
Geometry of isotropic convex bodies and the slicing

problem

Apostolos Giannopoulos

Abstract

Lecture notes for the introductory workshop of the program “Geometric Functional Analysis and
Applications” at the Mathematical Sciences Research Institute, Fall 2017. We present the main results
on the geometry of isotropic convex bodies. The emphasis is on the slicing problem, a well-known open
question regarding the distribution of volume in high-dimensional convex bodies.

1 Introduction

Our starting point is the slicing problem, which asks if there exists an absolute constant c > 0 such that
maxθ∈Sn−1 Voln(K ∩ θ⊥) > c for every convex body K of volume 1 in Rn that has barycenter at the origin.
It turns out that a natural framework for the study of this problem is the isotropic position of a convex body.
A convex body K in Rn is called isotropic if Voln(K) = 1, its barycenter is at the origin and its inertia
matrix is a multiple of the identity, that is, there exists a constant LK > 0 such that∫

K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. The number LK is then called the isotropic constant of K. We will see that the affine
class of any convex body K contains a unique, up to orthogonal transformations, isotropic convex body; this
is the isotropic position of K.

One of our first goals is to show that an affirmative answer to the slicing problem is equivalent to the
following statement:

There exists an absolute constant C > 0 such that

Ln := max{LK : K is an isotropic convex body in Rn} 6 C.

The notion of the isotropic constant can be reintroduced in the more general setting of finite log-concave
measures, and a more general question can be posed in a way that is equivalent to the above when we
consider uniform measures on convex bodies. We say that a finite log-concave measure µ in Rn is isotropic
if µ is a probability measure, its barycenter is at the origin and the covariance matrix Cov(µ) of µ is the
identity matrix. The isotropic constant of µ is defined in an appropriate way, and a theorem of K. Ball shows
that, in fact, for some absolute constant c > 1,

Ln 6 sup{Lµ : µ is isotropic in Rn} 6 cLn.

We present the best known upper bounds for Ln. Around 1985-6 (published in 1990), Bourgain obtained the
upper bound Ln 6 c 4

√
n log n and, in 2006, this estimate was improved by Klartag to Ln 6 c 4

√
n. Actually,

Klartag obtained a solution to the “isomorphic slicing problem”, by showing that, for every convex body
K in Rn and any ε ∈ (0, 1), one can find a centered convex body T ⊂ Rn and a point x ∈ Rn such that
(1 + ε)−1T ⊆ K + x ⊆ (1 + ε)T and LT 6 C/

√
ε for some absolute constant C > 0. Klartag’s method relies

on properties of the logarithmic Laplace transform of the uniform measure on a convex body.
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Klartag’s proof of the bound Ln 6 c 4
√
n combines his solution to the isomorphic slicing problem with

the following very useful deviation inequality of Paouris: if µ is an isotropic log-concave measure in Rn then

µ({x ∈ Rn : |x| > ct
√
n}) 6 exp

(
−t
√
n
)

for every t > 1, where c > 0 is an absolute constant. We present the proof of this inequality, and we develop
in parallel the basic theory of the Lq-centroid bodies of an isotropic log-concave measure.

Then, we discuss some recent approaches to the slicing problem. Among them are two reductions that
rely heavily on the existence of convex bodies with maximal isotropic constant whose isotropic position
is compatible with regular covering estimates, and an alternative approach of Klartag and E. Milman that
combines the advantages of both the logarithmic Laplace transform and the theory of the Lq-centroid bodies.

Finally, we describe E. Milman’s almost sharp estimate for the mean width w(Zq(K)) of the Lq-centroid
bodies Zq(K) of an isotropic convex body K in Rn. This is the most recent important result of the theory,
leading to the estimate w(K) 6 C

√
n(log n)2LK for the mean width of any isotropic convex body K in Rn.

An interesting related question is to understand whether an isotropic convex body is sub-Gaussian in most
directions. As a consequence of E. Milman’s theorem, one can show that the answer is affirmative. More
precisely, one has ‖〈·, θ〉‖Lψ2

(K) 6 C(log n)2LK for a random θ ∈ Sn−1.

2 Notation and background from asymptotic convex geometry

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote the corresponding Euclidean
norm by | · |, and write Bn2 for the Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted by
Voln. We write ωn for the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1.
We also denote the Haar measure on O(n) by ν. The Grassmann manifold Gn,k of k-dimensional subspaces
of Rn is equipped with the Haar probability measure νn,k. Let k 6 n and F ∈ Gn,k. We will denote the
orthogonal projection from Rn onto F by PF . We also define BF = Bn2 ∩ F and SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may change from line to line.
Whenever we write a ' b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Also if A,D ⊆ Rn we will write A ' D if there exist absolute constants c1, c2 > 0 such that c1A ⊆ D ⊆ c2A.

Convex bodies

A convex body in Rn is a compact convex subset A of Rn with non-empty interior. We say that A is symmetric
if A = −A, and that A is centered if it has barycenter at 0 i.e. if∫

A

〈x, θ〉 dx = 0

for every θ ∈ Sn−1.
The radial function ρA : Rn \ {0} → R+ of a convex body A with 0 ∈ int(A) is defined as follows:

ρA(x) = max{t > 0 : tx ∈ A}.

