
Abstract Wiener groups

MSRI Connections for Women Workshop:

Geometry and Probability in High Dimensions

18 August 2017

Tai Melcher
University of Virginia
melcher@virginia.edu

faculty.virginia.edu/melcher

joint with Baudoin, Dobbs, Driver, Eldredge, Gordina



Canonical Wiener space

Let

• W = W (Rk) = {w : [0, 1] → Rk : w is cts and w(0) = 0}
equipped with the sup norm,

• µ = Wiener measure on W , and

• H = H(Rk) = Cameron-Martin space, that is,

H =

{
h ∈ W : h is abs cts and

∫ 1

0
|ḣ(t)|2 dt < ∞

}

equipped with the inner product

⟨h, k⟩H :=

∫ 1

0
ḣ(t) · k̇(t) dt.



Canonical Wiener space

The triple (W,H, µ) is the canonical Wiener space, and we

have the following basic facts:

• W is a Banach space wrt the sup norm

• µ is a Gaussian measure on W

• The mapping h ∈ H &→ ḣ ∈ L2([0, 1],Rk) is an isometric

isomorphism and H is a separable Hilbert space.

• H is dense in W and µ(H) = 0

• Cameron-Martin-Maruyama quasi-invariance (QI)

theorem and integration by parts (IBP)



QI and IBP for Gaussian measure

For µ ∼ Normal(0, 1) on R, we have

dµ(x) =
1√
2π

e−|x|2/2 dx.

Then, for any y ∈ R,

dµy(x) := dµ(x− y) =
1√
2π

e−|x−y|2/2 dx

= e−|y|2/2+⟨x,y⟩ dµ(x).



QI and IBP for Gaussian measure

For µ ∼ Normal(0, 1), for any y ∈ R,

dµy(x) = e−|y|2/2+⟨x,y⟩ dµ(x).

Thus,
∫

R
(∂yf)(x)dµ(x) =

∫

R

d

dε

∣∣∣∣
0

f(x+ εy)dµ(x)

=
d

dε

∣∣∣∣
0

∫

R
f(x+ εy)dµ(x)

=
d

dε

∣∣∣∣
0

∫

R
f(x)e−ε2|y|2/2+⟨x,εy⟩ dµ(x)

=

∫

R
f(x)

d

dε

∣∣∣∣
0

e−ε2|y|2/2+ε⟨x,y⟩ dµ(x)

=

∫

R
f(x)⟨x, y⟩ dµ(x).



Canonical Wiener space

Theorem (Cameron-Martin-Maruyama)

The Wiener measure µ is quasi-invariant under translation

by elements of H.

That is, for y ∈ H and dµy := dµ(·− y),

µy ≪ µ and µy ≫ µ.

More particularly,

dµy(x) = e−|y|2H/2+“⟨x,y⟩” dµ(x).

Moreover, if y /∈ H, then µy ⊥ µ.

Theorem (Integration by parts) For all y ∈ H,
∫

W
(∂hf)(x) dµ(x) =

∫

W
f(x)“⟨x, y⟩” dµ(x).



Gross’ abstract Wiener space

An abstract Wiener space is a triple (W,H, µ) where

• W is a Banach space

• µ is a Gaussian measure on W (for example, f∗µ is a

Gaussian measure on R for any f ∈ W ∗)

• H is a Hilbert space densely embedded in W and,

when dim(H) = ∞, µ(H) = 0

The Cameron-Martin-Maruyama Theorem and IBP hold

on any abstract Wiener space.



Smooth measures

A measure µ on Rn is smooth if

• µ is abs cts wrt Lebesgue measure and the

Radon-Nikodym derivative is smooth – that is,

dµ(x) = p(x) dx, for some p ∈ C∞(Rn, (0,∞)).

⇕

• for any multi-index α, there exists

gα ∈ C∞(Rn) ∩ L∞−(µ) such that
∫

Rn
(−D)αf dµ =

∫

Rn
fgα dµ, for all f ∈ C∞

c (Rn).



