Recent progress on decouplings

Ciprian Demeter, Indiana University

MSRI, May 2017

Ciprian Demeter, Indiana University Recent progress on decouplings

к □ ▶ к 倒 ▶ к 둘 ▶ к 둘 ▶

君

 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Decouplings

Let $(f_j)_{j=1}^N$ be N elements of a Banach space $X.$ The triangle inequality

$$
\|\sum_{j=1}^N f_j\|_X \leq \sum_{j=1}^N \|f_j\|_X
$$

is universal, it does not incorporate any possible cancellations between the f_j . It leads to

$$
\|\sum_{j=1}^N f_j\|_X \leq N^{\frac{1}{2}}(\sum_{j=1}^N \|f_j\|_X^2)^{1/2}.
$$

But if X is a Hilbert space (think $X = L^2(\mathbb{T}^n)$) and if $f_{\mathbf{j}} \in X, \mathbf{j} \in J$ are pairwise orthogonal $(\text{think } \textit{f}_{\textbf{j}}(\textbf{x})=e(\textbf{x} \cdot \textbf{j}))$ then we have

$$
I^2 \text{ decoupling } || \sum_{\mathbf{j}} f_{\mathbf{j}} ||_X \leq (\sum_{\mathbf{j}} ||f_{\mathbf{j}}||_X^2)^{1/2}
$$

$$
I^p \text{ decoupling } || \sum_{\mathbf{j} \in J} f_{\mathbf{j}} ||_X \leq |J|^{\frac{1}{2} - \frac{1}{p}} (\sum_{\mathbf{j} \in J} ||f_{\mathbf{j}}||_X^p)^{1/p}
$$

Given Demeter, Indiana University
Recent progress on decouplings

Motivated in part by investigations by Thomas Wolff from late 1990s, Bourgain and I have developed a decoupling theory for L^p spaces. In a nutshell, our theorems go as follows:

Theorem (Abstract decoupling theorem)

Let $f : \mathcal{M} \to \mathbb{C}$ be a function on some compact manifold M in \mathbb{R}^n , with natural measure σ . Partition the manifold into caps τ of size δ (with some variations forced by curvature) and let $f_{\tau} = f 1_{\tau}$ be the restriction of f to τ . Then there is a critical index $p_c > 2$ and some $q \ge 2$ (both depending on the manifold) so that we have an l^2 (or sometimes just the analogous l^p) decoupling

$$
\|\widehat{fd\sigma}\|_{L^p(B_{\delta^{-q}})} \lesssim_{\epsilon} \delta^{-\epsilon} \big(\sum_{\tau:\delta-cap} \|\widehat{f_{\tau}d\sigma}\|_{L^p(B_{\delta^{-q}})}^2\big)^{1/2}
$$

for each ball $B_{\delta^{-q}}$ in \mathbb{R}^n with radius δ^{-q} and each $2 \leq p \leq p_c$.

Ciprian Demeter, Indiana University
Recent progress on decouplings

 λ - \oplus - λ - λ - λ - λ - λ

Most of the applications of our abstract decoupling theorem for estimating exponential sums rely on the very simple observation that for each $\xi \in \mathbb{R}^n$ the Fourier transform of the Dirac delta distribution

$$
\delta_{\xi}(\eta):=\begin{cases}1,\;\eta=\xi\\0,\;\eta\neq\xi\end{cases}
$$

is an exponential

$$
\widehat{\delta_{\xi}}(x) = e(x \cdot \xi)
$$

Ciprian Demeter, Indiana University Recent progress on decouplings

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶

君

 $2Q$

Bourgain's observation (2011): To get from...

