Cone unrectifiable sets AND NON-DIFFERENTIABILITY OF REAL-VALUED LIPSCHITZ FUNCTIONS.

Olga Maleva

(joint with David Preiss)

University of Birmingham, UK

August 18, 2017

Background

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz mapping.

- *Rademacher theorem* says that any such *f* is differentiable almost everywhere w.r.t. the Lebesgue measure.
 So the set N_f = {x ∈ ℝⁿ : *f* is not differentiable at x} has Lebesgue measure 0.
- If $E \subset \mathbb{R}^n$ has measure 0, does there exist a Lipschitz f such that $E \subset N_f$?
 - n = m = 1: [Zahorski, 1946]: yes.
 - $n \ge 2, m = 1$:
 - [Preiss, 1990] For n ≥ 2 and m = 1, any G_δ set E containing a dense set of lines in ℝⁿ is a *universal differentiability set*, i.e. any Lipschitz function f : ℝⁿ→ ℝ is differentiable at some points in E.
 - [Doré M, 2011, 2012] A universal differentiability set may be chosen to be compact of Hausdorff dimension 1,
 - ▶ [Dymond M, 2016] ... and even of Minkowski dimension 1.
- But what conditions can guarantee that a given Lebesgue null set is not a universal differentiability set?
 - ... and what about Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^m$ with m > 1?

Background - Advanced

Following Alberti, Csörnyei, Preiss [ACP], 2005-2017:

Width of a set

 $e \in \mathbb{R}^{n} \text{ and } \alpha > 0$ (for practical reasons we can always imagine ||e|| = 1 and $\alpha \in (0,1)$) $C_{e,\alpha} = \text{all } v \in \mathbb{R}^{n} \text{ s.t. } \langle v, e \rangle \ge \alpha ||v|| ||e||,$ $\Gamma_{e,\alpha} = \text{all Lipschitz } \gamma : \mathbb{R} \to \mathbb{R}^{n} \text{ s.t. } \gamma'(t) \in C_{e,\alpha} \text{ for a.a. } t \in \mathbb{R}.$ 1. $G \subset \mathbb{R}^{n} \text{ is open } \Rightarrow w_{e,\alpha}(G) = \sup\{\mathcal{H}^{1}(G \cap \gamma(\mathbb{R})) : \gamma \in \Gamma_{e,\alpha}\},$ 2. $E \subset \mathbb{R}^{n} \Rightarrow w_{e,\alpha}(E) = \inf\{w_{e,\alpha}(G) : G \supset E, G \text{ is open}\}.$

Máthé, 2017: In the above definition it is possible to replace "open G" by Borel G.

Tangent fields

A map τ defined on $E \subset \mathbb{R}^n$ with values in the Grassmanian G(n, k) is said to be a k-dimensional tangent field of E if for all $e \in \mathbb{R}^n$ (||e|| = 1) and $\alpha \in (0,1)$ $w_{e,\alpha} \{ x \in E : \tau(x) \cap C_{e,\alpha} = \{0\} \} = 0$

Non-differentiability sets and how to measure nullness

Theorem

A set $E \subset \mathbb{R}^n$ is contained in a non-differentiability set N_f of a Lipschitz map $f : \mathbb{R}^n \to \mathbb{R}^m$ for some $m \ge n$ if and only if it is λ_n -Lebesgue null.

- Alberti, Csörnyei, Preiss, 2005–2017: E ⊂ N_f is equiv. to existence of an (n − 1)-dimensional tangent field.
- ▶ Alberti, Csörnyei, Preiss, 2005–2017: Lebesgue null, n = 2
- ▶ Csörnyei, Jones, 2015: Lebesgue null, all $n \ge 3$
- Preiss, Speight, 2015: m < n ⇒ universal differentiability sets for Lipschitz f : ℝⁿ → ℝ^m; poss. Hausd. dim. < m + ε for any ε > 0.

Tangent and normal fields

Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ s.t. $E \subset N_f$

- ▶ (*n* − 1)-dim. tangent fields
- codim 1 tangent fields
- \blacktriangleright Use normal fields instead \rightarrow Normal vectors defined pointwise

Looking for

Directions of nullness

For x ∈ E ⊂ ℝⁿ let N(E,x) := {e ∈ ℝⁿ : ∀η > 0∃r > 0 s.t. w_{e,η}(B(x,r) ∩ E) = 0}.
N(E,x) is a linear subspace for each x ∈ E.
If N(E,x) ≠ {0} for each x ∈ E, then E is null.
Máthé, 2017: If E is Borel and is 1-purely unrectifiable, i.e. for any Lipschitz γ : ℝ → ℝⁿ we have H¹(E ∩ γ(ℝ)) = 0, then E is uniformly purely unrectifiable (upu): w_{e,ε}(E) = 0 for every unit vector e ∈ ℝⁿ and every ε > 0.

● Hence any 1-purely unrectifiable (⇔ upu) set is null in every direction, i.e. N(E,x) = ℝⁿ.