QI and IBP in geometric settings

Theorem (Shigekawa, 1984)

Let G be a (fin dim) compact group. Let W (G) be path

space on G equipped with “Wiener measure” µ, and let

H(G) denote the space of finite-energy paths on G. Then

µ is quasi-invariant under translation by elements of H(G)

and IBP holds for derivatives in H(G) directions.



QI and IBP in geometric settings

Some references

Driver (1992)

Hsu (1995,2002)

Enchev & Stroock (1995)

Albeverio, Daletskii, & Kondratiev (1997)

Kondratiev, Silva, & Streit (1998)

Albeverio, Kondratiev, Röckner, & Tsikalenko (2000)

Kuna & Silva (2004)

Airault & Malliavin (2006)

Driver & Gordina (2008)

Hsu & Ouyang (2010)
...



A typical ∞-dimensional story...

• Find some “nice” finite-dim approximations GP .

• Prove a uniform lower bound on the Ricci curvature

of all the approximations: ∃ k > −∞ such that

sup
P

RicP ≥ k.

• RicP ≥ k =⇒ Wang/Integrated Harnack inequality:

For all y ∈ GP and q ∈ (1,∞),

⎛

⎝
∫

GP

[
pP (xy−1)

pP (x)

]q
pP (x) dx

⎞

⎠
1/q

≤ exp
(
C(k, q)dP (e, y)2

)
.

• Integrated Harnack inequality =⇒ QI



A typical ∞-dimensional story...

• Find some “nice” finite-dim approximations GP .

• Prove a uniform lower bound on the Ricci curvature

of all the approximations.

• RicP ≥ k =⇒ log Sobolev inequality

=⇒ Wang/Integrated Harnack inequality

• Integrated Harnack inequality =⇒ QI.

• Proofs are existence only, not constructive.

• Maybe you get a first-order integration by parts

formula.



Heisenberg group: elliptic model

On R3, consider the vector fields

X̃1(x) =
(
1, 0,−1

2
x2

)

X̃2(x) =
(
0, 1, 1

2
x1

)

X̃3(x) = (0, 0, 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

NOTE: ∀x ∈ R3,

span{X̃1(x), X̃2(x), X̃3(x)} = R3

Consider the solution ξt = (ξ1t , ξ
2
t , ξ

3
t ) ∈ R3 to the SDE

dξt = X̃1(ξt) ◦ dB1
t + X̃2(ξt) ◦ dB2

t + X̃3(ξt) ◦ dB3
t

=

⎛

⎜⎜⎜⎝

1

0

−1
2
ξ2t

⎞

⎟⎟⎟⎠
◦ dB1

t +

⎛

⎜⎜⎜⎝

0

1

1
2
ξ1t

⎞

⎟⎟⎟⎠
◦ dB2

t +

⎛

⎜⎜⎜⎝

0

0

1

⎞

⎟⎟⎟⎠
◦ dB3

t

with ξ0 = 0.



Heisenberg group: elliptic model

On R3, consider the vector fields

X̃1(x) =
(
1, 0,−1

2
x2

)
= ∂1 − 1

2
x2∂3

X̃2(x) =
(
0, 1, 1

2
x1

)
= ∂2 +

1
2
x1∂3

X̃3(x) = (0, 0, 1) = ∂3

The solution to the SDE

dξt = X̃1(ξt) ◦ dB1
t + X̃2(ξt) ◦ dB2

t + X̃3(ξt) ◦ dB3
t ,

with ξ0 = 0, may be written explicitly as

ξt =

(
B1

t , B
2
t , B

3
t +

1

2

∫ t

0
B1

sdB
2
s −B2

sdB
1
s

)

and µt = Law(ξt) is a smooth measure on R3.

The generator L = X̃2
1 + X̃2

2 + X̃2
3 of ξ is elliptic.



