Abstract Wiener groups

MSRI Connections for Women Workshop: Geometry and Probability in High Dimensions

18 August 2017

Tai Melcher

University of Virginia melcher@virginia.edu faculty.virginia.edu/melcher

joint with Baudoin, Dobbs, Driver, Eldredge, Gordina

Let

- $W = W(\mathbb{R}^k) = \{w: [0,1] \to \mathbb{R}^k : w \text{ is cts and } w(0) = 0\}$ equipped with the sup norm,
- $\mu = Wiener$ measure on W, and
- $H = H(\mathbb{R}^k) =$ Cameron-Martin space, that is,

$$H = \left\{ h \in W : h \text{ is abs cts and } \int_0^1 |\dot{h}(t)|^2 \, dt < \infty
ight\}$$

equipped with the inner product

$$\langle h,k\rangle_H := \int_0^1 \dot{h}(t) \cdot \dot{k}(t) dt.$$

Canonical Wiener space

The triple (W, H, μ) is the canonical Wiener space, and we have the following basic facts:

- W is a Banach space wrt the sup norm
- μ is a Gaussian measure on W
- The mapping $h \in H \mapsto \dot{h} \in L^2([0,1], \mathbb{R}^k)$ is an isometric isomorphism and H is a separable Hilbert space.
- H is dense in W and $\mu(H) = 0$
- Cameron-Martin-Maruyama quasi-invariance (QI) theorem and integration by parts (IBP)

QI and IBP for Gaussian measure

For $\mu \sim Normal(0,1)$ on \mathbb{R} , we have

$$d\mu(x) = \frac{1}{\sqrt{2\pi}} e^{-|x|^2/2} \, dx.$$

Then, for any $y \in \mathbb{R}$,

$$\begin{aligned} d\mu^{y}(x) &:= d\mu(x-y) = \frac{1}{\sqrt{2\pi}} e^{-|x-y|^{2}/2} \, dx \\ &= e^{-|y|^{2}/2 + \langle x, y \rangle} \, d\mu(x). \end{aligned}$$

QI and IBP for Gaussian measure

For $\mu \sim \text{Normal}(0,1)$, for any $y \in \mathbb{R}$,

$$d\mu^{y}(x) = e^{-|y|^{2}/2 + \langle x, y \rangle} d\mu(x).$$

Thus,

$$\begin{split} \int_{\mathbb{R}} (\partial_y f)(x) d\mu(x) &= \int_{\mathbb{R}} \frac{d}{d\varepsilon} \Big|_0 f(x + \varepsilon y) d\mu(x) \\ &= \frac{d}{d\varepsilon} \Big|_0 \int_{\mathbb{R}} f(x + \varepsilon y) d\mu(x) \\ &= \frac{d}{d\varepsilon} \Big|_0 \int_{\mathbb{R}} f(x) e^{-\varepsilon^2 |y|^2/2 + \langle x, \varepsilon y \rangle} d\mu(x) \\ &= \int_{\mathbb{R}} f(x) \frac{d}{d\varepsilon} \Big|_0 e^{-\varepsilon^2 |y|^2/2 + \varepsilon \langle x, y \rangle} d\mu(x) \\ &= \int_{\mathbb{R}} f(x) \langle x, y \rangle d\mu(x). \end{split}$$

Canonical Wiener space

Theorem (*Cameron-Martin-Maruyama*)

The Wiener measure μ is quasi-invariant under translation by elements of H.

That is, for $y \in H$ and $d\mu^y := d\mu(\cdot - y)$,

 $\mu^y \ll \mu$ and $\mu^y \gg \mu$.

More particularly,

$$d\mu^{y}(x) = e^{-|y|_{H}^{2}/2 + \ (\langle x, y \rangle)''} d\mu(x).$$

Moreover, if $y \notin H$, then $\mu^y \perp \mu$.

Theorem (Integration by parts) For all $y \in H$,

$$\int_{W} (\partial_h f)(x) \, d\mu(x) = \int_{W} f(x) \, ``\langle x, y \rangle '' \, d\mu(x).$$

Gross' abstract Wiener space

An abstract Wiener space is a triple (W, H, μ) where

- W is a Banach space
- μ is a Gaussian measure on W (for example, $f_*\mu$ is a Gaussian measure on \mathbb{R} for any $f \in W^*$)
- H is a Hilbert space densely embedded in W and, when $\dim(H)=\infty,\;\mu(H)=0$

The Cameron-Martin-Maruyama Theorem and IBP hold on any abstract Wiener space.