The support function of A is defined for every y ∈ Rn by

hA(y) = max{〈x, y〉 : x ∈ A}.

Note that for every θ ∈ Sn−1 one has ρA(θ) 6 hA(θ). The mean width of A is the quantity

w(A) =

∫
Sn−1

hA(θ) dσ(θ).

The radius of A is
R(A) = max{|x| : x ∈ A}.
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If 0 is an interior point of A, we denote by r(A) the largest r > 0 for which rBn2 ⊆ A. The volume radius of
A is the quantity

vrad(A) =

(
Voln(A)

Voln(Bn2 )

)1/n

.

The polar body A◦ of a convex body A with 0 ∈ int(A) is defined as follows:

(2.1) A◦ = {x ∈ Rn : 〈x, y〉 6 1 for all y ∈ A}.

We write A for the multiple of A ⊆ Rn that has volume 1; in other words, A := Voln(A)−1/nA.

Geometric inequalities

We will often use the following basic inequalities for convex bodies.

(i) Urysohn inequality. If A is a convex body in Rn then

(2.2) w(A) >

(
Voln(A)

Voln(Bn2 )

)1/n

.

(ii) Blaschke-Santaló inequality. If A is a symmetric convex body in Rn, and more generally if A is centered,
then

(2.3) Voln(A) Voln(A◦) 6 Voln(Bn2 )2.

(iii) Bourgain–V. Milman inequality. There exists an absolute constant 0 < c < 1 with the following property:
for every n > 1 and any convex body A in Rn with 0 ∈ int(A),

(2.4) Voln(A) Voln(A◦) > cnVoln(Bn2 )2.

(iv) Rogers–Shephard inequality. If A is a convex body in Rn, then the volume of the difference body
A−A := {x− y : x, y ∈ A} satisfies

(2.5) Voln(A−A) 6

(
2n

n

)
Voln(A).

(v) Reverse Urysohn inequality. From results of Lewis, Figiel and Tomczak-Jaegermann, combined with an
inequality of Pisier, one has the following fact: If A is a centered convex body in Rn then there exists a
symmetric and positive definite T ∈ GLn such that the position Ã = T (A) of A satisfies

(2.6) w(Ã) 6 c
√
n log nVoln(Ã)1/n,

where c > 0 is an absolute constant.

(vi) M∗-inequality. If A is a symmetric convex body in Rn then, for every 1 6 k 6 n, a random subspace
F ∈ Gn,k satisfies

R(A ∩ F ) 6 c

√
n

n− k
w(A)

with probability greater than 1− exp(−c2(n− k)), where c1, c2 > 0 are absolute constants.
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Covering numbers

Let A and B be two convex bodies in Rn. The covering number N(A,B) of A by B is the least integer N
for which there exist N translates of B whose union covers A.

N(A,B) = min
{
N ∈ N : ∃x1, . . . , xN ∈ Rn such that A ⊆

N⋃
j=1

(xj +B)
}
.

A variant of this notion is defined as follows:

N(A,B) = min
{
N ∈ N : ∃x1, . . . , xN ∈ A such that A ⊆

N⋃
j=1

(xj +B)
}
.

From the definition we see that N(A,B) 6 N(A,B). One can also easily check that N(A,B−B) 6 N(A,B).
In particular, if B is convex and symmetric, then N(A, 2B) 6 N(A,B).

If A,B are convex bodies in Rn, and B is symmetric, for every t > 0 we define

St(A,B) = max{m ∈ N : ∃x1, . . . , xm ∈ A such that ‖xi − xj‖B > t for i 6= j}.

From the definition we easily check that

N(A, tB) 6 St(A,B) 6 N(A, t2B),

where ‖ · ‖B is the norm induced by B on Rn (see the next subsection). We shall use some basic theorems
for covering numbers. The first one is Sudakov’s inequality.

Theorem 2.1 (Sudakov). If A is a convex body in Rn then for every t > 0 one has

(2.7) N(A, tBn2 ) 6 2 exp
(
cn (w(A)/t)

2
)
,

where c > 0 is an absolute constant.

The next theorem is due to Artstein-Avidan, V. Milman and Szarek.

Theorem 2.2 (duality of entropy). There exist absolute positive constants α and β such that for any n > 1
and any symmetric convex body A in Rn

(2.8) N(Bn2 , α
−1A◦)

1
β 6 N(A,Bn2 ) 6 N(Bn2 , αA

◦)
β

V. Milman proved that there exists an absolute constant β > 0 such that every centered convex body A
in Rn has a linear image Ã which satisfies Voln(Ã) = Voln(Bn2 ) and

(2.9) max
{
N(Ã, Bn2 ), N(Bn2 , Ã), N(Ã◦, Bn2 ), N(Bn2 , Ã

◦)
}
6 exp(βn).