Theorem (Abstract decoupling theorem)

\n
$$
\|\widehat{fd\sigma}\|_{L^p(B_{\delta^{-q}})} \lesssim_{\epsilon} \delta^{-\epsilon} \left(\sum_{\tau : \delta - \text{cap}} \|f_{\tau} \widehat{d\sigma}\|_{L^p(B_{\delta^{-q}})}^2 \right)^{1/2}
$$
\nfor each ball $B_{\delta^{-q}}$ in \mathbb{R}^n with radius δ^{-q} and each $2 \leq p \leq p_c$.

...to the exponential sum estimate

Theorem (Discrete decoupling)

For each cap τ let $\xi_{\tau} \in \tau$ and $a_{\tau} \in \mathbb{C}$. Then

$$
|B_{\delta^{-q}}|^{-1/p} \|\sum_{\tau} a_\tau e(\xi_\tau \cdot \mathbf{x})\|_{L^p(B_{\delta^{-q}})} \lesssim_{\epsilon} \delta^{-\epsilon} (\sum_{\tau} |a_\tau|^2)^{1/2}
$$

for each ball $B_{\delta^{-q}}$ in \mathbb{R}^n with radius δ^{-q} and each $2 \leq p \leq p_c$,

apply the decoupling to (a smooth approximation of) $f(\xi) = \sum_{\tau} a_{\tau} \delta_{\xi_{\tau}}$ ◆ロト→ 伊ト→ 星ト→ 星トー

Ciprian Demeter, Indiana University
Recent progress on decouplings

 QQ

君

Key ingredient: Multilinear Kakeya (a decoupling in disguise)

Theorem (Bennetr, Carbery, Tao, 2006)

Consider n families \mathcal{T}_j consisting of $R \times R^{1/2} \times \ldots \times R^{1/2}$ tubes $T \subset B_{4R}$ in \mathbb{R}^n having the following property

Transversality: The direction of the long axis of $T \in \mathcal{T}_j$ is in a small neighborhood of $e_j = (0, \ldots, 1, \ldots, 0)$

Then we have the following inequality (\oint denotes the average)

$$
\int_{B_{4R}} |\prod_{j=1}^{n} F_j|^{\frac{1}{2n} \frac{2n}{n-1}} \lesssim_{\epsilon} R^{\epsilon} \left[\prod_{j=1}^{n} |\oint_{B_{4R}} F_j|^{\frac{1}{2n}} \right]^{\frac{2n}{n-1}}
$$
(1)

for all functions F_j of the form

$$
F_j = \sum_{\tau \in \mathcal{T}_j} c_{\tau} 1_{\tau}.
$$

Ciprian Demeter, Indiana University Recent progress on decouplings

Some examples with sharp decoupling theory

 \bullet Hypersurfaces in \mathbb{R}^n with nonzero Gaussian curvature $(p_c = \frac{2(n+1)}{n-1})$ $n-1$). Many applications: Optimal Strichartz estimates for Schrödinger equation on both rational and irrational tori in all dimensions, improved L^p estimates for the eigenfunctions of the Laplacian on the torus, etc

 \bullet The cone (zero Gaussian curvature) in \mathbb{R}^n ($p_c = \frac{2n}{n-2}$ $n-2$). Many applications: progress on Sogge's "local smoothing conjecture for the wave equation", etc

 \bullet (Bourgain) Two dimensional surfaces in \mathbb{R}^4 ($p_c=6$). Application: Bourgain used this to improve the estimate in the Lindelöf hypothesis for the growth of Riemann zeta

 \bullet (with Bourgain and Guth) Curves with torsion in \mathbb{R}^n $(p_c = n(n + 1))$. Application: Vinogradov's Mean Value Thm.

• (with Bourgain and Guo) Surfaces in \mathbb{R}^9 ($p_c = 20$). Application: Parsell-Vinogradov systems 医唇形 医唇形的

Ciprian Demeter, Indiana University Recent progress on decouplings

重

Some recent developments by others

1. Fan, Staffilani, Wang and Wilson obtained a new proof of the decoupling theorem for the paraboloid in \mathbb{R}^3 that does not make use of trilinearity.