Heisenberg group: hypoelliptic model

On R3, consider the vector fields

X̃1(x) =
(
1, 0,−1

2
x2

)
= ∂1 − 1

2
x2∂3

X̃2(x) =
(
0, 1, 1

2
x1

)
= ∂2 +

1
2
x1∂3

X̃3(x) = (0, 0, 1) = ∂3

Note that [X̃1, X̃2] := X̃1X̃2 − X̃2X̃1 = X̃3. Thus, we can

write

span{X̃1(x), X̃2(x), [X̃1, X̃2](x)} = R3. (HC)

That is, {X̃1, X̃2} satisfies Hörmander’s Condition.



Heisenberg group: hypoelliptic model

On R3, consider the vector fields

X̃1(x) =
(
1, 0,−1

2
x2

)
= ∂1 − 1

2
x2∂3

X̃2(x) =
(
0, 1, 1

2
x1

)
= ∂2 +

1
2
x1∂3

X̃3(x) = (0, 0, 1) = ∂3

Since {X̃1, X̃2} satisfies (HC), Hörmander’s theorem

implies that the diffusion satisfying

dηt = X̃1(ηt) ◦ dB1
t + X̃2(ηt) ◦ dB2

t ,

has a smooth measure νt = Law(ηt) on R3. Again, we may

find η explicitly as

ηt =

(
B1

t , B
2
t ,

1

2

∫ t

0
B1

sdB
2
s −B2

sdB
1
s

)
.

The generator L = X̃2
1 + X̃2

2 of η is hypoelliptic.



Heisenberg group: hypoelliptic model

ηt =

(
B1

t , B
2
t ,

1

2

∫ t

0
B1

sdB
2
s −B2

sdB
1
s

)
=

(
Bt,

1

2

∫ t

0
[Bs, dBs]

)

(image from Nate Eldredge)

dνt
dm

(x, y, z) =
1

16π2

∫

R
eiλz/2

λ

sinh(λt)
e−(x2+y2)λ coth(λt)/4 dλ



Heisenberg group geometry

Let g = span{X1, X2, X3} ∼= R3 ∼= R2 × R with Lie bracket

[X1, X2] = X3, and all other brackets are 0.

In coordinates, this is

[(x1, x2, x3), (x
′
1, x

′
2, x

′
3)] = (0, 0, x1x

′
2 − x′

1x2).

Then via the BCHD formula we may equip R3 with the

group operation

x · x′ = x+ x′ +
1

2
[x, x′]

=

(
x1 + x′

1, x2 + x′
2, x3 + x′

3 +
1

2
(x1x

′
2 − x2x

′
1)

)
.

Then R3 with this group operation is the Heisenberg (Lie)

group, denoted by G, with identity 0, Lie(G) = g, and

ℓx∗Xi = X̃i(x).



Heisenberg group geometry

We can define a left-invariant Riemannian metric on G by

taking {X̃i(x)}3i=1 to be an ONB at each x ∈ G. Then

L =
3∑

i=1

X̃2
i

is the Laplace-Beltrami operator and

dξt = ξt ◦ dBt := ℓξt∗ ◦ dBt

:= ℓξt∗ ◦ (dB1
t X1 + dB2

t X2 + dB3
t X3) =

3∑

i=1

X̃i(ξt) ◦ dBi
t

“rolls” the g-valued BM Bt = B1
t X1 +B2

t X2 +B3
t X3 onto G.

We will call ξt Brownian motion on G.



Heisenberg group geometry

Similarly

dηt = X̃1(ηt) ◦ dB1
t + X̃2(ηt) ◦ dB2

t

rolls a span{X1, X2}-valued BM Bt = B1
t X1 +B2

t X2 onto G.

We will call ηt hypoelliptic Brownian motion on G.

No Riemannian metric! We do have a distance:

dh(x, y) := inf{ℓ(γ) : γ a horizontal path from x to y}.

(HC) =⇒ dh(x, y) < ∞ for all x, y ∈ G.



Heat kernel measures on Lie groups

Let G be a Lie group with identity e and Lie algebra g

with dim(g) = n.

