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1 Introduction

1.1 Concentration on O(n)

Orthogonal group of matrices: O(n) =
{
U : U is an n× n matrix, UUT = UTU = In

}
1.2 Haar measure

There exists a unique translation-invariant probability measure (p.m.) on O(n):

U ∼ Haar(O(n)) : U
d
= AU

d
= UA

where A is fixed in O(n).

• Build one:

(i) fill n× n matrix with i.i.d. N (0, 1)

(ii) perform Gram-Schmidt to get U

2 Concentration of Measure

Idea: In some contexts, functions with small local fluctuations are “essentially constant”.

Lemma 1 (Lévy). If X ∼ unif(Sn−1) and f : Rn → R is L-Lipschitz, then

P(|f(X)−M | > Lt) ≤ 2e−(n−2)t
2

.

• Think t2 = C
n−2 where C is a large constant.

• We cannot have concentration on O(n). But we have the next best thing:

Theorem 1 (Milman-Schectman). If F : O(n) → R is L-Lipschitz with respect to the Hilbert-
Schmidt norm ‖ · ‖HS (i.e. 〈A,B〉HS = tr(AB∗)) and U ∼ Haar(SO(n)) or U ∼ Haar(SO−(n)),
then

P(|F (U)− EF (U)| > t) ≤ 2e−
(n−2)t2

4L2 .

Johnson-Lindenstrauss Lemma: If you project n points in Rd onto a random∼ log n-dimensional
subspace, then the pairwise distances between poitns are basically preserved. The formal statement
of the J-L lemma follows.
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Lemma 2 (Johnson-Linderstrauss). There exist universal constants c, C such that the following
holds: Let {xj}nj=1 ⊂ Rd. Let P be a random k × d matrix given by the first k rows of U ∼
Haar(O(d)). Fix ε > 0, and let k := a logn

ε2 . With probability ≥ 1− Cn2−ac/4,

(1− ε)‖xi − xj‖2 ≤
d

k
‖Pxj − Pxi‖2 ≤ (1 + ε)‖xi − xj‖2.

Proof. Fix i, j and let x :=
xi−xj

‖xi−xj‖ . We want:
√

1− ε ≤
√

d
k‖Px‖ ≤

√
1 + ε with high probability.

Let Fx(U) :=
√

d
k‖Px‖. Then Fx : O(d)→ R is

√
d
k -Lipschitz:

|Fx(U)− Fx(U ′)| =
√
d

k

∣∣∣∣‖Px‖ − ‖P ′x‖∣∣∣∣ ≤
√
d

k
‖(P − P ′)x‖ ≤

√
d

k
‖P − P ′‖op

CS
≤
√
d

k
‖P ′ − P‖HS ≤

√
d

k
dHS(U,U ′).

This implies

P(|Fx(U)− EFx(U)| > t) ≤ 2e−
cdt2

d/k = e−ckt
2

= e−
ca log n

ε2
t2 .

• What is the value of EFx(U)?

EFx(U)2 =
d

k
E‖Px‖2 =

d

k
E(
√
u211 + · · ·+ u2ik)2 = 1

where the last equality follows by symmetry.

• var(Fx(U)) = 1− (EFx(U))2, so (EFx(U))2 = 1− var(Fx(U)).

• var(Fx(U)) =
∫∞
0

P(|Fx(U) − EFx(U)|2 > t) dt ≤
∫∞
0
Ce−ckt dt = C

ck and k = a logn
ε2 , so take

ε < ca logn
C+cn logn to get 1− C

ck ≥ 1− ε/2.

• The “good” set has probability 1− Ce−ac logn. We have n2 good sets; intersect them all.

3 Dvoretzky’s Theorem

Theorem 2 (Dvoretzky). Let ‖ · ‖ be an arbitrary norm on Cn. There is an invertible linear
map T : Cn → Cn such that for ε > 0, if k ≤ Cε2 log n and E ⊂ Cn is random subspace with
dim(E) = k, then with probability ≥ 1− Ce−ck,

1− ε ≤ ‖Tv‖
‖v‖

≤ 1 + ε, ∀v ∈ E.
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3.1 Outline of a proof

0.) Assume the maximal volume ellipsoid in {‖ · ‖ = 1} is SnC.

1.) Consider Xv(U) := ‖Uv‖ − EU‖Uv‖ where U is random and v is fixed. Consider

FE(U) = sup
v∈E
‖v‖=1

|Xv(U)|.

Then FE(U) is 1-Lipschitz, so it concentrates at its mean EFE(U).

• EFE(U) = E

sup v∈E
‖v‖=1

∣∣∣∣‖Uv‖ − E‖Uv‖︸ ︷︷ ︸
M

∣∣∣∣


• P(‖Uv‖ − ‖Uw‖ > t) ≤ Ce−
cnt2

‖v−w‖2

• “Sub-Gaussian increment” d(v, w) = ‖v−w‖√
n

• Dudley’s entropy bound E
[
sup v∈E
‖v‖=1

|Xv(U)|
]
≤ C

√
k
n implies that for all v ∈ E,

∣∣∣∣‖Uv‖ −M ∣∣∣∣ ≤ t+ C

√
k

n

with high probability (here c
√

logn
n ≤M ≤ 1).

• Now fix ε > 0, k = cnM2ε2. For t = Mε/2 we have with high probability ≥ 1− Ce−cε2 logn,
M(1− ε) ≤ ‖Uv‖ ≤M(1 + ε) for all v ∈ E.

• Finally, choose E = span{e1, . . . , ek}.

Theorem 3 (Meckes, ‘13). Let X be a random vector in Rd with E‖X‖2 = d, E
∣∣∣∣‖X‖2−d∣∣∣∣ ≤ Ld

3
√
log d

and supξ∈Sn−1 E[〈ξ,X〉2] = 1. Also let X
(k)
v = (〈x, v1〉, . . . , 〈x, vk〉) and V =

−v1−...
−vd−

 ∈ O(d). Fix

δ > 0 and let k := δ log d
log log d . Then ∃c = c(δ) > 0 such that with high probability, dBL(X

(k)
v , Z) ≤

Ce−c log log d where Z is a Gaussian.

[Here dBL(X,Y ) = supf :Rk→R
‖f‖∞≤1
|f |C≤1

|Ef(X)− Ef(Y )| is the bounded Lipschitz distance.]
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