

For the n-adic filtration

$$
||f||_{L^2(w)} \lesssim n[w]_{\infty,\mathrm{scl}}^{1/2} ||Sf||_{L^2(w)}.
$$

Stronger result holds even for $\|Mf\|_{L^p(w)}$

K.D., P.I., S.P., A.V., S.T. (MSRI) Lower square function estimates May 19th, 2017 6 / 19

Failure of concavity for a Bellman function

$$
x^2 - y
$$

 \sim

$$
x^2w(2-\frac{1}{vw}-\frac{log(vw)}{2Q})-40Qwy
$$

Failure of concavity for a Bellman function

We want to make the expression

$$
\sum_{I \in \mathcal{D}(I_0)} \frac{\alpha'_{-} \alpha'_{+} (\langle w \rangle_{I_{+}} - \langle w \rangle_{I_{-}})^2}{\alpha'_{-} \langle w \rangle_{I_{+}} + \alpha'_{+} \langle w \rangle_{I_{-}}}|I| = \sum_{I \in \mathcal{D}(I_0)} \frac{(\langle w \rangle_{I_{+}} - \langle w \rangle_{I_{-}})^2}{\left(\frac{\langle w \rangle_{I_{+}}}{\alpha'_{+}} + \frac{\langle w \rangle_{I_{-}}}{\alpha'_{-}}\right)}|I|
$$

as large as possible.

Instead of choosing a filtration F and a weight $w(x)$ we choose a filtration F and successively find w by starting with its roughest approximation $w_0 = E(w | F_0)$ and that of $v_0 = E(w^{-1} | F_0)$.

The filtration F we choose has to be very unbalanced.

We want a big jump on the left and a small jump on the right, with a balanced denominator in the contribution

$$
\frac{(w_1-w_1^{\star})^2}{\frac{w_1}{\alpha_0}+\frac{w_1^{\star}}{\alpha_0^{\star}}}|I_0|
$$

with $\frac{w_1}{\alpha_0} \sim$ w_1^{\star} $\overline{\alpha_0^{\star}}$ 0 .

From the picture we see (for large w_0) that w_1^* $\hat{i} \sim$ 1 $\frac{1}{w_0}$ and $w_1 - w_1^\star$ $y_1^{\star} \sim w_0$ and with α_0^{\star} $\hat{0} \sim$ 1 $\overline{w_0^2}$.

Finally for one step

$$
\frac{(w_1 - w_1^{\star})^2}{\frac{w_1}{\alpha_1} + \frac{w_1^{\star}}{\alpha_1^{\star}}} |I_0| \gtrsim w_0 |I_0|
$$

Lead by this, take $Q_0 \gg 1$. Set on the diagonal $w_0 = \langle w \rangle_{I_0} = v_0 = \langle w^{-1} \rangle$ $\rangle_{I_0} =$ √ $\overline{\mathsf{Q}_{0}}$ we choose $\alpha_{\mathsf{0}}^{\star}$ $_0^\star = 1/Q_0$. This allows us to easily calculate that $w_1 \sim (1+1/Q_0) w_0$ and $v_1 \sim (1-1/Q_0)v_0$ so that we know how far we have gone down already after this first step: $\,Q_{1} \sim (1 - 1/Q_{0}^{2})Q_{0}^{2}$ and after k steps, as long as we $Q_k \geq Q_0/2$ we have $Q_k \sim (1 - c/Q_0^2)^k Q_0.$ As long as we stay high enough the contributions do not change very much

$$
u_k|I_k| \geq (1 - c/Q_0^2)^k u_0|I_0|
$$

both happen on the order of Q_0^2 times.

Why is this weight in A_2^{cl} $_2^{\mathsf{cl}}$. Set $X = (w,v)$ and $\gamma(t) = \langle X \rangle_{[t,1]}$

Counter example for the A_{∞} lower bound No bounds in terms of A_{∞}

Take $w(x) = x$ on $\Omega = [0, 1]$ and the filtration

Take $\varepsilon = 1/N$, compute $\left\langle w\right\rangle_{I_{k}^{\pm}}$ and $\alpha_{I_{k}^{\pm}}$. It follows for any N

$$
\sum_{I \in \mathcal{D}(I_0)} \frac{\alpha_{-}^I \alpha_{+}^I (\langle w \rangle_{I_{+}} - \langle w \rangle_{I_{-}})^2}{\alpha_{-}^I \langle w \rangle_{I_{+}} + \alpha_{+}^I \langle w \rangle_{I_{-}}}|I| \gtrsim \sum_{k=1}^N \frac{(1 - k/N)^3}{k} \gtrsim \sum_{k=1}^N \frac{1 - 3k/N}{k} \gtrsim \ln N
$$

\nK.D., P.I., S.P., A.V., S.T. (MSRI)
\nLower square function estimates
\nMay 19th, 2017 19 / 19