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1 Introduction

1.1 Concentration on O(n)

Orthogonal group of matrices: O(n) = {U : U is an n x n matrix, UUT = UTU = In}

1.2 Haar measure

There exists a unique translation-invariant probability measure (p.m.) on O(n):
U ~ Haar(O(n)) : viavlua
where A is fixed in O(n).

e Build one:

(i) fill n X n matrix with i.i.d. N(0,1)
(ii) perform Gram-Schmidt to get U

2 Concentration of Measure

Idea: In some contexts, functions with small local fluctuations are “essentially constant”.

Lemma 1 (Lévy). If X ~unif(S"~") and f : R" — R is L-Lipschitz, then
P(|f(X) — M| > Lt) < 2~ (=7

e Think t? = % where C is a large constant.

e We cannot have concentration on O(n). But we have the next best thing:

Theorem 1 (Milman-Schectman). If F': O(n) — R is L-Lipschitz with respect to the Hilbert-
Schmidt norm || - ||gs (i-e. (A,B)gs = tr(AB*)) and U ~ Haar(SO(n)) or U ~ Haar(SO~(n)),
then )

P(|F(U) — EF(U)| > t) < 2¢~ "5t
Johnson-Lindenstrauss Lemma: If you project n points in R? onto a random ~ log n-dimensional
subspace, then the pairwise distances between poitns are basically preserved. The formal statement
of the J-L lemma follows.



Lemma 2 (Johnson-Linderstrauss). There exist universal constants ¢,C such that the following
holds: Let {xj};bzl c R Let P be a random k x d matriz given by the first k rows of U ~

Haar(O(d)). Fize >0, and let k := alg#, With probability > 1 — Cn?>~2¢/4,
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Proof. Fix 4,j and let z := 7=—4. We want: /1 — ¢ < \/%HPmH < v/1 + € with high probability.
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Let F,(U) := \/%HPZ‘H Then F, : O(d) — R is \/%—Lipschitz:
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P(|F,(U) — EF,(U)| > t) < 2e™4/F = e~F* =

This implies
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What is the value of EF,(U)?
2 = Le1pa2 = & 2 4 gq2)? =
EF,(U)" = kE” z||* = kE( Uy +up) =1

where the last equality follows by symmetry.
var(F,(U)) =1 — (EF,(U))?, so (EF,(U))? = 1 — var(F,(U)).

var(F,(U)) =[S P(|F(U) —EF,(U)]? > t)dt < [[° Ce *dt = & and k = /%" 5o take
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The “good” set has probability 1 — Ce~2¢1°8"  We have n? good sets; intersect them all.

3 Dvoretzky’s Theorem

Theorem 2 (Dvoretzky). Let || - || be an arbitrary norm on C". There is an invertible linear
map T : C* — C" such that for ¢ > 0, if k < Ce?logn and E C C" is random subspace with
dim(E) = k, then with probability > 1 — Ce~k,
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3.1 Outline of a proof

0.) Assume the maximal volume ellipsoid in {|| - || = 1} is Sg.
1.) Consider X, (U) := ||Uy|| — Ey||Uy|| where U is random and v is fixed. Consider

Fr(U) = sug | X, (U)].
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Then Fg(U) is 1-Lipschitz, so it concentrates at its mean EFg(U).

e EFp(U) =E | sup ek
|
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e “Sub-Gaussian increment” d(v,w) = llv—wl|
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e Dudley’s entropy bound E {sup veE |XU(U)|} < C\/g implies that for all v € F|
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with high probability (here ¢ 10% <M <1).

e Now fix € > 0, k = cnM2£2. For t = Me/2 we have with high probability > 1 — Ce=¢" logn,
M(1—¢) < |Up]| < M(1 + &) for all v € E.

e Finally, choose E = span{ey,...,e}. O

Theorem 3 (Meckes, ‘13). Let X be a random vector in R? with E| X ||? = d, IEI‘||X|2 d' < ;3/1Lod@

vy —

and supgegn—1 E[(€, X)?] = 1. Also let x$ = ({x,v1),...,{(z,v1)) and V = € O(d). Fix
—vg—

6 >0 and let k = 2189 Thep 3¢ = ¢(8) > 0 such that with high probability, dBL(Xi(,k),Z) <

loglogd*
Ce—cloglogd yhere 7 s a Gaussian.

[Here dpr(X,Y) = sup .pr_,p [Ef(X) —Ef(Y)| is the bounded Lipschitz distance.]
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