We say that a convex body A which satisfies this estimate is in M -position with constant β.
Pisier has proposed a different approach to this result, which allows one to find a whole family of M -

positions and to give more detailed information on the behavior of the corresponding covering numbers. The
precise statement is as follows.

Theorem 2.3 (Pisier). For every 0 < α < 2 and every symmetric convex body A in Rn there exists a linear
image Ã of A such that

max
{
N(Ã, tBn2 ), N(Bn2 , tÃ), N(Ã◦, tBn2 ), N(Bn2 , tÃ

◦)
}
6 exp

(
c(α)n

tα

)
for every t > 1, where c(α) depends only on α, and c(α) = O

(
(2− α)−α/2

)
as α→ 2.
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Some facts from the local theory of normed spaces

We will also need some basic facts from the local theory of normed spaces. Let A be a symmetric convex
body in Rn. The function ‖ · ‖A : Rn → R+ defined by

‖x‖A = inf{t > 0 : x ∈ tA}

is a norm on Rn. The space (Rn, ‖ · ‖A) will be denoted by XA. Conversely, if X = (Rn, ‖ · ‖) is a normed
space, then the unit ball A = {x ∈ Rn : ‖x‖ 6 1} of X is a symmetric convex body.

Let X,Y be two n-dimensional normed spaces. The Banach–Mazur distance from X to Y is defined as
follows:

(2.10) d(X,Y ) = inf{‖T‖ · ‖T−1‖ | T : X → Y linear isomorphism}.

In a geometric language, the Banach–Mazur distance has the following description: if X = XA and Y = XD

(i.e. the unit balls of X,Y are the convex bodies A,D respectively) then the distance d(X,Y ) is the smallest
d > 0 such that

(2.11) A ⊆ T (D) ⊆ dA

for some T ∈ GLn.
Besides the Banach-Mazur distance, we often use the geometric distance dG(A,D) of two symmetric

convex bodies A and D in Rn, or more generally two convex bodies having the origin as an interior point,
which is the smallest d > 0 for which there exist a, b > 0 with ab 6 d such that

(2.12)
1

a
A ⊆ D ⊆ bA.

We define

M(A) :=

∫
Sn−1

‖θ‖Adσ(θ).

On observing that ‖x‖A = hA◦(x) for every x ∈ Rn, we see that M(A) = w(A◦) and that

M(A)−1 6 vrad(A) 6 w(A) = M(A◦).

The left hand side inequality is easily checked if we express the volume of A as an integral in polar coordi-
nates and use the inequalities of Hölder and Jensen, while the right hand side inequality is an immediate
consequence of Urysohn’s inequality.

The dual Sudakov inequality of Pajor and Tomczak-Jaegermann provides an upper bound for the covering
numbers N(Bn2 , tA) in terms of the parameter M(A).

Theorem 2.4 (Pajor-Tomczak). Let A be a symmetric convex body in Rn. For every t > 0,

(2.13) logN(Bn2 , tA) 6 cn (M(A)/t)
2
,

where c > 0 is an absolute constant.

We write k∗(A) for the largest integer k 6 n which satisfies

µn,k

(
F ∈ Gn,k :

w(A)

2
|x| 6 hA(x) 6 2w(A)|x|, x ∈ F

)
>

n

n+ k
.

The next theorem shows that the dimension k∗(A) is determined from the parameters w(A) and R(A) up
to an absolute constant.
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Theorem 2.5 (Milman-Schechtman). There exist c1, c2 > 0 such that

c1n
w(A)2

R(A)2
6 k∗(A) 6 c2n

w(A)2

R(A)2
,

for every symmetric convex body A in Rn.

For every q 6= 0 we define

wq := wq(A) =

(∫
Sn−1

hA(θ)qdσ(θ)

)1/q

.

Note that w1(A) = w(A). The parameters wq, q > 1 were studied by Litvak, Milman and Schechtman.

Theorem 2.6. Let A be a symmetric convex body in Rn. Then,

max

{
w(A), c1

R(A)
√
q

√
n

}
6 wq(A) 6 max

{
2w(A), c2

R(A)
√
q

√
n

}
for all q ∈ [1, n], where c1, c2 > 0 are absolute constants.

Note that the behavior of wq changes when q ' n(w/R)2. This value of q is roughly equal to the dual
Dvoretzky dimension k∗(A) of A. One also has wn ' R, and since wq 6 R for every q > 1 we conclude that
wq ' R for all q > n.

Let A be a symmetric convex body in Rn. We define

d∗(A) = min

{
− log σ

({
x ∈ Sn−1 : hA(x) 6

w(A)

2

})
, n

}
.

The parameter d∗ was defined by Klartag and Vershynin, who also showed that d∗(A) is always greater than
k∗(A):

Proposition 2.7 (Klartag-Vershynin). Let A be a symmetric convex body in Rn. Then,

d∗(A) > ck∗(A),

where c > 0 is an absolute constant.

The parameter d∗(A) is closely related to estimates on the measure of the set of directions in which a
norm is “much smaller” than its expectation on the sphere.