Suppose

span({Xi}ni=1) = g

and let X̃ denote the unique left invariant v.f. such that

X̃(e) = X. Then

dξt = ξt ◦ dBt :=
n∑

i=1

X̃i(ξt) ◦ dBi
t

with ξ0 = e, has a smooth law on G.



Heat kernel measures on Lie groups

Let G be a Lie group with identity e and Lie algebra g

with dim(g) = n.

More generally, suppose {Xi}ki=1 ⊂ g satisfies

Lie({Xi})

:= span{Xi, [Xi1, Xi2], . . . , [Xi1 , [· · · , [Xir−1 , Xir ]]]} = g, (HC)

and let X̃ denote the unique left invariant v.f. such that

X̃(e) = X. Then for

Bt = BM on span({Xi}ki=1) ! g,

Hörmander’s Theorem implies that the solution to

dηt = ηt ◦ dBt :=
k∑

i=1

X̃i(ηt) ◦ dBi
t

with η0 = e, has a smooth law on G.



Heat kernel measures on Lie groups

That is, ∃ 0 < ρt, pt ∈ C∞(G) such that

dµt := Law(ξt) = ρt(·) d(Haar).

dνt := Law(ηt) = pt(·) d(Haar).

Call ρt the heat kernel and µt heat kernel measure (hkm)

and pt the hypoelliptic heat kernel and νt hypoelliptic hkm.

Elliptic corresponds to “nice” geometry –

hypoelliptic, not so much.



Problems with Ric ≥ k in hypoelliptic setting

For f, g ∈ C∞(G), let For f, g ∈ C∞(G), let

Γ(f, g) =
1

2
L(fg)− fLg − gLf

Γ2(f, g) =
1

2

(
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)

)
.

In particular, if L =
∑k

i=1 X̃
2
i , then

Γ(f) := Γ(f, f) = |∇f |2 =
k∑

i=1

|X̃if |2

Γ2(f) := Γ2(f, f) =
1

2

k∑

i=1

L(X̃if)
2 −

k∑

i=1

(X̃if)(X̃iLf).

FACT: Ric ≥ k ⇐⇒

Γ2(f) ≥ kΓ(f), ∀f ∈ C∞(G). (CDI)



Problems with Ric ≥ k in hypoelliptic setting

Consider the Heisenberg group case again.

X̃(x, y, z) = ∂x −
1

2
y∂z Ỹ (x, y, z) = ∂y +

1

2
x∂z

Then L = X̃2 + Ỹ 2 and

Γ(f) = (X̃f)2 + (Ỹ f)2

Γ2(f) =
1

2
LΓ(f)− Γ(f, Lf)

Note that

Γ(f)(0) = f2
x + f2

y

Γ2(f)(0) =
2∑

i,j=1

|∂i∂jf(0)|2 +
1

2
f2
z (0) + 2(fyfx,z − fxfy,z)(0).

Then there is no constant k ∈ R so that

Γ2(f)(0) ≥ kΓ(f)(0), ∀f ∈ C∞(G).



A typical ∞-dimensional story...

• Find some “nice” finite-dim approximations GP .

• Prove a uniform lower bound on the Ricci curvature

of all the approximations.

• RicP ≥ k =⇒ log Sobolev inequality

=⇒ Wang/Integrated Harnack inequality

• Integrated Harnack inequality =⇒ QI.

• Proofs are existence only, not constructive.

• Maybe you get a first-order integration by parts

formula.

• In the hypoelliptic setting, no Ricci curvature bounds!!

• In the hypoelliptic setting, only get something weaker,

e.g. finite-dim projections of heat kernel measures are

smooth in usual sense (see SPDE literature).



A replacement for Ric ≥ k ⇐⇒ Γ2 ≥ kΓ ?

Suppose G is a (fin-dim) Lie group with Lie({Xi}ki=1) = g,

and let {Zi}di=1 be an ONB of span({Xi}ki=1)
⊥.

