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Decouplings

Let (fj)
N
j=1 be N elements of a Banach space X . The triangle

inequality

‖
N∑

j=1

fj‖X ≤
N∑

j=1

‖fj‖X

is universal, it does not incorporate any possible cancellations
between the fj . It leads to

‖
N∑

j=1

fj‖X ≤ N
1
2 (

N∑

j=1

‖fj‖2X )1/2.

But if X is a Hilbert space (think X = L2(Tn)) and if fj ∈ X , j ∈ J
are pairwise orthogonal (think fj(x) = e(x · j)) then we have

l2 decoupling ‖
∑

j

fj‖X ≤ (
∑

j

‖fj‖2X )1/2

lp decoupling ‖
∑

j∈J
fj‖X ≤ |J|

1
2
− 1

p (
∑

j∈J
‖fj‖pX )1/p
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Motivated in part by investigations by Thomas Wolff from late
1990s, Bourgain and I have developed a decoupling theory for Lp

spaces. In a nutshell, our theorems go as follows:

Theorem (Abstract decoupling theorem)

Let f :M→ C be a function on some compact manifoldM in
Rn, with natural measure σ. Partition the manifold into caps τ of
size δ (with some variations forced by curvature) and let fτ = f 1τ
be the restriction of f to τ . Then there is a critical index pc > 2
and some q ≥ 2 (both depending on the manifold) so that we have
an l2 (or sometimes just the analogous lp) decoupling

‖f̂dσ‖Lp(Bδ−q ) .ε δ
−ε(

∑

τ :δ−cap
‖̂fτdσ‖2Lp(Bδ−q )

)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc .
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Most of the applications of our abstract decoupling theorem for
estimating exponential sums rely on the very simple observation
that for each ξ ∈ Rn the Fourier transform of the Dirac delta
distribution

δξ(η) :=

{
1, η = ξ

0, η 6= ξ

is an exponential
δ̂ξ(x) = e(x · ξ)
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Bourgain’s observation (2011): To get from...

Theorem (Abstract decoupling theorem)

‖f̂dσ‖Lp(Bδ−q ) .ε δ
−ε(

∑

τ :δ−cap
‖̂fτdσ‖2Lp(Bδ−q )

)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc .

...to the exponential sum estimate

Theorem (Discrete decoupling)

For each cap τ let ξτ ∈ τ and aτ ∈ C. Then

|Bδ−q |−1/p‖
∑

τ

aτe(ξτ · x)‖Lp(Bδ−q ) .ε δ
−ε(

∑

τ

|aτ |2)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc ,

apply the decoupling to (a smooth approximation of)
f (ξ) =

∑
τ aτδξτ
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Key ingredient: Multilinear Kakeya (a decoupling in disguise)

Theorem (Bennetr, Carbery, Tao, 2006)

Consider n families Tj consisting of R × R1/2 × . . .× R1/2 tubes
T ⊂ B4R in Rn having the following property

Transversality: The direction of the long axis of T ∈ Tj is in a
small neighborhood of ej = (0, . . . , 1, . . . , 0)

Then we have the following inequality (�
∫

denotes the average)

�
∫

B4R

|
n∏

j=1

Fj |
1
2n

2n
n−1 .ε R

ε




n∏

j=1

| �
∫

B4R

Fj |
1
2n




2n
n−1

(1)

for all functions Fj of the form

Fj =
∑

T∈Tj
cT1T .
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Some examples with sharp decoupling theory

• Hypersurfaces in Rn with nonzero Gaussian curvature
(pc = 2(n+1)

n−1 ). Many applications: Optimal Strichartz estimates
for Schrödinger equation on both rational and irrational tori in all
dimensions, improved Lp estimates for the eigenfunctions of the
Laplacian on the torus, etc

• The cone (zero Gaussian curvature) in Rn (pc = 2n
n−2). Many

applications: progress on Sogge’s “local smoothing conjecture for
the wave equation”, etc

• (Bourgain) Two dimensional surfaces in R4 (pc = 6).
Application: Bourgain used this to improve the estimate in the
Lindelöf hypothesis for the growth of Riemann zeta

• (with Bourgain and Guth) Curves with torsion in Rn

(pc = n(n + 1)). Application: Vinogradov’s Mean Value Thm.