Ciprian Demeter, Indiana University | Recent progress on decouplings

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

ŧ

 $2Q$

2. Du, Guth and Li combined the polynomial method with sharp decouplings for the parabola to prove

Theorem (Improved bilinear Strichartz estimate in $\mathbb{R}^2)$

Let I_1 , I_2 be two separated intervals in $[-1,1]$ and let $f_i: I_i \to \mathbb{C}$. Let σ be the standard measure on the parabola. Let S_1, \ldots, S_N be (dyadic) squares with side length \sqrt{R} inside $[-R, R]^2$ such that

$$
\int_{S_j} |\widehat{f_i d\sigma}|^6 \sim C_i, \quad i=1,2
$$

for each S_j. Then

$$
\||\widehat{f_1d\sigma f_2d\sigma}|^{\frac{1}{2}}\|_{L^6(S_1\cup \ldots S_N)}\lesssim N^{-\frac{1}{6}}R^{\epsilon}(\|f_1\|_2\|f_2\|_2)^{\frac{1}{2}}
$$

Note the $N^{-\frac{1}{6}}$ gain over the classical (unrestricted) estimate.

Ciprian Demeter, Indiana University
Recent progress on decouplings

→ 伊 ▶ → 君 ▶ → 君 ▶

君

Many questions are still left open, about decouplings on curves, on the cone, manifolds of intermediate co-dimension, with further potential applications to number theory.

Question

Can one make progress on the conjectured estimate

$$
\|\sum_{n=1}^N a_n e(nx+n^3y)\|_{L_{dx,dy}^p([0,1]^2)} \lesssim N^{\epsilon} \|a_n\|_{l^2}, \ \ 2 \leq p \leq 8
$$

using decouplings?

If yes, it would have to involve a very subtle/novel argument, for the following reason.

Ciprian Demeter, Indiana University
Recent progress on decouplings

 \leftarrow \Box

 \blacktriangleleft \oplus \blacktriangleright \dashv Ξ \blacktriangleright \dashv Ξ \blacktriangleright

ŧ

$$
C_1 = \{(t, t^2)\}
$$

$$
C_2 = \{(t, \phi(t) := t^3) : t \sim 1\} : \text{ Note that } \phi'', \phi''' \sim 1
$$

We know that for both $\mathsf{C}_1,\mathsf{C}_2$ the following l^2 decoupling holds

$$
\|\widehat{fd\sigma_{C_i}}\|_{L^p(B_{\delta^{-2}})} \lesssim_{\epsilon} \delta^{-\epsilon}\big(\sum_{\tau \subset C_i:\delta-arc}\|\widehat{f_{\tau}d\sigma_{C_i}}\|_{L^p(B_{\delta^{-2}})}^2\big)^{1/2},
$$

within the range $2\leq p\leq 6.$ This range is sharp both C_i :

$$
\|\widehat{fd\sigma_{C_i}}\|_{L^p(B_1)}\lesssim_{\epsilon} \delta^{-\epsilon}\big(\sum_{\tau\subset C_i:\delta-arc}\|\widehat{f_{\tau}d\sigma_{C_i}}\|_{L^p(\mathbb{R}^2)}^2\big)^{1/2}
$$

is false for $p>6$, even when \mathbb{R}^2 is placed on the right. (test with $f \equiv 1.$

Ciprian Demeter, Indiana University Recent progress on decouplings

4 0 8

K 御 ▶ K 君 ▶ K 君 ▶

君

Question

Is it true that for each \sim 1-separated set Γ with $\sim N$ points on

$$
\{(x,x^3):1\leq x\leq N\}
$$

we have

$$
|\{(\lambda_1,\ldots,\lambda_8)\in \Gamma^8: \lambda_1+\ldots+\lambda_4=\lambda_5+\ldots+\lambda_8\}||\lesssim_{\epsilon} N^{4+\epsilon}?
$$

Ciprian Demeter, Indiana University Recent progress on decouplings

◆ロト→伊ト→ミト→ミト - 草- - 이익⊙-

Let

$$
E_I g(x_1,\ldots,x_n) = \widehat{g_I d\sigma}(x_1,\ldots,x_n) = \int_I g(t)e(tx_1+\ldots+t^nx_n)dt
$$

The next question is about $l^p(L^p)$ decoupling at spatial scale N^2 .