(Baudoin and Garofalo) Define

ΓZ(f, g) :=
d∑

i=1

(Z̃if)(Z̃ig)

ΓZ
2 (f) :=

1

2
LΓZ(f)− ΓZ(f, Lf)

=
1

2

d∑

i=1

L(Z̃if)
2 −

d∑

i=1

(Z̃if)(Z̃iLf).

Suppose there exists α,β > 0 such that, for all λ > 0,

Γ2(f) + λΓZ
2 (f) ≥ αΓZ(f)−

β

λ
Γ(f). (GCDI)



A replacement for Ric ≥ k ⇐⇒ Γ2 ≥ kΓ

Suppose Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)) and there exists α,β > 0

such that, for all λ > 0,

Γ2(f) + λΓZ
2 (f) ≥ αΓZ(f)−

β

λ
Γ(f). (GCDI)

=⇒ reverse log Sobolev inequality:

For all nice f : G → R,

Γ(lnPtf) ≤
1 + 2β

α

t

(
Pt(f ln f)

Ptf
− lnPtf

)

=⇒ Wang/Integrated Harnack inequality:

For all y ∈ G and q ∈ (1,∞),

⎛

⎝
∫

G

[
pt(xy−1)

pt(x)

]q
pt(x) dx

⎞

⎠
1/q

≤ exp

(
C(q,α,β)

t
dh(e, y)

2

)
.



(GCDI) for 3-dim Heisenberg group

Γ(f) = (Xf)2 + (Y f)2

ΓZ(f) = (Zf)2

Γ2(f) = (X2f)2 + (Y 2f)2 +
1

2
((XY + Y X)f)2

+
1

2
(Zf)2 − 2(Xf)(Y Zf) + 2(Y f)(XZf)

ΓZ
2 (f) =

1

2
LΓZ(f)− ΓZ(f, Lf)

=
1

2
(X2 + Y 2)(Zf)2 − (Zf) · Z(X2f + Y 2f)

= (XZf)2 + (Y Zf)2 + (Zf)(ZX2f + ZY 2f)

− (Zf)(ZX2f + ZY 2f)

= (XZf)2 + (Y Zf)2



(GCDI) for 3-dim Heisenberg group

Note that

Γ2(f) ≥
1

2
(Zf)2 − 2(Xf)(Y Zf) + 2(Y f)(XZf)

For now just taking λ = 1

Γ2(f) + ΓZ
2 (f)

≥
1

2
(Zf)2 − 2(Xf)(Y Zf) + 2(Y f)(XZf) + (XZf)2 + (Y Zf)2

=
1

2
(Zf)2 + (Xf − Y Zf)2 − (Xf)2 + (Y f +XZf)2 − (Y f)2

≥
1

2
(Zf)2 − (Xf)2 − (Y f)2

=
1

2
ΓZ(f)− Γ(f)

So (GCDI) holds with α = 1
2
and β = 1.



QI and IBP in geometric settings

Some references

Driver (1992)

Hsu (1995,2002)

Enchev & Stroock (1995)

Albeverio, Daletskii, & Kondratiev (1997)

Kondratiev, Silva, & Streit (1998)

Albeverio, Kondratiev, Röckner, & Tsikalenko (2000)

Kuna & Silva (2004)

Airault & Malliavin (2006)

Driver & Gordina (2008): ∞-dim Heisenberg groups

Hsu & Ouyang (2010)
...

(ALL infinite-dimensional elliptic examples.)



∞-dimensional Heisenberg-like groups

Definition (Driver and Gordina) Let (W,H, µ) be an

abstract Wiener space and C be a finite-dimensional inner

product space.

Then g = W ×C is a Heisenberg-like Lie algebra if

1. [W,W ] ⊆ C and [W,C] = [C,C] = 0, and

2. [·, ·] : g× g → C is continuous.

Let G denote W ×C when thought of as the associated

Lie group with multiplication given by

gg′ = g + g′ +
1

2
[g, g′].