Smooth measures

A measure μ on \mathbb{R}^n is smooth if

• μ is abs cts wrt Lebesgue measure and the Radon-Nikodym derivative is smooth – that is,

 $d\mu(x) = p(x) dx$, for some $p \in C^{\infty}(\mathbb{R}^n, (0, \infty))$.

\uparrow

• for any multi-index α , there exists $g_{\alpha} \in C^{\infty}(\mathbb{R}^n) \cap L^{\infty-}(\mu)$ such that

$$\int_{\mathbb{R}^n} (-D)^{\alpha} f \, d\mu = \int_{\mathbb{R}^n} f g_{\alpha} \, d\mu, \quad \text{ for all } f \in C^{\infty}_c(\mathbb{R}^n).$$

QI and IBP in geometric settings

Theorem (*Shigekawa*, 1984)

Let G be a (fin dim) compact group. Let W(G) be path space on G equipped with "Wiener measure" μ , and let H(G) denote the space of finite-energy paths on G. Then μ is quasi-invariant under translation by elements of H(G)and IBP holds for derivatives in H(G) directions.

Some references

```
Driver (1992)
Hsu (1995,2002)
Enchev & Stroock (1995)
Albeverio, Daletskii, & Kondratiev (1997)
Kondratiev, Silva, & Streit (1998)
Albeverio, Kondratiev, Röckner, & Tsikalenko (2000)
Kuna & Silva (2004)
Airault & Malliavin (2006)
Driver & Gordina (2008)
Hsu & Ouyang (2010)
```

A typical ∞ -dimensional story...

- Find some "nice" finite-dim approximations G_P .
- Prove a uniform lower bound on the Ricci curvature of all the approximations: $\exists k > -\infty$ such that

$$\sup_{P} \operatorname{Ric}^{P} \ge k.$$

• $\operatorname{Ric}^P \ge k \implies \operatorname{Wang}/\operatorname{Integrated}$ Harnack inequality: For all $y \in G_P$ and $q \in (1, \infty)$,

$$\left(\int_{G_P} \left[\frac{p^P(xy^{-1})}{p^P(x)}\right]^q p^P(x) \, dx\right)^{1/q} \le \exp\left(C(k,q)d^P(e,y)^2\right).$$

• Integrated Harnack inequality \implies QI

A typical ∞ -dimensional story...

- Find some "nice" finite-dim approximations G_P .
- Prove a uniform lower bound on the Ricci curvature of all the approximations.
- $\operatorname{Ric}^P \ge k \implies \text{log Sobolev inequality}$ $\implies Wang/Integrated Harnack inequality$
- Integrated Harnack inequality \implies QI.
- Proofs are existence only, not constructive.
- Maybe you get a first-order integration by parts formula.

Heisenberg group: elliptic model

On \mathbb{R}^3 , consider the vector fields

$$\begin{split} \tilde{X}_{1}(x) &= \left(1, 0, -\frac{1}{2}x_{2}\right) \\ \tilde{X}_{2}(x) &= \left(0, 1, \frac{1}{2}x_{1}\right) \\ \tilde{X}_{3}(x) &= (0, 0, 1) \end{split} \ \begin{cases} \text{NOTE: } \forall x \in \mathbb{R}^{3}, \\ \text{span}\{\tilde{X}_{1}(x), \tilde{X}_{2}(x), \tilde{X}_{3}(x)\} = \mathbb{R}^{3} \end{split}$$

Consider the solution $\xi_t = (\xi_t^1, \xi_t^2, \xi_t^3) \in \mathbb{R}^3$ to the SDE

$$d\xi_{t} = \tilde{X}_{1}(\xi_{t}) \circ dB_{t}^{1} + \tilde{X}_{2}(\xi_{t}) \circ dB_{t}^{2} + \tilde{X}_{3}(\xi_{t}) \circ dB_{t}^{3}$$
$$= \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{2}\xi_{t}^{2} \end{pmatrix} \circ dB_{t}^{1} + \begin{pmatrix} 0 \\ 1 \\ \frac{1}{2}\xi_{t}^{1} \end{pmatrix} \circ dB_{t}^{2} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \circ dB_{t}^{3}$$

with $\xi_0 = 0$.