• (with Bourgain and Guo) Surfaces in R9 (pc = 20).
Application: Parsell-Vinogradov systems
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Some recent developments by others

1. Fan, Staffilani, Wang and Wilson obtained a new proof of the
decoupling theorem for the paraboloid in R3 that does not make
use of trilinearity.
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2. Du, Guth and Li combined the polynomial method with sharp
decouplings for the parabola to prove

Theorem (Improved bilinear Strichartz estimate in R2)

Let I1, I2 be two separated intervals in [−1, 1] and let fi : Ii → C.
Let σ be the standard measure on the parabola. Let S1, . . . ,SN be
(dyadic) squares with side length

√
R inside [−R,R]2 such that

∫

Sj

|f̂idσ|6 ∼ Ci , i = 1, 2

for each Sj . Then

‖|f̂1dσf̂2dσ|
1
2 ‖L6(S1∪...SN) . N−

1
6Rε(‖f1‖2‖f2‖2)

1
2

Note the N−
1
6 gain over the classical (unrestricted) estimate.
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Many questions are still left open, about decouplings on curves, on
the cone, manifolds of intermediate co-dimension, with further
potential applications to number theory.

Question

Can one make progress on the conjectured estimate

‖
N∑

n=1

ane(nx + n3y)‖Lpdx,dy ([0,1]2) . Nε‖an‖l2 , 2 ≤ p ≤ 8

using decouplings?

If yes, it would have to involve a very subtle/novel argument, for
the following reason.
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C1 = {(t, t2)}
C2 = {(t, φ(t) := t3) : t ∼ 1} : Note that φ′′, φ′′′ ∼ 1

We know that for both C1,C2 the following l2 decoupling holds

‖f̂dσCi
‖Lp(Bδ−2 ) .ε δ

−ε(
∑

τ⊂Ci :δ−arc
‖f̂τdσCi

‖2Lp(Bδ−2 )
)1/2,

within the range 2 ≤ p ≤ 6. This range is sharp both Ci :

‖f̂dσCi
‖Lp(B1) .ε δ

−ε(
∑

τ⊂Ci :δ−arc
‖f̂τdσCi

‖2Lp(R2))
1/2

is false for p > 6, even when R2 is placed on the right. (test with
f ≡ 1.)
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Question

Is it true that for each ∼ 1-separated set Γ with ∼ N points on

{(x , x3) : 1 ≤ x ≤ N}

we have

|{(λ1, . . . , λ8) ∈ Γ8 : λ1 + . . .+ λ4 = λ5 + . . .+ λ8}|| .ε N
4+ε?
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Let

EIg(x1, . . . , xn) = ĝIdσ(x1, . . . , xn) =

∫

I
g(t)e(tx1 + . . .+ tnxn)dt

The next question is about lp(Lp) decoupling at spatial scale N2.

Question

What is the largest p = pn for which we have lp(Lp) decoupling

‖E[0,1]g‖Lp(BN2 ) .ε N
1
2
− 1

p
+ε(

∑

|I |=N−1

‖EIg‖pLp(BN2 )
)1/p.

If one integrates over larger balls BNn then Bourgain-D-Guth
proved the above holds for p as large as n(n + 1).
This is connected with open questions about the size of

∫

Tn−1

∫ 1
Nα

0
|
∑

k∼N
e(kx1 + . . .+ knxn)|pdx1...dxn, 0 < α < 1

Ciprian Demeter, Indiana University Recent progress on decouplings



Question

What is the largest p = pn for which we have

‖E[0,1]g‖Lp(BN2 ) .ε N
1
2
− 1

p
+ε(

∑

|I |=N−1

‖EIg‖pLp(BN2 )
)1/p.

We know that pn is nondecreasing, but also bounded from above
(pn ≤ 22).

We also know p2 = 6 (standard linear decoupling for the parabola)

Using bilinear methods one can prove p3 ≥ 8 and p4 ≥ 12.