Theorem 2.8. For every 0 < ε < 1
2 we have

σ({x ∈ Sn−1 : hA(x) < εw(A)}) < εc1d∗(A) < εc1k∗(A),

where c1, c2 > 0 are absolute constants.

Theorem 2.8 implies reverse Hölder inequalities.

Theorem 2.9. Let A be a symmetric convex body in Rn. Then, for every 0 < q < c1d∗(A),

c2w(A) 6

(∫
Sn−1

1

hqA(x)
dσ(x)

)−1/q

6 c3w(A).

In other words, for every 0 < q < c1d∗(A) one has

w−q(A) ' w(A).

Since d∗(A) > ck∗(A), combining the above we get:

Theorem 2.10. Let A be a symmetric convex body in Rn. Then, wq(A) ' w−q(A) for every 1 6 q 6 ck∗(A).

Indeed, from Theorem 2.6 we have wq(A) ' w(A) for all q 6 k∗(A), while from Theorem 2.9 we see that
w−q(A) ' w(A) for all q 6 ck∗(A).

We refer the reader to the book [5] for the theory of convex bodies and to the books [1], [3] and [4] for
the local theory of normed spaces and asymptotic convex geometry.
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3 Isotropic position and the slicing problem

A convex body K in Rn is called isotropic if it has volume Voln(K) = 1, it is centered, and there is a constant
α > 0 such that

(3.1)

∫
K

〈x, y〉2dx = α2|y|2

for all y ∈ Rn. Let {e1, . . . , en} be any orthonormal basis of Rn. Note that if K satisfies the isotropic
condition (3.1) then ∫

K

|x|2dx =

n∑
i=1

∫
K

〈x, ei〉2dx = nα2.

Also, it is easily checked that if K is an isotropic convex body in Rn then U(K) is also isotropic for every
U ∈ O(n).

It is useful to check that the isotropic condition (3.1) is equivalent to the fact that for every i, j = 1, . . . , n,

(3.2)

∫
K

xixjdx = α2δij ,

where xj = 〈x, ej〉 are the coordinates of x with respect to some orthonormal basis {e1, . . . , en} of Rn. This
is in turn equivalent to the fact that for every T ∈ L(Rn),

(3.3)

∫
K

〈x, Tx〉dx = α2(trT ).

The next proposition shows that every centered convex body has a linear image which satisfies the
isotropic condition.

Proposition 3.1. Let K be a centered convex body in Rn. There exists T ∈ GLn such that T (K) is isotropic.

Proof. The operatorM ∈ L(Rn) defined byM(y) =
∫
K
〈x, y〉xdx is symmetric and positive definite; therefore,

it has a symmetric and positive definite square root S. Consider the linear image K̃ = S−1(K) of K. Then,
for every y ∈ Rn we have∫

K̃

〈x, y〉2dx = |detS|−1

∫
K

〈S−1x, y〉2dx = |detS|−1

∫
K

〈x, S−1y〉2dx(3.4)

= |detS|−1
〈∫

K

〈x, S−1y〉xdx, S−1y
〉

= |detS|−1〈MS−1y, S−1y〉 = |detS|−1|y|2.

Normalizing the volume of K̃ we get the result. 2

Proposition 3.1 shows that every centered convex body K in Rn has a position K̃ which is isotropic. The
next theorem shows that the isotropic position of a convex body is uniquely determined up to orthogonal
transformations, and arises as a solution of a minimization problem.

Theorem 3.2. Let K be a centered convex body of volume 1 in Rn. Define

(3.5) ∆(K) = inf

{∫
TK

|x|2dx : T ∈ SLn
}
.

Then, a position K1 of K, of volume 1, is isotropic if and only if

(3.6)

∫
K1

|x|2dx = ∆(K).

Furthermore, if K1 and K2 are isotropic positions of K then there exists U ∈ O(n) such that K2 = U(K1).
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Proof. Fix an isotropic position K1 of K. We know that there exists α > 0 such that∫
K1

〈x, Tx〉dx = α2(trT )

for every T ∈ L(Rn). Then, for every T ∈ SLn we have∫
TK1

|x|2dx =

∫
K1

|Tx|2dx =

∫
K1

〈x, T ∗Tx〉dx = α2tr(T ∗T ) > nα2 =

∫
K1

|x|2dx,(3.7)

where we have used the arithmetic-geometric means inequality in the form

tr(T ∗T ) > n[det(T ∗T )]1/n.

This shows that K1 satisfies (3.6). In particular, the infimum in (3.5) is a minimum.
Note also that if we have equality in (3.7) then T ∗T = Id, and hence T ∈ O(n). This shows that any

other position K̃ of K which satisfies (3.6) is an orthogonal image of K1, therefore it is isotropic.
Finally, if K2 is some other isotropic position of K then the first part of the proof shows that K2 satisfies

(3.6). By the previous step, we must have K2 = U(K1) for some U ∈ O(n). 2

We can now give the following definition for the isotropic constant of a general convex body K in Rn.