Heisenberg group: elliptic model

On $\mathbb{R}^3,$ consider the vector fields

$$\tilde{X}_{1}(x) = \left(1, 0, -\frac{1}{2}x_{2}\right) = \partial_{1} - \frac{1}{2}x_{2}\partial_{3}$$
$$\tilde{X}_{2}(x) = \left(0, 1, \frac{1}{2}x_{1}\right) = \partial_{2} + \frac{1}{2}x_{1}\partial_{3}$$
$$\tilde{X}_{3}(x) = (0, 0, 1) = \partial_{3}$$

The solution to the SDE

$$d\xi_t = \tilde{X}_1(\xi_t) \circ dB_t^1 + \tilde{X}_2(\xi_t) \circ dB_t^2 + \tilde{X}_3(\xi_t) \circ dB_t^3,$$

with $\xi_0 = 0$, may be written explicitly as

$$\xi_t = \left(B_t^1, B_t^2, B_t^3 + \frac{1}{2}\int_0^t B_s^1 dB_s^2 - B_s^2 dB_s^1\right)$$

and $\mu_t = \text{Law}(\xi_t)$ is a smooth measure on \mathbb{R}^3 . The generator $L = \tilde{X}_1^2 + \tilde{X}_2^2 + \tilde{X}_3^2$ of ξ is elliptic.

Heisenberg group: hypoelliptic model

On \mathbb{R}^3 , consider the vector fields

$$\tilde{X}_{1}(x) = \left(1, 0, -\frac{1}{2}x_{2}\right) = \partial_{1} - \frac{1}{2}x_{2}\partial_{3}$$
$$\tilde{X}_{2}(x) = \left(0, 1, \frac{1}{2}x_{1}\right) = \partial_{2} + \frac{1}{2}x_{1}\partial_{3}$$
$$\tilde{X}_{3}(x) = (0, 0, 1) = \partial_{3}$$

Note that $[\tilde{X}_1, \tilde{X}_2] := \tilde{X}_1 \tilde{X}_2 - \tilde{X}_2 \tilde{X}_1 = \tilde{X}_3$. Thus, we can write

$$\operatorname{span}\{\tilde{X}_1(x), \tilde{X}_2(x), [\tilde{X}_1, \tilde{X}_2](x)\} = \mathbb{R}^3.$$
 (HC)

That is, $\{\tilde{X}_1, \tilde{X}_2\}$ satisfies Hörmander's Condition.

Heisenberg group: hypoelliptic model

On \mathbb{R}^3 , consider the vector fields

$$\tilde{X}_{1}(x) = \left(1, 0, -\frac{1}{2}x_{2}\right) = \partial_{1} - \frac{1}{2}x_{2}\partial_{3}$$
$$\tilde{X}_{2}(x) = \left(0, 1, \frac{1}{2}x_{1}\right) = \partial_{2} + \frac{1}{2}x_{1}\partial_{3}$$
$$\tilde{X}_{3}(x) = (0, 0, 1) = \partial_{3}$$

Since $\{\tilde{X}_1, \tilde{X}_2\}$ satisfies (HC), Hörmander's theorem implies that the diffusion satisfying

$$d\eta_t = \tilde{X}_1(\eta_t) \circ dB_t^1 + \tilde{X}_2(\eta_t) \circ dB_t^2,$$

has a smooth measure $\nu_t = \text{Law}(\eta_t)$ on \mathbb{R}^3 . Again, we may find η explicitly as

$$\eta_t = \left(B_t^1, B_t^2, \frac{1}{2} \int_0^t B_s^1 dB_s^2 - B_s^2 dB_s^1 \right).$$

The generator $L = \tilde{X}_1^2 + \tilde{X}_2^2$ of η is hypoelliptic.

Heisenberg group: hypoelliptic model

$$\eta_t = \left(B_t^1, B_t^2, \frac{1}{2}\int_0^t B_s^1 dB_s^2 - B_s^2 dB_s^1\right) = \left(B_t, \frac{1}{2}\int_0^t [B_s, dB_s]\right)$$

$$(\text{image from Nate Eldredge})$$

$$\frac{d\nu_t}{dm}(x, y, z) = \frac{1}{16\pi^2}\int_{\mathbb{R}} e^{i\lambda z/2} \frac{\lambda}{\sinh(\lambda t)} e^{-(x^2 + y^2)\lambda \coth(\lambda t)/4} d\lambda$$

Let $\mathfrak{g} = \operatorname{span}\{X_1, X_2, X_3\} \cong \mathbb{R}^3 \cong \mathbb{R}^2 \times \mathbb{R}$ with Lie bracket

 $[X_1, X_2] = X_3$, and all other brackets are 0.

