Notes for talk by Elizabeth Meckes given at the MSRI Connections for Women: Geometry and probability in high dimensions workshop on August 17, 2017

1 Introduction

1.1 Concentration on $O(n)$

Orthogonal group of matrices: $O(n) = \{U : U$ is an $n \times n$ matrix, $UU^T = U^T U = I_n\}$

1.2 Haar measure

There exists a unique translation-invariant probability measure $(p.m.)$ on $O(n)$:

$$
U \sim \text{Haar}(O(n)) : \qquad \qquad U \stackrel{d}{=} AU \stackrel{d}{=} UA
$$

where A is fixed in $O(n)$.

- Build one:
	- (i) fill $n \times n$ matrix with i.i.d. $\mathcal{N}(0, 1)$
	- (ii) perform Gram-Schmidt to get U

2 Concentration of Measure

Idea: In some contexts, functions with small local fluctuations are "essentially constant".

Lemma 1 (Lévy). If $X \sim \text{unif}(\mathbb{S}^{n-1})$ and $f : \mathbb{R}^n \to \mathbb{R}$ is L-Lipschitz, then

$$
\mathbb{P}(|f(X) - M| > Lt) \le 2e^{-(n-2)t^2}.
$$

- Think $t^2 = \frac{C}{n-2}$ where C is a large constant.
- We cannot have concentration on $O(n)$. But we have the next best thing:

Theorem 1 (Milman-Schectman). If $F : O(n) \to \mathbb{R}$ is L-Lipschitz with respect to the Hilbert-Schmidt norm $\|\cdot\|_{HS}$ (i.e. $\langle A, B \rangle_{HS} = \text{tr}(AB^*)$) and $U \sim \text{Haar}(SO(n))$ or $U \sim \text{Haar}(SO^-(n)),$ then 2

$$
\mathbb{P}(|F(U) - \mathbb{E} F(U)| > t) \le 2e^{-\frac{(n-2)t^2}{4L^2}}.
$$

Johnson-Lindenstrauss Lemma: If you project n points in \mathbb{R}^d onto a random $\sim \log n$ -dimensional subspace, then the pairwise distances between poitns are basically preserved. The formal statement of the J-L lemma follows.

Lemma 2 (Johnson-Linderstrauss). There exist universal constants c, C such that the following holds: Let $\{x_j\}_{j=1}^n \subset \mathbb{R}^d$. Let P be a random $k \times d$ matrix given by the first k rows of U \sim Haar $(O(d))$. Fix $\varepsilon > 0$, and let $k := \frac{a \log n}{\varepsilon^2}$. With probability $\geq 1 - Cn^{2-ac/4}$,

$$
(1 - \varepsilon) \|x_i - x_j\|^2 \le \frac{d}{k} \|Px_j - Px_i\|^2 \le (1 + \varepsilon) \|x_i - x_j\|^2.
$$

Proof. Fix *i*, *j* and let $x := \frac{x_i - x_j}{\|x_i - x_j\|}$ $\frac{x_i - x_j}{\|x_i - x_j\|}$. We want: $\sqrt{1 - \varepsilon} \leq \sqrt{\frac{d}{k}} \|Px\| \leq \sqrt{1 + \varepsilon}$ with high probability. Let $F_x(U) := \sqrt{\frac{d}{k}} ||Px||$. Then $F_x: O(d) \to \mathbb{R}$ is $\sqrt{\frac{d}{k}}$ -Lipschitz:

$$
|F_x(U) - F_x(U')| = \sqrt{\frac{d}{k}} ||Px|| - ||P'x|| \le \sqrt{\frac{d}{k}} ||(P - P')x|| \le \sqrt{\frac{d}{k}} ||P - P'||_{op}
$$

$$
\le \sqrt{\frac{d}{k}} ||P' - P||_{HS} \le \sqrt{\frac{d}{k}} d_{HS}(U, U').
$$

This implies

$$
\mathbb{P}(|F_x(U) - \mathbb{E}F_x(U)| > t) \le 2e^{-\frac{cdt^2}{d/k}} = e^{-ckt^2} = e^{-\frac{ca\log n}{\varepsilon^2}t^2}
$$

• What is the value of $\mathbb{E} F_x(U)$?

$$
\mathbb{E}F_x(U)^2 = \frac{d}{k}\mathbb{E}||Px||^2 = \frac{d}{k}\mathbb{E}(\sqrt{u_{11}^2 + \dots + u_{ik}^2})^2 = 1
$$

where the last equality follows by symmetry.