Definition 3.3. Let K ⊂ Rn be a convex body. Its isotropic constant LK is defined by

L2
K =

1

n
min

{
1

Voln(TK̃)1+ 2
n

∫
TK̃

|x|2dx
∣∣ T ∈ GLn},

where K̃ = K − bar(K) is the centered translate of K.

Note that LK depends only on the affine class of K. Note also that if K is isotropic then for all θ ∈ Sn−1

we have ∫
K

〈x, θ〉2dx = L2
K .

The main problem in these notes is the following.

Problem 3.4 (isotropic constant problem). There exists an absolute constant C > 0 such that for any n > 1
and any convex body K ⊂ Rn we have

LK 6 C.

Equivalently, if K is an isotropic convex body in Rn, then∫
K

〈x, θ〉2dx 6 C2

for every θ ∈ Sn−1.

The moments of inertia of a centered convex body are closely related with the volume of its hyperplane
sections that pass through the origin. In the isotropic case this relation takes the following form.

Theorem 3.5. Let K be an isotropic convex body in Rn. For every θ ∈ Sn−1 we have

(3.8)
c1
LK

6 Voln−1(K ∩ θ⊥) 6
c2
LK

,

where c1, c2 > 0 are absolute constants.

8



For the proof, given θ ∈ Sn−1 we consider the function f(t) = fK,θ(t) = Voln−1(K ∩ {x : 〈x, θ〉 = t}),
t ∈ R. We restrict our attention to the symmetric case. Then, f is even and ‖f‖∞ = f(0). For the proof in
the general case, which is more or less the same, we need an additional fact (due to Fradelizi) which shows
that hyperplane sections through the center of mass are, up to an absolute constant, maximal: If K is a
centered convex body of volume 1 in Rn then, for every θ ∈ Sn−1,

‖fK,θ‖∞ 6 ef(0) = eVoln−1(K ∩ θ⊥).

Proof of Theorem 3.5 (symmetric case). Let f := fK,θ. To prove the left hand side of (3.8) we set

β =
∫ +∞

0
f(t)dt = 1

2 and define
g(t) = ‖f‖∞1[0,β/‖f‖∞](t).

Since g > f on the support of g, we have ∫ s

0

f(t)dt 6
∫ s

0

g(t)dt

for every 0 6 s 6 β/‖f‖∞. The integrals of f and g on [0,+∞) are both equal to β. So,∫ ∞
s

g(t)dt 6
∫ ∞
s

f(t)dt

for every s > 0. It follows that∫ ∞
0

t2f(t)dt =

∫ ∞
0

∫ t

0

2sf(t)dsdt =

∫ ∞
0

2s

(∫ ∞
s

f(t)dt

)
ds

>
∫ ∞

0

2s

(∫ ∞
s

g(t)dt

)
ds =

∫ ∞
0

t2g(t)dt

=

∫ β/‖f‖∞

0

t2‖f‖∞dt =
β3

3‖f‖2∞
.

It follows that ∫
K

〈x, θ〉2dx = 2

∫ ∞
0

t2f(t) dt >
2β3

3‖f‖2∞
=

1

12f(0)2
.

To prove the right hand side inequality of (3.8) we distinguish two cases. Assume first that there exists
s > 0 such that f(s) = f(0)/2. Then,

1

2
=

∫ ∞
0

f(t)dt >
∫ s

0

f(t)dt > sf(s) = sf(0)/2,

because, since f is log-concave, we easily see that f(t) > f(0)1−t/sf(s)t/s > f(s) on [0, s]. On the other
hand, if t > s, then

f(s) > [f(0)]1−
s
t [f(t)]

s
t ,

which implies that f(t) 6 f(0)2−t/s. We now write∫ ∞
0

t2f(t)dt =

∫ s

0

t2f(t)dt+

∫ ∞
s

t2f(t)dt 6 f(0)

∫ s

0

t2dt+

∫ ∞
s

t2f(0)2−t/sdt

= f(0)

(
e
s3

3
+ s3

∫ ∞
1

u22−udu

)
6 c0f(0)s3 6 c0/[f(0)]2.

Now, assume that, for every s > 0 on the support of f , we have f(s) > f(0)/2. Then, the role of s is played
by s0 = sup{s > 0 : f(s) > 0}. We have 1

2 > f(0)s0/2 and∫ ∞
−∞

t2f(t)dt = 2

∫ ∞
0

t2f(t)dt = 2

∫ s0

0

t2f(t)dt 6
2f(0)s3

0

3
6

2

3[f(0)]2
.
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Thus, we get the same estimate as before, without using the fact that log f is concave. 2

Theorem 3.5 reveals a close connection between the isotropic constant problem and the slicing problem:

Problem 3.6 (The slicing problem). There exists an absolute constant c > 0 with the following property:
if K is a convex body in Rn with volume 1 and barycenter at the origin, there exists θ ∈ Sn−1 such that

(3.9) Voln−1(K ∩ θ⊥) > c.