In coordinates, this is

$$[(x_1, x_2, x_3), (x'_1, x'_2, x'_3)] = (0, 0, x_1 x'_2 - x'_1 x_2).$$

Then via the BCHD formula we may equip \mathbb{R}^3 with the group operation

$$\begin{aligned} x \cdot x' &= x + x' + \frac{1}{2} [x, x'] \\ &= \left(x_1 + x'_1, x_2 + x'_2, x_3 + x'_3 + \frac{1}{2} (x_1 x'_2 - x_2 x'_1) \right). \end{aligned}$$

Then \mathbb{R}^3 with this group operation is the Heisenberg (Lie) group, denoted by G, with identity 0, $\text{Lie}(G) = \mathfrak{g}$, and

$$\ell_{x*}X_i = \tilde{X}_i(x).$$

Heisenberg group geometry

We can define a left-invariant Riemannian metric on G by taking ${\{\tilde{X}_i(x)\}_{i=1}^3}$ to be an ONB at each $x \in G$. Then

$$L = \sum_{i=1}^{3} \tilde{X}_i^2$$

is the Laplace-Beltrami operator and

$$d\xi_t = \xi_t \circ dB_t := \ell_{\xi_t *} \circ dB_t$$
$$:= \ell_{\xi_t *} \circ (dB_t^1 X_1 + dB_t^2 X_2 + dB_t^3 X_3) = \sum_{i=1}^3 \tilde{X}_i(\xi_t) \circ dB_t^i$$

"rolls" the g-valued BM $B_t = B_t^1 X_1 + B_t^2 X_2 + B_t^3 X_3$ onto G.

We will call ξ_t Brownian motion on G.

Similarly

$$d\eta_t = \tilde{X}_1(\eta_t) \circ dB_t^1 + \tilde{X}_2(\eta_t) \circ dB_t^2$$

rolls a span{ X_1, X_2 }-valued BM $B_t = B_t^1 X_1 + B_t^2 X_2$ onto G. We will call η_t hypoelliptic Brownian motion on G.

No Riemannian metric! We do have a distance:

 $d_h(x,y) := \inf\{\ell(\gamma) : \gamma \text{ a horizontal path from } x \text{ to } y\}.$

(HC) $\implies d_h(x,y) < \infty$ for all $x, y \in G$.

Heat kernel measures on Lie groups

Let G be a Lie group with identity e and Lie algebra \mathfrak{g} with $\dim(\mathfrak{g}) = n$.

Suppose

$$\operatorname{span}(\{X_i\}_{i=1}^n) = \mathfrak{g}$$

and let \tilde{X} denote the unique left invariant v.f. such that $\tilde{X}(e) = X$. Then

$$d\xi_t = \xi_t \circ dB_t := \sum_{i=1}^n \tilde{X}_i(\xi_t) \circ dB_t^i$$

with $\xi_0 = e$, has a smooth law on G.

Heat kernel measures on Lie groups

Let G be a Lie group with identity e and Lie algebra \mathfrak{g} with $\dim(\mathfrak{g}) = n$.

More generally, suppose $\{X_i\}_{i=1}^k \subset \mathfrak{g}$ satisfies

Lie({
$$X_i$$
})
:= span{ $X_i, [X_{i_1}, X_{i_2}], \dots, [X_{i_1}, [\cdots, [X_{i_{r-1}}, X_{i_r}]]$ } = \mathfrak{g} , (HC)

and let \tilde{X} denote the unique left invariant v.f. such that $\tilde{X}(e) = X$. Then for

$$B_t = \mathsf{BM}$$
 on $\mathrm{span}(\{X_i\}_{i=1}^k) \subsetneq \mathfrak{g}$,

Hörmander's Theorem implies that the solution to

$$d\eta_t = \eta_t \circ dB_t := \sum_{i=1}^k \tilde{X}_i(\eta_t) \circ dB_t^i$$

with $\eta_0 = e$, has a smooth law on G.

Heat kernel measures on Lie groups

That is, $\exists 0 < \rho_t, p_t \in C^{\infty}(G)$ such that

$$d\mu_t := \operatorname{Law}(\xi_t) = \rho_t(\cdot) d(Haar).$$

$$d\nu_t := \operatorname{Law}(\eta_t) = p_t(\cdot) d(Haar).$$

Call ρ_t the heat kernel and μ_t heat kernel measure (hkm) and p_t the hypoelliptic heat kernel and ν_t hypoelliptic hkm.

Elliptic corresponds to "nice" geometry – hypoelliptic, not so much.