Cone unrectifiable sets

 $E \subset \mathbb{R}^n$ s.t. $\mathcal{N}(E, x) \neq \{0\} \ \forall x \in E$ are called cone unrectifiable sets (cu).

Sufficient condition for existence of non-differentiable Lipschitz function

Cone unrectifiable sets

 $E \subset \mathbb{R}^n$ s.t. $\mathcal{N}(E, x) \neq \{0\} \ \forall x \in E$ are called cone unrectifiable sets (cu).

Examples

- If E admits a continuous (n − 1)-dimensional tangent, then N(E, x) ⊃ τ(x)[⊥] ≠ {0}, so the set is cone unrectifiable.
- 2 If E is 1-pu \iff upu, then E is cu (cone unrectifiable).

Theorem 1 (M-Preiss, 2017).

Suppose $E \subset \mathbb{R}^n$ is cone unrectifiable. Then there is a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ that is non-differentiable at every point of E. \to Example 1.

Example 1:

Let us compare the composition of classes of upu and cu sets. For each fixed $x \in E$ and [all $e \in S$ or some $e \in S$], S a unit sphere $\forall \varepsilon > 0$ there is an r > 0 s.t. $w_{e,\varepsilon}(E \cap B(x, r)) = 0$. However for upu we can replace "all $\varepsilon > 0$ " by "there exists $\varepsilon > 0$ ": E is upu \iff there exists $\varepsilon \in (0, 1)$ s.t. $w_{e,\varepsilon}(E) = 0$ for all $e \in S$. In contrast with this, for cu we need (in general) all $\varepsilon > 0$: there exists a **UDS** N with $w_{\varepsilon,e}(N) = 0$ for a fixed pair $e \in S$, $\varepsilon \in (0, 1)$.

Force a G_{δ} set E containing a dense set of lines "around" e^{\perp} to intersect all curves $\gamma \in \Gamma_{e,\varepsilon}$ by a set of measure 0,

E is a UDS of $w_{e,\varepsilon}$ width zero.

Theorem 1 (M-Preiss, 2017).

Suppose $E \subset \mathbb{R}^n$ is cone unrectifiable. Then $\forall \varepsilon > 0$ there is a $(1 + \varepsilon)$ -Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ s.t.

$$\forall x \in E, \\ y \in \mathbb{R}^n \left[D^+ f(x; y) - D_+ f(x; y) \ge 2 \sup_{e \in \mathcal{N}(E, x)} \langle e, y \rangle \right] \to \text{Example 2:}$$

Theorem 2 (M-Preiss, 2017), [ACP]

For every (uniformly) purely unrectifiable set $E \subset \mathbb{R}^n$, there is a real valued 1-Lipschitz function f on \mathbb{R}^n such that $\liminf_{r \searrow 0} \sup_{\|y\| \le r} |f(x+y) - f(x) - \langle e, y \rangle|/r = 0$ for every $x \in E$ and $e \in \mathbb{R}^n$ with $\|e\| \le 1$. In particular, $D^+f(x;y) = \|y\|$ and $D_+f(x;y) = -\|y\|$ for every $x \in E$ and $y \in \mathbb{R}^n$.

Example 2:

It is not possible to have $\varepsilon = 0$ in Theorem 1: There is a compact set $E \subset \mathbb{R}^2$ and a continuous mapping $x \in E \mapsto e_x \in \mathbb{R}^2$ such that $\mathcal{N}(E, x) = \langle e_x \rangle$ for every $x \in E$ and whenever $f : \mathbb{R}^2 \to \mathbb{R}$ has $Lip(f) \leq 1$, there is $x \in E$ s.t. $D^+f(x, e_x) < 1$. **Example 2:** It is not possible to have $\varepsilon = 0$ in Theorem 1: There is a compact set $E \subset \mathbb{R}^2$ and a continuous mapping $x \in E \mapsto e_x \in \mathbb{R}^2$ such that $\mathcal{N}(E, x) = \langle e_x \rangle$ for every $x \in E$ and whenever $f : \mathbb{R}^2 \to \mathbb{R}$ has $Lip(f) \leq 1$, there is $x \in E$ s.t. $D^+f(x, e_x) < 1$.

 $\begin{array}{l} f: \mathbb{R}^2 \to \mathbb{R}.\\ \text{Assume } Lip(f) \leq 1.\\ \text{Suppose } x \neq (\pm 1, 0) \text{ is }\\ \text{s.t. } D^+f(x, e_x) = 1.\\ \text{We show: if } a = f'(x, u_x)\\ \text{exists, then } a = 0. \end{array}$

$$\begin{split} &\limsup_{t\to 0} \frac{f(x+te_x)-f(x-atu_x)}{t} = 1 + a^2 \Rightarrow \\ &1 = Lip(f) \ge \limsup_{t\to 0} \frac{|f(x+te_x)-f(x-atu_x)||}{||(x+te_x)-(x-atu_x)||} = \sqrt{1+a^2} \Rightarrow a = 0. \\ &f \text{ Lipschitz } \Rightarrow a \text{ exists a.e.} \\ &f'(x, u_x) = 0 \text{ a.e.} \Rightarrow f = const \text{ along } \phi_k \Rightarrow f|_E = const \\ &\frac{||f(x+te_x)-f(x)||}{t} \le \frac{dist(x+te_x,E)}{t} \xrightarrow[t\to 0]{} 0 \Rightarrow \text{ contradiction with } D^+f(x, e_x) = 1. \end{split}$$