We will show that the two problems are equivalent. One direction is simple, by the previous discussion;
assume that the slicing problem has an affirmative answer. If K is isotropic, Theorem 3.5 shows that all
sections K ∩ θ⊥ have volume bounded from above by c2/LK . Since (3.9) must be true for at least one
θ ∈ Sn−1, we get LK 6 c2/c.

Conversely, we will show that if there exists an absolute bound C for the isotropic constant, then the
slicing problem has an affirmative answer. One way to see this is through the Binet ellipsoid of inertia.

Let K be a centered convex body of volume 1 in Rn. Let M(K) = (mij)
n
i,j=1 be the matrix of inertia of

K, which is defined by mij =
∫
K
xixjdx. As we saw in the proof of Proposition 3.1, M(K) has a symmetric

and positive definite square root S. Consider the ellipsoid EB(K) := S−1(Bn2 ); then

‖y‖2EB(K) = |Sy|2 = 〈Sy, Sy〉 = 〈My, y〉 =

∫
K

〈x, y〉2dx.

EB(K) is called the Binet ellipsoid of K. Observe that K is in isotropic position if and only if EB(K) =
L−1
K Bn2 .

The next proposition shows that the volume of EB(K) is invariant under the action of SLn.

Proposition 3.7. Let K be a centered convex body of volume 1 in Rn. Then,

Voln(EB(K)) = ωnL
−n
K .

Proof. If K is an isotropic convex body in Rn then EB(K) = L−1
K Bn2 , and hence Voln(EB(K)) = ωnL

−n
K . It

is easily checked that if T ∈ SLn then MT (K) = TMKT
∗, and hence |detMK | = |detMT (K)|; furthermore,

by definition we have EB(T (K)) = S−1(Bn2 ) where S2 = MT (K). It follows that

Voln(EB(TK)) = ωn|detMT (K)|−1/2 = ωn|detMK |−1/2 = Voln(EB(K))

for every T ∈ SLn. 2

Corollary 3.8. Let K be a centered convex body of volume 1 in Rn. There exists θ ∈ Sn−1 such that∫
K

〈x, θ〉2dx 6 L2
K .

Proof. Note that by integration in polar coordinates

L−nK =
Voln(EB(K))

ωn
=

∫
Sn−1

‖θ‖−nEB(K)dσ(θ).

It follows that minθ∈Sn−1 ‖θ‖EB(K) 6 LK . 2

Assume that the isotropic constant problem has an affirmative answer and let K be a centered convex
body of volume 1 in Rn. According to Corollary 3.8, there exists a direction θ ∈ Sn−1 such that∫

K

〈x, θ〉2dx 6 L2
K 6 C2.

Then, the proof of Theorem 3.5 shows that

Voln−1(K ∩ θ⊥) > c :=
1

2
√

3eC
.
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Simple bounds for the isotropic constant

We start with a lower bound LK ; in fact, it is quite simple to check that the Euclidean ball is the extremal
body.

Proposition 3.9 (lower bound). For every isotropic convex body K in Rn

LK > LBn2 > c,

where c > 0 is an absolute constant.

Proof. If rn = ω
−1/n
n , then Voln(rnB

n
2 ) = 1 and rnB

n
2 is isotropic. Let K be an isotropic convex body.

Observe that |x| > rn on K \ rnBn2 and |x| 6 rn on rnB
n
2 \K. Since K \ rnBn2 and rnB

n
2 \K have the same

volume, it follows that

nL2
K =

∫
K

|x|2dx =

∫
K∩rnBn2

|x|2dx+

∫
K\rnBn2

|x|2dx

>
∫
K∩rnBn2

|x|2dx+

∫
rnBn2 \K

|x|2dx =

∫
rnBn2

|x|2dx = nL2
Bn2
.

A simple computation shows that

L2
Bn2

=
1

n

∫
rnBn2

|x|2dx =
1

n

nωn
n+ 2

rn+2
n =

ω
−2/n
n

n+ 2
> c2,

where c > 0 is an absolute constant, therefore LK > LBn2 > c. 2

Remark 3.10 (radius and inradius). It is useful to note that the inradius r(K) and the radius R(K) of an
isotropic convex body K in Rn satisfy the bounds

(3.10) c1LK 6 r(K) 6 R(K) 6 c2nLK ,

where c1, c2 > 0 are absolute constants. The following simple argument proves the right hand side inequality:
given θ ∈ Sn−1, one knows that

(3.11) Voln−1(K ∩ θ⊥) ' 1

LK
.

Let xθ ∈ K such that 〈xθ, θ〉 = hK(θ) and consider the cone

C(θ) = conv(K ∩ θ⊥, xθ).

Then C(θ) ⊆ K, and hence

1 = Voln(K) > Voln(C(θ)) =
Voln−1(K ∩ θ⊥) · hK(θ)

n
.

It follows that hK(θ) 6 c2nLK .
For the left hand side inequality, let θ ∈ Sn−1. By a classical lemma of Grünbaum’s we know that

Voln({x : 〈x, θ〉 > 0}) > 1

e
.

