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Abstract

We present the main results on the geometry of isotropic convex bodies. Our starting point is the
slicing problem, which asks if there exists an absolute constant c > 0 such that maxθ∈Sn−1 Voln(K ∩
θ⊥) > c for every convex body K of volume 1 in Rn that has barycenter at the origin. It turns out that
a natural framework for the study of this problem is the isotropic position of a convex body. A convex
body K in Rn is called isotropic if Voln(K) = 1, its barycenter is at the origin and its inertia matrix is
a multiple of the identity, that is, there exists a constant LK > 0 such that∫

K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. The number LK is then called the isotropic constant of K. We will see that the
affine class of any convex body K contains a unique, up to orthogonal transformations, isotropic convex
body; this is the isotropic position of K.

One of our first goals is to show that an affirmative answer to the slicing problem is equivalent to
the following statement:

There exists an absolute constant C > 0 such that

Ln := max{LK : K is an isotropic convex body in Rn} 6 C.

The notion of the isotropic constant can be reintroduced in the more general setting of finite log-concave
measures, and a more general question can be posed in a way that is equivalent to the above when we
consider uniform measures on convex bodies. We say that a finite log-concave measure µ in Rn is
isotropic if µ is a probability measure, its barycenter is at the origin and the covariance matrix Cov(µ)
of µ is the identity matrix. The isotropic constant of µ is defined in an appropriate way, and a theorem
of K. Ball shows that, in fact, for some absolute constant c > 1,

Ln 6 sup{Lµ : µ is isotropic on Rn} 6 cLn.

We present the best known upper bounds for Ln. Around 1985-6 (published in 1990), Bourgain obtained
the upper bound Ln 6 c 4

√
n logn and, in 2006, this estimate was improved by Klartag to Ln 6 c 4

√
n.

Actually, Klartag obtained a solution to the “isomorphic slicing problem”, by showing that, for every
convex body K in Rn and any ε ∈ (0, 1), one can find a centered convex body T ⊂ Rn and a point
x ∈ Rn such that (1 + ε)−1T ⊆ K + x ⊆ (1 + ε)T and LT 6 C/

√
ε for some absolute constant C > 0.

Klartag’s method relies on properties of the logarithmic Laplace transform of the uniform measure on
a convex body.

Klartag’s proof of the bound Ln 6 c 4
√
n combines his solution to the isomorphic slicing problem

with the following very useful deviation inequality of Paouris: if µ is an isotropic log-concave probability
measure in Rn then

µ({x ∈ Rn : |x| > ct
√
n}) 6 exp

(
−t
√
n
)

for every t > 1, where c > 0 is an absolute constant. We present the proof of this inequality, and we
develop in parallel the basic theory of the Lq-centroid bodies of an isotropic log-concave measure.

Then, we discuss some recent approaches to the slicing problem. Among them are two reductions
that rely heavily on the existence of convex bodies with maximal isotropic constant whose isotropic
position is compatible with regular covering estimates, and an alternative approach of Klartag and
E. Milman that combines the advantages of both the logarithmic Laplace transform and the theory of
the Lq-centroid bodies.
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Finally, we describe E. Milman’s almost sharp estimate for the mean width w(Zq(K)) of the Lq-
centroid bodies Zq(K) of an isotropic convex body K in Rn. This is the most recent important result
of the theory, leading to the estimate w(K) 6 C

√
n(logn)2LK for any isotropic convex body in Rn.

An interesting related question is to understand whether an isotropic convex body is sub-Gaussian in
most directions. As a consequence of E. Milman’s theorem, one can show that the answer is affirmative.
More precisely, one has ‖〈·, θ〉‖Lψ2

(K) 6 C(logn)2LK for a random θ ∈ Sn−1.
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