Sufficient condition for existence of non-differentiable Lipschitz function: union of cone unrectifiable sets

- * For a countable collection of cone unrectifiable sets, we may try to add the Lipschitz functions non-differentiable on individual sets, to get a function not differentiable at every point from the union.
 - addition of non-differentiability may result in differentiability,
 - try to force the Lipschitz function not differentiable on a cone unrectifiable set to be differentiable everywhere outside.
 However this may not be possible...

Theorem 3 (M-Preiss, 2017)

 $E = \bigcup_k E_k \subset \mathbb{R}^n$, E_k are \mathbf{F}_{σ} cone unrectifiable sets.

Then there is a Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ such that

- f is non-differentiable at every $x \in E$, and
- f is differentiable at every $x \in \mathbb{R}^n \setminus E$: $N_f = E$, $D_f = \mathbb{R}^n \setminus E$.
- $x \in D \setminus A \Rightarrow f + g$ also not diff at x!

Non-differentiability w.r.t. measure

Let μ be a finite measure on \mathbb{R}^n . The *decomposability bundle* of μ is a map $V(\mu, x) : \mathbb{R}^n \to Gr(\mathbb{R}^n) = \bigcup_{k=0}^n G(n, k)$, whose values are vector subspaces of \mathbb{R}^n (possibly of varying dimensions), such that: (a) for every measure $\nu \ll \mu$ with a 1-rectifiable representation $\nu = \int_I \nu_t dt$ (where ν_t is the restriction of \mathcal{H}^1 to a 1-rectifiable set E_t) it holds $Tan(E_t, x) \subset V(\mu, x)$ for ν_t -a.e. x and a.e. $t \in I$; (b) for every other map $W : \mathbb{R}^n \to Gr(\mathbb{R}^n)$ satisfying (a), it holds $V(\mu, x) \subseteq W(x)$ for μ -a.e. x.

Alberti-Marchese, 2016: μ : finite measure on \mathbb{R}^n , $V(\mu, x) : \mathbb{R}^n \to Gr(\mathbb{R}^n)$: decomposability bundle. Then there exists a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ s.t. f is not diff. at xin any direction $v \notin V(\mu, x)$, for μ -a.e. $x \in \mathbb{R}^n$. More precisely: $D^+f(x, v) - D_+f(x, v) > 0$ for any such v. Alberti–Marchese, 2016: Let μ be a finite measure on \mathbb{R}^n and $V(\mu, x) : \mathbb{R}^n \to Gr(\mathbb{R}^n)$ be a decomposability bundle. Then there exists a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ such that, for μ -a.e. $x \in \mathbb{R}^n$, f is not differentiable at x in any direction $v \notin V(\mu, x)$, and, more precisely, $D^+f(x, v) - D_+f(x, v) > 0$ for any such v.

Theorem 4 (M-Preiss, 2017)

 μ : a Radon measure on \mathbb{R}^n , $T : \mathbb{R}^n \to Gr(\mathbb{R}^n)$ a μ -measurable map s.t. for every unit vector e and $0 < \alpha < 1$,

$$\Big\{x: C_{e,\alpha} \cap T(x) = \{0\}\Big\} = \mathsf{N}_\mu \cup \mathsf{E} \text{ s.t. } \mu(\mathsf{N}_\mu) = 0 \text{ and } w_{e,\alpha}(\mathsf{E}) = 0. \ (\star)$$

Then there is a Lipschitz function f on \mathbb{R}^n such that for μ -a.e. $x \in \mathbb{R}^n$ there is $c_x > 0$ such that $D^+f(x, v) - D_+f(x, v) \ge c_x \operatorname{dist}(v, T(x))$ for every $v \in \mathbb{R}^n$.

Alberti–Marchese, 2016: Decomposability bundle satisfies (*).

Theorem 3 (M-Preiss, 2017)

 $E = \bigcup_k E_k \subset \mathbb{R}^n$, E_k are \mathbf{F}_{σ} cone unrectifiable sets.

Then there is a Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ such that $N_f = E$, $D_f = \mathbb{R}^n \setminus E$.

Merlo, 2017: Let *E* be a bounded analytic set and let $m \ge n$. Then the following are equivalent:

I is contained in a countable union of closed pu sets,

• $S = \{ f \in Lip_1(n, m) : f \text{ is fully non-differentiable on } E \}$ is residual.

Theorem (Preiss – Tišer, 1995) Let E be a bounded analytic set. Then the following statements are equivalent:

- $\{f \in Lip_1 : f \text{ is differentiable at no point of } E\}$ is residual in Lip_1 ,
- **2** The set *E* is contained in an F_{σ} subset of measure zero.