Such a group G will be called an infinite-dimensional

Heisenberg-like group.



∞-dimensional Heisenberg-like groups

Let G be an infinite-dimensional Heisenberg-like group

with Lie algebra g.

Definition Let bt = (BW
t ,BC

t ) be BM on g. Then

dξt = ξt ◦ dbt, with ξ0 = e,

is BM on G. This may be solved explicitly as

ξt =

(
BW

t , BC
t +

1

2

∫ t

0
[BW

t , dBW
t ]

)
.

Let µt = Law(ξt) denote the heat kernel measure on G.



∞-dimensional Heisenberg-like groups

Example Let a = (aj) ∈ ℓ1(R+) and set

W = ℓ2a(C) :=

⎧
⎨

⎩{zj} ∈ CN :
∞∑

j=1

aj |zj |2 < ∞

⎫
⎬

⎭

and H = ℓ2(C). Then (W,H, µ∞) is an AWS.

For w = {wj}∞j=1 = {xj + iyj}∞j=1 ∈ W and c ∈ R,

[(w, c), (w′, c′)] :=

⎛

⎝0,
∞∑

j=1

aj(xjy
′
j − yjx

′
j)

⎞

⎠

Via BCHD, define a group operation on G = WRe × R by

(w, c) · (w′, c′) :=

⎛

⎝w + w′, c+ c′ +
1

2

∞∑

j=1

aj(xjy
′
j − yjx

′
j)

⎞

⎠ .



∞-dimensional Heisenberg-like groups

Example Let (W,H) = (ℓ2a(C), ℓ2(C)) and C = R.

The solution to

dξt = ξt ◦ dbt, with ξ0 = e,

where bt = (BW
t ,Bt) with BW

t = {Xj
t + iY j

t }∞j=1, is given by

ξt =

⎛

⎝BW
t ,Bt +

1

2

∞∑

j=1

aj

∫ t

0
Xj

sdY
j
s − Y j

s dX
j
s

⎞

⎠ .



Elliptic QI theorem on Heisenberg-like groups

Let G be an infinite-dimensional Heisenberg-like group,

and ξt be BM on G with heat kernel measure µt = Law(ξt).

Let gCM denote H ×C when thought of as a Lie

subalgebra of g, and let GCM denote H ×C when thought

of as a subgroup of G.

Theorem (Driver and Gordina, 2008)

For all y ∈ GCM and t > 0, µt is quasi-invariant under right

translations by y. Moreover, for all q ∈ (1,∞),
∥∥∥∥∥
d(µt ◦ r−1

y )

dµt

∥∥∥∥∥
Lq(G,νt)

≤ exp
(
C(k, q, t)dCM (e, y)2

)
,

where Ric ≥ k and dCM is Riemannian distance on GCM .

Similarly for left translations.

Proof via “typical” ∞-dim story (kind of); critically

dependent on Ric ≥ k.



Hypoelliptic BM on Heisenberg-like groups

Let g = W ×C be an infinite-dimensional Heisenberg-like

Lie algebra and assume that

[W,W ] = C. (HC)

Then, for BW
t BM on W , the “hypoelliptic” BM on G is

the solution to

dηt = ηt ◦ dBW
t , with η0 = e.

This may be solved explicitly as

ηt = BW
t +

1

2

∫ t

0
[BW

s , dBW
s ] =

(
BW

t ,
1

2

∫ t

0
[BW

s , dBW
s ]

)
.

Let νt = Law(ηt) be the “hypoelliptic” heat kernel measure.



Hypoelliptic QI on Heisenberg-like groups

Theorem (Baudoin, Gordina, M)

For all y ∈ GCM and t > 0, νt is quasi-invariant under right

translations by y.

Moreover, for all q ∈ (1,∞),
∥∥∥∥∥
d(νt ◦ r−1

y )

dνt

∥∥∥∥∥
Lq(G,νt)

≤ exp

(
C(q, ρ, ∥[·, ·]∥)

t
dh(e, y)

2

)
,

where
∥∥[·, ·]

∥∥ is the HS norm,

ρ ∈ (0,∞) is determined by the Lie bracket,

and dh is the horizontal distance on GCM .