This implies that e−1 6 ‖fK,θ‖∞hK(θ) and we get that

e−1 6 eVoln−1(K ∩ θ⊥)hK(θ).
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Taking into account (3.11) we see that hK(θ) > c1LK , and since θ was arbitrary, this gives r(K) > c1LK .
In the symmetric case one actually has the bound r(K) > LK , because |〈x, θ〉| 6 hK(θ), and hence

hK(θ) >

(∫
K

〈x, θ〉2dx
)1/2

= LK

for every θ ∈ Sn−1.

We can now easily prove a first general upper bound for the isotropic constant of any convex body K in
Rn.

Proposition 3.11 (simple upper bound). For every isotropic convex body K in Rn

LK 6 c
√
n,

where c > 0 is an absolute constant.

Proof. Assume that K is in isotropic position. Since r(K)Bn2 ⊆ K and r(K) > c1LK , we get

ωn(c1LK)n 6 ωn(r(K))n = Voln(r(K)Bn2 ) 6 Voln(K) = 1.

It follows that LK 6 c−1
1 ω

−1/n
n 6 c

√
n for an absolute constant c > 0. 2

4 Log-concave measures and tail estimates

We denote by Pn the class of all Borel probability measures in Rn which are absolutely continuous with
respect to the Lebesgue measure. The density of a measure µ ∈ Pn is denoted by fµ.

We say that a measure µ ∈ Pn has barycenter at x0 ∈ Rn, and we write x0 = bar(µ), if∫
Rn
〈x, θ〉 dµ(x) = 〈x0, θ〉

for all θ ∈ Sn−1. Equivalently, if

x0 =

∫
Rn
x dµ(x).

The subclass CPn of Pn consists of all centered µ ∈ Pn. These are the measures µ ∈ Pn that have barycenter
at the origin; so, µ ∈ CPn if ∫

Rn
〈x, θ〉dµ(x) = 0

for all θ ∈ Sn−1.
The subclass SPn of Pn consists of all even measures µ ∈ Pn; µ is called even (or symmetric) if

µ(A) = µ(−A) for every Borel subset A of Rn.
Let f : Rn → [0,∞) be an integrable function with finite, positive integral. As in the case of measures,

the barycenter of f is defined as

bar(f) =

∫
Rn xf(x) dx∫
Rn f(x) dx

.

In particular, f has barycenter at the origin if∫
Rn
〈x, θ〉f(x) dx = 0

for all θ ∈ Sn−1. If so, we will say that f is centered.
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Definition 4.1. (i) A measure µ ∈ Pn is called log-concave if for all compact subsets A,B of Rn and all
0 < λ < 1 we have

µ((1− λ)A+ λB) > µ(A)1−λµ(B)λ.

(ii) A function f : Rn → [0,∞) is called log-concave if

f((1− λ)x+ λy) > f(x)1−λf(y)λ

for all x, y ∈ Rn and any 0 < λ < 1.

Let f : Rn → [0,∞) be a log-concave function with
∫
Rn f(x) dx = 1 (then we say that f is a log-concave

density). From the Prékopa-Leindler inequality it follows that the measure µ with density f is log-concave.
The next theorem of Borell shows that, conversely, any non-degenerate log-concave probability measure in
Rn belongs to the class Pn and has a log-concave density.

Theorem 4.2 (Borell). Let µ be a log-concave probability measure in Rn such that µ(H) < 1 for any
hyperplane H. Then, µ is absolutely continuous with respect to the Lebesgue measure and has a log-concave
density f , that is dµ(x) = f(x) dx.

Let (Ω,A, µ) be a probability space. Let Φ : R→ [0,+∞) be an even convex function satisfying Φ(0) = 0
and limx→∞Φ(x) = +∞ (we say that Φ is an Orlicz function). The Orlicz space LΦ(µ) that corresponds to Φ
consists of all the A-measurable functions f for which there is a constant κ > 0 such that

∫
Ω

Φ(f/κ)dµ <∞.
The norm of any such function f is defined to be the infimum of all κ > 0 such that

∫
Ω

Φ(f/κ)dµ 6 1.
One can check that LΦ(µ) ⊆ L1(µ): if a measurable function f has finite Φ(µ)-norm then f is integrable

with respect to µ.
The family of ψα-norms, which is a subclass of Orlicz norms, will play a central role in these notes.

Definition 4.3 (ψα-norm). Let (Ω,A, µ) be a probability space and let f : Ω → R be an A-measurable
function. For any α > 1 we define the ψα-norm of f as follows:

‖f‖ψα := inf

{
t > 0 :

∫
Ω

exp ((|f(ω)|/t)α) dµ(ω) 6 2

}
,

provided that the set on the right hand side is non-empty. Note that the ψα-norm is exactly the Orlicz norm
corresponding to the function t ∈ R→ e|t|

α − 1.

The next lemma gives an equivalent expression for the ψα-norm in terms of the Lq-norms.

Lemma 4.4. Let (Ω,A, µ) be a probability space. Let α > 1 and let f : Ω→ R be an A-measurable function.
Then,

‖f‖ψα ' sup
p>α

‖f‖Lp(µ)

p1/α
,

up to some absolute constants.