- $var(F_x(U)) = 1 (\mathbb{E} F_x(U))^2$, so $(\mathbb{E} F_x(U))^2 = 1 var(F_x(U))$.
- $\text{var}(F_x(U)) = \int_0^\infty \mathbb{P}(|F_x(U) \mathbb{E}F_x(U)|^2 > t) dt \leq \int_0^\infty Ce^{-ckt} dt = \frac{C}{ck}$ and $k = \frac{a \log n}{\varepsilon^2}$, so take $\varepsilon < \frac{ca \log n}{C + cn \log n}$ to get $1 - \frac{C}{ck} \ge 1 - \varepsilon/2$.
- The "good" set has probability $1 Ce^{-ac \log n}$. We have n^2 good sets; intersect them all.

.

3 Dvoretzky's Theorem

Theorem 2 (Dvoretzky). Let $\|\cdot\|$ be an arbitrary norm on \mathbb{C}^n . There is an invertible linear map $T: \mathbb{C}^n \to \mathbb{C}^n$ such that for $\varepsilon > 0$, if $k \leq C \varepsilon^2 \log n$ and $E \subset \mathbb{C}^n$ is random subspace with $\dim(E) = k$, then with probability $\geq 1 - Ce^{-ck}$,

$$
1 - \varepsilon \le \frac{\|Tv\|}{\|v\|} \le 1 + \varepsilon, \forall v \in E.
$$

3.1 Outline of a proof

- 0.) Assume the maximal volume ellipsoid in $\{\|\cdot\| = 1\}$ is $\mathbb{S}_{\mathbb{C}}^n$.
- 1.) Consider $X_v(U) := ||U_v|| \mathbb{E}_U ||U_v||$ where U is random and v is fixed. Consider

$$
F_E(U) = \sup_{\substack{v \in E \\ ||v|| = 1}} |X_v(U)|.
$$

Then $F_E(U)$ is 1-Lipschitz, so it concentrates at its mean $\mathbb{E} F_E(U)$.

•
$$
\mathbb{E}F_E(U) = \mathbb{E}\left(\sup_{\|v\|=1} \left| \|U_v\| - \underbrace{\mathbb{E}\|U_v\|}_{M} \right|\right)
$$

- $\mathbb{P}(\|U_v\| \|U_w\| > t) \leq Ce^{-\frac{cnt^2}{\|v w\|^2}}$
- "Sub-Gaussian increment" $d(v, w) = \frac{\|v-w\|}{\sqrt{n}}$
- Dudley's entropy bound $\mathbb{E}\left[\sup_{\|v\|=1}|X_v(U)|\right] \leq C\sqrt{\frac{k}{n}}$ implies that for all $v \in E$,

$$
\left| \|U_v\| - M \right| \le t + C \sqrt{\frac{k}{n}}
$$

with high probability (here $c\sqrt{\frac{\log n}{n}} \leq M \leq 1$).

- Now fix $\varepsilon > 0$, $k = cnM^2 \varepsilon^2$. For $t = M\varepsilon/2$ we have with high probability $\geq 1 Ce^{-c\varepsilon^2 \log n}$, $M(1-\varepsilon) \leq ||U_v|| \leq M(1+\varepsilon)$ for all $v \in E$.
- Finally, choose $E = \text{span}\{e_1, \ldots, e_k\}.$

 \Box

Theorem 3 (Meckes, '13). Let X be a random vector in \mathbb{R}^d with $\mathbb{E}||X||^2 = d$, $\mathbb{E}\left|||X||^2 - d\right| \le \frac{Ld}{\sqrt[3]{\log d}}$ $\frac{1}{2}$ $\frac{1}{2}$ and $\sup_{\xi \in \mathbb{S}^{n-1}} \mathbb{E}[\langle \xi, X \rangle^2] = 1$. Also let $X_v^{(k)} = (\langle x, v_1 \rangle, \dots, \langle x, v_k \rangle)$ and $V =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ $-v_1-$. . . $-v_d \setminus$ $\big\} \in O(d)$. Fix

 $\delta > 0$ and let $k := \frac{\delta \log d}{\log \log d}$. Then $\exists c = c(\delta) > 0$ such that with high probability, $d_{BL}(X_v^{(k)}, Z) \le$ $Ce^{-c \log \log d}$ where Z is a Gaussian.

[Here
$$
d_{BL}(X, Y) = \sup_{\substack{f:\mathbb{R}^k \to \mathbb{R} \\ ||f||_{\infty} \le 1 \\ |f|_C \le 1}} \mathbb{E}f(X) - \mathbb{E}f(Y)|
$$
 is the bounded Lipschitz distance.]