Question

What is the largest $p = p_n$ for which we have $I^p(L^p)$ decoupling

$$
\|E_{[0,1]}g\|_{L^p(B_{N^2})}\lesssim_{\epsilon} N^{\frac{1}{2}-\frac{1}{p}+\epsilon}(\sum_{|I|=N^{-1}}\|E_{I}g\|_{L^p(B_{N^2})}^p)^{1/p}.
$$

If one integrates over larger balls B_{N^n} then Bourgain-D-Guth proved the above holds for p as large as $n(n + 1)$. This is connected with open questions about the size of

$$
\int_{\mathbb{T}^{n-1}}\int_0^{\frac{1}{N^{\alpha}}}\big|\sum_{k\sim N}e(kx_1+\ldots+k^nx_n)\big|^pdx_1...dx_n,\ 0<\alpha<1
$$

Ciprian Demeter, Indiana University
Recent progress on decouplings

Question

What is the largest $p = p_n$ for which we have

$$
\|E_{[0,1]}g\|_{L^p(B_{N^2})}\lesssim_{\epsilon} N^{\frac{1}{2}-\frac{1}{p}+\epsilon}(\sum_{|I|=N^{-1}}\|E_{I}g\|_{L^p(B_{N^2})}^p)^{1/p}.
$$

We know that p_n is nondecreasing, but also bounded from above $(p_n \le 22)$.

We also know $p_2 = 6$ (standard linear decoupling for the parabola)

Using **bilinear** methods one can prove $p_3 \ge 8$ and $p_4 \ge 12$.

I will next show how to use trilinear arguments to prove that $p_5 \ge 14$.

None of these lower bounds is known to be sharp.

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

 OQ

君

For two symmetric matrices $A_1, A_2 \in M_3(\mathbb{R})$ consider the quadratic forms

$$
Q_i(r,s,t)=[r,s,t]A_i[r,s,t]^T
$$

and the associated three dimensional quadratic surface in \mathbb{R}^5

$$
S_{Q_1,Q_2}:=\{(r,s,t,Q_1(r,s,t),Q_2(r,s,t)):(r,s,t)\in[0,1]^3\}.
$$

Theorem (D,Guo,Shi, to appear in Revista)

Assume that for each nonzero vector $(u,v,w)\in \mathbb{R}^3$, the following curvature condition holds: the determinant

$$
P(r, s, t) := \det \begin{bmatrix} \frac{\partial Q_1}{\partial r} & \frac{\partial Q_1}{\partial s} & \frac{\partial Q_1}{\partial t} \\ \frac{\partial Q_2}{\partial r} & \frac{\partial Q_2}{\partial s} & \frac{\partial Q_2}{\partial t} \\ u & v & w \end{bmatrix}
$$

is not the zero polynomial, when regarded as a function of r, s, t . Then there is an $I^p(L^p)$ decoupling for $2 \le p \le \frac{14}{3}$ $\frac{14}{3}$. (sharp range)

Ciprian Demeter, Indiana University Recent progress on decouplings

- This is a decoupling on (spatial) balls B_{N^2} into (frequency) cubes with side length $\mathcal{N}^{-1}.$
- \bullet Restriction theorems for 3 dimensional manifolds in \mathbb{R}^5 have been established under various assumptions by Christ (PhD thesis), De Carli and losevich (1998)...
- Our curvature condition is very general, in fact it may be also (at least very close to being) necessary in order to have the range $2\leq \rho \leq \frac{14}{3}$ $\frac{14}{3}$.
- The very symmetric manifold

$$
\{(r,s,t,r^2+s^2+t^2,rs+rt+st):(r,s,t)\in[0,1]^3\}
$$

fails to satisfy our curvature condition. We could prove that there is no l^p decoupling for $p > 4$.

◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

 OQ

€

The main new difficulties associated with our theorem (compared to previous decoupling results) are

- Identifying the "correct" notion of curvature
- Linear algebra associated with checking Brascamp-Lieb-type transversality conditions.
- Subtle analytic issues associated with cylindrical decoupling needed to address the complexity of the geometry of our manifolds.

• Lower dimensional contribution in the Bourgain-Guth iteration may come from a **non planar** 2-variety in \mathbb{R}^3 (the zero set of $P(r, s, t)$). We use an approximation argument/induction on scales à la Seeger-Pramanik, Bourgain-D. which most closely resembles a very recent argument of Oh. The point is to make quantitative use of the fact that 2-varieties are locally close to planes.

→ 伊 ▶ → 君 ▶ → 君 ▶

 OQ

€

Ciprian Demeter, Indiana University
Recent progress on decouplings

Back to the original problem, i.e proving that we have an $I^p(L^p)$ decoupling at spatial scale \mathcal{N}^2

$$
\|E_{[0,1]}g\|_{L^p(B_{N^2})}\lesssim_{\epsilon} N^{\frac{1}{2}(\frac{1}{2}-\frac{1}{p})+\epsilon}(\sum_{|I|=N^{-1}}\|E_{I}g\|_{L^p(B_{N^2})}^p)^{1/p}
$$

for $2 \le p \le 14$ for the moment curve (t, t^2, t^3, t^4, t^5) .

The idea is to first get the L^{14} estimate for the trilinear term. Note that with

$$
\gamma_{5,I} = \{(t,t^2,t^3,t^4,t^5): t \in I\}
$$

we have $(I_i$ separated intervals in $[0,1])$ that

$$
\gamma_{5,\mathit{l}_1}+\gamma_{5,\mathit{l}_2}+\gamma_{5,\mathit{l}_3}
$$

is a subset of the manifold

$$
S := (r, s, t, \frac{r^4}{6} - r^2 s + \frac{4rt}{3} + \frac{s^2}{2}, \frac{r^5}{6} - \frac{5r^3s}{6} + \frac{5r^2t}{6} + \frac{5st}{6})
$$

via Newton's identities.

Ciprian Demeter, Indiana University
Recent progress on decouplings

◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

 Ω

$$
S:=(r,s,t,Q_{1}:=\frac{r^{4}}{6}-r^{2}s+\frac{4rt}{3}+\frac{s^{2}}{2},Q_{2}:=\frac{r^{5}}{6}-\frac{5r^{3}s}{6}+\frac{5r^{2}t}{6}+\frac{5st}{6})
$$

While the entries Q_1 and Q_2 are not quadratic (as in our theorem), we can use Taylor's formula and induction on scales à la Seeger-Pramanik to reduce matters to our theorem. Our curvature condition turns out to be good enough.

This argument gives a trilinear decoupling for our moment curve via the key formula

$$
14=\frac{14}{3}\times 3
$$

к □ ▶ к 倒 ▶ к 둘 ▶ к 둘 ▶

 OQ

€

The passage to a linear decoupling is done via a (slightly less standard) Bourgain-Guth type iteration.

Ciprian Demeter, Indiana University
Recent progress on decouplings

Other questions that I would love to see solved (hopefully making use of, or drawing inpiration from decouplings) until we meet again at MSRI are

- \bullet The restriction conjecture (at least in \mathbb{R}^3 , at least modulo Kakeya-type estimates)
- \bullet The L^4 square function estimate for the cone in \mathbb{R}^3

→ 伊 ▶ → 君 ▶ → 君 ▶

ŧ