Problems with $Ric \ge k$ in hypoelliptic setting

For $f,g \in C^{\infty}(G)$, let For $f,g \in C^{\infty}(G)$, let

$$\Gamma(f,g) = \frac{1}{2}L(fg) - fLg - gLf$$

$$\Gamma_2(f,g) = \frac{1}{2}\left(L\Gamma(f,g) - \Gamma(f,Lg) - \Gamma(g,Lf)\right).$$

In particular, if $L = \sum_{i=1}^k \tilde{X}_i^2$, then

$$\Gamma(f) := \Gamma(f, f) = |\nabla f|^2 = \sum_{i=1}^k |\tilde{X}_i f|^2$$

$$\Gamma_2(f) := \Gamma_2(f, f) = \frac{1}{2} \sum_{i=1}^k L(\tilde{X}_i f)^2 - \sum_{i=1}^k (\tilde{X}_i f)(\tilde{X}_i L f).$$

FACT: Ric $\geq k \iff$

 $\Gamma_2(f) \ge k\Gamma(f), \quad \forall f \in C^\infty(G).$ (CDI)

Problems with $\operatorname{Ric} \geq k$ in hypoelliptic setting

Consider the Heisenberg group case again.

$$\tilde{X}(x,y,z)=\partial_x-\frac{1}{2}y\partial_z\qquad \tilde{Y}(x,y,z)=\partial_y+\frac{1}{2}x\partial_z$$
 Then $L=\tilde{X}^2+\tilde{Y}^2$ and

$$\Gamma(f) = (\tilde{X}f)^2 + (\tilde{Y}f)^2$$
$$\Gamma_2(f) = \frac{1}{2}L\Gamma(f) - \Gamma(f, Lf)$$

Note that

$$\Gamma(f)(0) = f_x^2 + f_y^2$$

$$\Gamma_2(f)(0) = \sum_{i,j=1}^2 |\partial_i \partial_j f(0)|^2 + \frac{1}{2} f_z^2(0) + 2(f_y f_{x,z} - f_x f_{y,z})(0).$$

Then there is **no** constant $k \in \mathbb{R}$ so that

$$\Gamma_2(f)(0) \ge k\Gamma(f)(0), \quad \forall f \in C^{\infty}(G).$$

A typical ∞ -dimensional story...

- Find some "nice" finite-dim approximations G_P .
- Prove a uniform lower bound on the Ricci curvature of all the approximations.
- $\operatorname{Ric}^{P} \ge k \implies \text{log Sobolev inequality}$ $\implies \operatorname{Wang/Integrated Harnack inequality}$
- Integrated Harnack inequality \implies QI.
- Proofs are existence only, not constructive.
- Maybe you get a first-order integration by parts formula.
- In the hypoelliptic setting, no Ricci curvature bounds!!
- In the hypoelliptic setting, only get something weaker, e.g. finite-dim projections of heat kernel measures are smooth in usual sense (see SPDE literature).

A replacement for $\operatorname{Ric} \geq k \iff \Gamma_2 \geq k\Gamma$?

Suppose G is a (fin-dim) Lie group with $\text{Lie}(\{X_i\}_{i=1}^k) = \mathfrak{g}$, and let $\{Z_i\}_{i=1}^d$ be an ONB of $\text{span}(\{X_i\}_{i=1}^k)^{\perp}$.

(Baudoin and Garofalo) Define

$$\begin{split} \Gamma^{Z}(f,g) &:= \sum_{i=1}^{d} (\tilde{Z}_{i}f)(\tilde{Z}_{i}g) \\ \Gamma^{Z}_{2}(f) &:= \frac{1}{2}L\Gamma^{Z}(f) - \Gamma^{Z}(f,Lf) \\ &= \frac{1}{2}\sum_{i=1}^{d} L(\tilde{Z}_{i}f)^{2} - \sum_{i=1}^{d} (\tilde{Z}_{i}f)(\tilde{Z}_{i}Lf) \end{split}$$

Suppose there exists $\alpha, \beta > 0$ such that, for all $\lambda > 0$,

$$\Gamma_2(f) + \lambda \Gamma_2^Z(f) \ge \alpha \Gamma^Z(f) - \frac{\beta}{\lambda} \Gamma(f).$$
 (GCDI)

A replacement for $\operatorname{Ric} \geq k \iff \Gamma_2 \geq k\Gamma$

Suppose $\Gamma(f, \Gamma^Z(f)) = \Gamma^Z(f, \Gamma(f))$ and there exists $\alpha, \beta > 0$ such that, for all $\lambda > 0$,

$$\Gamma_2(f) + \lambda \Gamma_2^Z(f) \ge \alpha \Gamma^Z(f) - \frac{\beta}{\lambda} \Gamma(f).$$
 (GCDI)