Similarly for left translations.



A new ∞-dimensional story...

• Find some “nice” fin-dim approximations GP (harder).

• Trivially ΓP (f,ΓZ
P (f)) = ΓZ

P (f,ΓP (f)).

• We prove that for each GP and all λ > 0, there exists

ρP ∈ (0,∞)

Γ2,P (f) + λΓZ
2,P (f) ≥ ρPΓ

Z
P (f)−

∥[·, ·]∥2P
λ

ΓP (f).

Thus, for all GP

⎛

⎝
∫

GP

[
pPt (xy

−1)

pPt (x)

]q
pPt (x) dx

⎞

⎠
1/q

≤ exp

(
C(q, ρP , ∥[·, ·]∥2P )

t
dPh (e, y)

2

)
.

• Integrated Harnack inequality =⇒ QI



Hypoelliptic heat kernel

More recently, using techniques more specific to the

Heisenberg structure, it’s been shown that the hypoelliptic

heat kernel measure is smooth in the traditional sense:

Theorem (Driver-Eldredge-M)
Let νt = Law(ηt). For each t > 0,

dνt(x, c) = Jt(x, c)dγt(x)dc

where γt = Law(Bt) and dc is Lebesgue measure on C.

Moreover, this heat kernel is smooth in the sense that, for any
h1, . . . , hn ∈ gCM , there exists Φ = Φ(h1, . . . , hm) ∈ L∞−(νt) so that
for all nice f : G → R

∫

G
(h̃1 · · · h̃nf)(x, c) dνt(x, c) =

∫

G
f(x, c)Φ(x, c) dνt(x, c). (*)



Hypoelliptic heat kernel

For λ ∈ C, define Ωλ : H → H by

⟨Ωλh, k⟩H = [h, k] · λ.

For each t > 0, define a random linear transformation
ρt(B) : C → C by

ρt(B)λ · λ :=
1

4

∫ t

0
∥ΩλBs∥2H ds.

Jt(x, c) = E

⎡

⎢⎢⎣
exp

(
− 1

2
ρt(B)−1c · c

)

√
det(2πρt(B))

∣∣∣∣∣∣∣
Bt = x

⎤

⎥⎥⎦



Hypoelliptic heat kernel

Remarks:

• supersedes previous results, including (Dobbs-M) showing
smoothness for elliptic hkm, but not path space results
from Driver-Gordina)

• still requires dim(C) < ∞

• relies on special structure of step 2 stratified groups

• actual smoothness result (v. smoothness of fin dim
projections)



Abstract (nilpotent) Wiener groups

Definition Let (g, gCM , µ) be an abstract Wiener space such
that gCM is equipped with a nilpotent Lie bracket.

Let GCM denote gCM when thought of as the Lie group with
multiplication defined via BCHD formula.

Assumption: [·, ·] : gCM × gCM → gCM is Hilbert-Schmidt.

Definition Let {Bt}t>0 be BM on g (elliptic case). Then

dξt = ξt ◦ dBt, with ξ0 = e,

is BM on G. For t > 0, let µt = Law(ξt) denote the heat kernel
measure on G.

We will call (G,GCM , µt) an abstract Wiener group.



Quasi-invariance on abstract Wiener groups

Theorem (M)
For all y ∈ GCM and t > 0, µt is quasi-invariant under right
translations by y. Moreover, for all q ∈ (1,∞),

∥∥∥∥∥
d(µt ◦ r−1

y )

dµt

∥∥∥∥∥
Lq(G,νt)

≤ exp
(
C(t, q, k)d2CM (e, y)

)

where Ric ≥ k. Similarly for left translations.

(Final) Remarks:

• general definition, lots of examples

• natural setting for studying hypoellipticity

• robust method for proving quasi-invariance

• but other hypoelliptic models will need other methods....