I will next show how to use trilinear arguments to prove that
p5 ≥ 14.
None of these lower bounds is known to be sharp.
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For two symmetric matrices A1,A2 ∈ M3(R) consider the
quadratic forms

Qi (r , s, t) = [r , s, t]Ai [r , s, t]T

and the associated three dimensional quadratic surface in R5

SQ1,Q2 := {(r , s, t,Q1(r , s, t),Q2(r , s, t)) : (r , s, t) ∈ [0, 1]3}.

Theorem (D,Guo,Shi, to appear in Revista)

Assume that for each nonzero vector (u, v ,w) ∈ R3, the following
curvature condition holds: the determinant

P(r , s, t) := det




∂Q1
∂r

∂Q1
∂s

∂Q1
∂t

∂Q2
∂r

∂Q2
∂s

∂Q2
∂t

u v w




is not the zero polynomial, when regarded as a function of r , s, t.
Then there is an lp(Lp) decoupling for 2 ≤ p ≤ 14

3 . (sharp range)
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• This is a decoupling on (spatial) balls BN2 into (frequency) cubes
with side length N−1.

• Restriction theorems for 3 dimensional manifolds in R5 have
been established under various assumptions by Christ (PhD thesis),
De Carli and Iosevich (1998)...

• Our curvature condition is very general, in fact it may be also (at
least very close to being) necessary in order to have the range
2 ≤ p ≤ 14

3 .

• The very symmetric manifold

{(r , s, t, r2 + s2 + t2, rs + rt + st) : (r , s, t) ∈ [0, 1]3}

fails to satisfy our curvature condition. We could prove that there
is no lp decoupling for p > 4.
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The main new difficulties associated with our theorem (compared
to previous decoupling results) are
• Identifying the “correct” notion of curvature

• Linear algebra associated with checking Brascamp-Lieb-type
transversality conditions.

• Subtle analytic issues associated with cylindrical decoupling
needed to address the complexity of the geometry of our
manifolds.

• Lower dimensional contribution in the Bourgain-Guth iteration
may come from a non planar 2-variety in R3 (the zero set of
P(r , s, t)). We use an approximation argument/induction on scales
à la Seeger-Pramanik, Bourgain-D. which most closely resembles a
very recent argument of Oh. The point is to make quantitative use
of the fact that 2-varieties are locally close to planes.
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Back to the original problem, i.e proving that we have an lp(Lp)
decoupling at spatial scale N2

‖E[0,1]g‖Lp(BN2 ) .ε N
1
2
( 1
2
− 1

p
)+ε(

∑

|I |=N−1

‖EIg‖pLp(BN2 )
)1/p

for 2 ≤ p ≤ 14 for the moment curve (t, t2, t3, t4, t5).

The idea is to first get the L14 estimate for the trilinear term. Note
that with

γ5,I = {(t, t2, t3, t4, t5) : t ∈ I}
we have (Ii separated intervals in [0, 1]) that

γ5,I1 + γ5,I2 + γ5,I3

is a subset of the manifold

S := (r , s, t,
r4

6
− r2s +

4rt

3
+

s2

2
,
r5

6
− 5r3s

6
+

5r2t

6
+

5st

6
)

via Newton’s identities.
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S := (r , s, t,Q1 :=
r4

6
−r2s+

4rt

3
+
s2

2
,Q2 :=

r5

6
−5r3s

6
+

5r2t

6
+

5st

6
)

While the entries Q1 and Q2 are not quadratic (as in our theorem),
we can use Taylor’s formula and induction on scales à la
Seeger-Pramanik to reduce matters to our theorem.
Our curvature condition turns out to be good enough.

This argument gives a trilinear decoupling for our moment curve
via the key formula

14 =
14

3
× 3

The passage to a linear decoupling is done via a (slightly less
standard) Bourgain-Guth type iteration.
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Other questions that I would love to see solved (hopefully making
use of, or drawing inpiration from decouplings) until we meet again
at MSRI are

• The restriction conjecture (at least in R3, at least modulo
Kakeya-type estimates)

• The L4 square function estimate for the cone in R3
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