 \implies reverse log Sobolev inequality:

For all nice $f: G \to \mathbb{R}$,

$$\Gamma(\ln P_t f) \le \frac{1 + \frac{2\beta}{\alpha}}{t} \left(\frac{P_t(f \ln f)}{P_t f} - \ln P_t f\right)$$

 \implies Wang/Integrated Harnack inequality: For all $y \in G$ and $q \in (1, \infty)$,

$$\left(\int_G \left[\frac{p_t(xy^{-1})}{p_t(x)}\right]^q p_t(x) \, dx\right)^{1/q} \le \exp\left(\frac{C(q,\alpha,\beta)}{t} d_h(e,y)^2\right).$$

$$\begin{split} \Gamma(f) &= (Xf)^2 + (Yf)^2 \\ \Gamma^Z(f) &= (Zf)^2 \\ \Gamma_2(f) &= (X^2f)^2 + (Y^2f)^2 + \frac{1}{2}((XY + YX)f)^2 \\ &\quad + \frac{1}{2}(Zf)^2 - 2(Xf)(YZf) + 2(Yf)(XZf) \\ \Gamma_2^Z(f) &= \frac{1}{2}L\Gamma^Z(f) - \Gamma^Z(f, Lf) \\ &= \frac{1}{2}(X^2 + Y^2)(Zf)^2 - (Zf) \cdot Z(X^2f + Y^2f) \\ &= (XZf)^2 + (YZf)^2 + (Zf)(ZX^2f + ZY^2f) \\ &\quad - (Zf)(ZX^2f + ZY^2f) \\ &= (XZf)^2 + (YZf)^2 \end{split}$$

Note that

$$\Gamma_2(f) \ge \frac{1}{2}(Zf)^2 - 2(Xf)(YZf) + 2(Yf)(XZf)$$

For now just taking $\lambda=1$

 $\Gamma_2(f)+\Gamma_2^Z(f)$

$$\geq \frac{1}{2}(Zf)^2 - 2(Xf)(YZf) + 2(Yf)(XZf) + (XZf)^2 + (YZf)^2 = \frac{1}{2}(Zf)^2 + (Xf - YZf)^2 - (Xf)^2 + (Yf + XZf)^2 - (Yf)^2 \geq \frac{1}{2}(Zf)^2 - (Xf)^2 - (Yf)^2 = \frac{1}{2}\Gamma^Z(f) - \Gamma(f)$$

So (GCDI) holds with $\alpha = \frac{1}{2}$ and $\beta = 1$.

Some references

```
Driver (1992)
Hsu (1995,2002)
Enchev & Stroock (1995)
Albeverio, Daletskii, & Kondratiev (1997)
Kondratiev, Silva, & Streit (1998)
Albeverio, Kondratiev, Röckner, & Tsikalenko (2000)
Kuna & Silva (2004)
Airault & Malliavin (2006)
Driver & Gordina (2008): \infty-dim Heisenberg groups
Hsu & Ouyang (2010)
```

(ALL infinite-dimensional elliptic examples.)

Definition (*Driver and Gordina*) Let (W, H, μ) be an abstract Wiener space and **C** be a finite-dimensional inner product space.

Then $\mathfrak{g} = W \times \mathbb{C}$ is a Heisenberg-like Lie algebra if

- 1. $[W,W] \subseteq \mathbf{C}$ and $[W,\mathbf{C}] = [\mathbf{C},\mathbf{C}] = 0$, and
- 2. $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathbf{C}$ is continuous.

Let G denote $W \times C$ when thought of as the associated Lie group with multiplication given by

$$gg' = g + g' + \frac{1}{2}[g,g'].$$

Such a group G will be called an infinite-dimensional Heisenberg-like group.

Let G be an infinite-dimensional Heisenberg-like group with Lie algebra \mathfrak{g} .

Definition Let $b_t = (B_t^W, B_t^C)$ be BM on \mathfrak{g} . Then

 $d\xi_t = \xi_t \circ db_t$, with $\xi_0 = e$,

is BM on G. This may be solved explicitly as

$$\xi_t = \left(B_t^W, B_t^{\mathbf{C}} + \frac{1}{2} \int_0^t [B_t^W, dB_t^W] \right).$$

Let $\mu_t = \text{Law}(\xi_t)$ denote the heat kernel measure on G.

Example Let $a = (a_j) \in \ell^1(\mathbb{R}^+)$ and set

$$W = \ell_a^2(\mathbb{C}) := \left\{ \{z_j\} \in \mathbb{C}^{\mathbb{N}} : \sum_{j=1}^{\infty} a_j |z_j|^2 < \infty \right\}$$

and $H = \ell^2(\mathbb{C})$. Then (W, H, μ^{∞}) is an AWS.

For $w = \{w_j\}_{j=1}^{\infty} = \{x_j + iy_j\}_{j=1}^{\infty} \in W$ and $c \in \mathbb{R}$,

$$[(w,c), (w',c')] := \left(0, \sum_{j=1}^{\infty} a_j (x_j y'_j - y_j x'_j)\right)$$

Via BCHD, define a group operation on $G = W_{\mathrm{Re}} \times \mathbb{R}$ by

$$(w,c) \cdot (w',c') := \left(w + w', c + c' + \frac{1}{2} \sum_{j=1}^{\infty} a_j (x_j y'_j - y_j x'_j) \right).$$

Example Let $(W, H) = (\ell_a^2(\mathbb{C}), \ell^2(\mathbb{C}))$ and $\mathbb{C} = \mathbb{R}$.

The solution to

$$d\xi_t = \xi_t \circ db_t, \quad \text{with } \xi_0 = e,$$

where $b_t = (B_t^W, B_t)$ with $B_t^W = \{X_t^j + iY_t^j\}_{j=1}^\infty$, is given by

$$\xi_{t} = \left(B_{t}^{W}, B_{t} + \frac{1}{2} \sum_{j=1}^{\infty} a_{j} \int_{0}^{t} X_{s}^{j} dY_{s}^{j} - Y_{s}^{j} dX_{s}^{j} \right)$$

Elliptic QI theorem on Heisenberg-like groups

Let G be an infinite-dimensional Heisenberg-like group, and ξ_t be BM on G with heat kernel measure $\mu_t = \text{Law}(\xi_t)$.

Let \mathfrak{g}_{CM} denote $H \times \mathbb{C}$ when thought of as a Lie subalgebra of \mathfrak{g} , and let G_{CM} denote $H \times \mathbb{C}$ when thought of as a subgroup of G.

Theorem (*Driver and Gordina, 2008*) For all $y \in G_{CM}$ and t > 0, μ_t is quasi-invariant under right translations by y. Moreover, for all $q \in (1, \infty)$,

$$\left\|\frac{d(\mu_t \circ r_y^{-1})}{d\mu_t}\right\|_{L^q(G,\nu_t)} \le \exp\left(C(k,q,t)d_{CM}(e,y)^2\right),$$

where $\operatorname{Ric} \geq k$ and d_{CM} is Riemannian distance on G_{CM} . Similarly for left translations.

Proof via "typical" ∞ -dim story (kind of); critically dependent on $\operatorname{Ric} \geq k$.

Hypoelliptic BM on Heisenberg-like groups

Let $\mathfrak{g} = W \times \mathbf{C}$ be an infinite-dimensional Heisenberg-like Lie algebra and assume that

$$[W,W] = \mathbf{C}.\tag{HC}$$

Then, for B_t^W BM on W, the "hypoelliptic" BM on G is the solution to

$$d\eta_t = \eta_t \circ dB^W_t, \qquad$$
 with $\eta_0 = e.$

This may be solved explicitly as

$$\eta_t = B_t^W + \frac{1}{2} \int_0^t [B_s^W, dB_s^W] = \left(B_t^W, \frac{1}{2} \int_0^t [B_s^W, dB_s^W] \right).$$

Let $\nu_t = \text{Law}(\eta_t)$ be the "hypoelliptic" heat kernel measure.

Hypoelliptic QI on Heisenberg-like groups

Theorem (*Baudoin*, *Gordina*, *M*) For all $y \in G_{CM}$ and t > 0, ν_t is quasi-invariant under right translations by y.

Moreover, for all $q \in (1,\infty)$,

$$\left\|\frac{d(\nu_t \circ r_y^{-1})}{d\nu_t}\right\|_{L^q(G,\nu_t)} \le \exp\left(\frac{C(q,\rho,\|[\cdot,\cdot]\|)}{t}d_h(e,y)^2\right),$$

where $\|[\cdot, \cdot]\|$ is the HS norm, $\rho \in (0, \infty)$ is determined by the Lie bracket, and d_h is the horizontal distance on G_{CM} .

Similarly for left translations.

A new ∞ -dimensional story...

- Find some "nice" fin-dim approximations G_P (harder).
- Trivially $\Gamma_P(f, \Gamma_P^Z(f)) = \Gamma_P^Z(f, \Gamma_P(f)).$
- We prove that for each G_P and all $\lambda > 0$, there exists $\rho_P \in (0,\infty)$

$$\Gamma_{2,P}(f) + \lambda \Gamma_{2,P}^{Z}(f) \ge \rho_P \Gamma_P^{Z}(f) - \frac{\|[\cdot, \cdot]\|_P^2}{\lambda} \Gamma_P(f).$$

Thus, for all G_P

$$\left(\int_{G_P} \left[\frac{p_t^P(xy^{-1})}{p_t^P(x)}\right]^q p_t^P(x) \, dx\right)^{1/q}$$
$$\leq \exp\left(\frac{C(q,\rho_P,\|[\cdot,\cdot]\|_P^2)}{t} d_h^P(e,y)^2\right)$$

• Integrated Harnack inequality \implies QI

Hypoelliptic heat kernel

More recently, using techniques more specific to the Heisenberg structure, it's been shown that the hypoelliptic heat kernel measure is smooth in the traditional sense:

Theorem (*Driver-Eldredge-M*) Let $\nu_t = \text{Law}(\eta_t)$. For each t > 0,

 $d\nu_t(x,c) = J_t(x,c)d\gamma_t(x)dc$

where $\gamma_t = \text{Law}(B_t)$ and dc is Lebesgue measure on C.

Moreover, this heat kernel is smooth in the sense that, for any $h_1, \ldots, h_n \in \mathfrak{g}_{CM}$, there exists $\Phi = \Phi(h_1, \ldots, h_m) \in L^{\infty-}(\nu_t)$ so that for all nice $f: G \to \mathbb{R}$

$$\int_G (\tilde{h}_1 \cdots \tilde{h}_n f)(x,c) \, d\nu_t(x,c) = \int_G f(x,c) \Phi(x,c) \, d\nu_t(x,c). \tag{*}$$

Hypoelliptic heat kernel

For $\lambda \in \mathbf{C}$, define $\Omega_{\lambda} : H \to H$ by

$$\langle \Omega_{\lambda}h,k\rangle_{H} = [h,k]\cdot\lambda.$$

For each t > 0, define a random linear transformation $\rho_t(B) : \mathbf{C} \to \mathbf{C}$ by

$$\rho_t(B)\lambda\cdot\lambda := \frac{1}{4}\int_0^t \|\Omega_\lambda B_s\|_H^2 \, ds.$$

$$J_t(x,c) = \mathbb{E}\left[\left. \frac{\exp\left(-\frac{1}{2}\rho_t(B)^{-1}c \cdot c\right)}{\sqrt{\det(2\pi\rho_t(B))}} \right| B_t = x \right]$$

Remarks:

- supersedes previous results, including (Dobbs-M) showing smoothness for elliptic hkm, but not path space results from Driver-Gordina)
- still requires $\dim(C) < \infty$
- relies on special structure of step 2 stratified groups
- actual smoothness result (v. smoothness of fin dim projections)

Abstract (nilpotent) Wiener groups

Definition Let $(\mathfrak{g}, \mathfrak{g}_{CM}, \mu)$ be an abstract Wiener space such that \mathfrak{g}_{CM} is equipped with a nilpotent Lie bracket.

Let G_{CM} denote \mathfrak{g}_{CM} when thought of as the Lie group with multiplication defined via BCHD formula.

Assumption: $[\cdot, \cdot] : \mathfrak{g}_{CM} \times \mathfrak{g}_{CM} \to \mathfrak{g}_{CM}$ is Hilbert-Schmidt.

Definition Let $\{B_t\}_{t>0}$ be BM on \mathfrak{g} (elliptic case). Then

 $d\xi_t = \xi_t \circ dB_t$, with $\xi_0 = e$,

is BM on G. For t > 0, let $\mu_t = \text{Law}(\xi_t)$ denote the heat kernel measure on G.

We will call (G, G_{CM}, μ_t) an abstract Wiener group.

Theorem (M)

For all $y \in G_{CM}$ and t > 0, μ_t is quasi-invariant under right translations by y. Moreover, for all $q \in (1, \infty)$,

$$\left\|\frac{d(\mu_t \circ r_y^{-1})}{d\mu_t}\right\|_{L^q(G,\nu_t)} \le \exp\left(C(t,q,k)d_{CM}^2(e,y)\right)$$

where $\operatorname{Ric} \geq k$. Similarly for left translations.

(Final) Remarks:

- general definition, lots of examples
- natural setting for studying hypoellipticity
- robust method for proving quasi-invariance
- but other hypoelliptic models will need other methods....