Definition 4.5. Let µ ∈ Pn, α > 1 and θ ∈ Sn−1. We say that µ satisfies a ψα-estimate with constant
bα = bα(θ) in the direction of θ if we have

‖〈·, θ〉‖ψα 6 bα‖〈·, θ〉‖2.

We say that µ is a ψα-measure with constant Bα > 0 if

sup
θ∈Sn−1

‖〈·, θ〉‖ψα
‖〈·, θ〉‖2

6 Bα.
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Using Lemma 4.4 we see that µ satisfies a ψα-estimate with constant b′α ' bα in the direction of θ ∈ Sn−1

if
‖〈·, θ〉‖q 6 bαq

1/α‖〈·, θ〉‖2
for all q > α.

Remark 4.6. Let µ ∈ Pn and let α > 1 and θ ∈ Sn−1.

(i) If µ satisfies a ψα-estimate with constant b in the direction of θ then for all t > 0 we have µ({x :
|〈x, θ〉| > t‖〈·, θ〉‖2}) 6 2e−t

a/bα .

(ii) If we have µ({x : |〈x, θ〉| > t‖〈·, θ〉‖2}) 6 2e−t
a/bα for some b > 0 and for all t > 0 then µ satisfies a

ψα-estimate with constant 6 cb in the direction of θ, where c > 0 is an absolute constant.

Lemma 4.7 (Borell). Let µ be a log-concave measure in Pn. Then, for any symmetric convex set A in Rn
with µ(A) = α ∈ (0, 1) and any t > 1 we have

(4.1) 1− µ(tA) 6 α

(
1− α
α

) t+1
2

.

Proof. Using the symmetry and convexity of A we check that

2

t+ 1
(Rn \ (tA)) +

t− 1

t+ 1
A ⊆ Rn \A.

for every t > 1. Then, we apply the log-concavity of µ to get the result. 2

Using Borell’s lemma we see that there exists an absolute constant C > 0 such that every log-concave
measure µ ∈ Pn is a ψ1-measure with constant C.

Theorem 4.8. Let µ ∈ Pn be log-concave. If f : Rn → R is a seminorm then, for any q > p > 1, we have(∫
Rn
|f |p dµ

)1/p

6

(∫
Rn
|f |q dµ

)1/q

6 c
q

p

(∫
Rn
|f |p dµ

)1/p

,

where c > 0 is an absolute constant.

Proof. We write ‖f‖pp :=
∫
|f |p dµ. Then, the set

A = {x ∈ Rn : |f(x)| 6 3‖f‖p}

is symmetric and convex. Also, for any t > 0 we get

tA = {x ∈ Rn : |f(x)| 6 3t‖f‖p},

while µ(A) > 1− 3−p. So, in our case 1
α − 1 6 3−p

1−3−p 6 e−p/2. Using Borell’s lemma we see that

µ(x : |f(x)| > 3t‖f‖p) 6 e−c1p(t−1)

for any t > 1, with c1 = 1
4 . Now, we write∫

Rn
|f |q dµ =

∫ ∞
0

qsq−1µ({x : |f(x)| > s}) ds

6 (3‖f‖p)q + (3‖f‖p)q
∫ ∞

1

qtq−1e−c1p(t−1) dt

6 (3‖f‖p)q + ec1p(3‖f‖p)q
∫ ∞

0

qtq−1e−c1pt dt

6 (3‖f‖p)q + ec1p
(

3‖f‖p
c1p

)q
Γ(q + 1).

Stirling’s formula and the fact that (a+ b)1/q 6 a1/q + b1/q for all a, b > 0 and q > 1, imply that ‖f‖Lq(µ) 6
c qp‖f‖Lp(µ). 2
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Remark 4.9. Let K be a convex body of volume 1 in Rn. We define a probability measure µK in Rn,
setting

µK(A) = Voln(K ∩A) =

∫
A

1K(x)dx

for every Borel A ⊆ Rn. From the convexity of K we easily check that 1K is a log-concave function, and
hence µK is a log-concave probability measure.

For every θ ∈ Sn−1 the function x 7→ |〈x, θ〉|, x ∈ K, satisfies the hypothesis of Theorem 4.8. Therefore,

‖〈·, θ〉‖q 6 cq‖〈·, θ〉‖1

for all θ ∈ Sn−1 and q > 1, where c > 0 is an absolute constant. It follows that

‖〈·, θ〉‖ψ1 6 c‖〈·, θ〉‖1

for all θ ∈ Sn−1.

The next result provides a small ball probability estimate for log-concave probability measures.

Theorem 4.10 (Lata la). Let µ be a log-concave probability measure in Rn. For any norm ‖ · ‖ on Rn and
any 0 6 t 6 1 one has

(4.2) µ({x : ‖x‖ 6 tEµ(‖x‖)}) 6 Ct,

where C > 0 is an absolute constant.

A consequence of Theorem 4.10 is the next Kahane-Khintchine inequality for negative exponents.

Theorem 4.11. Let µ be a log-concave probability measure in Rn. For any norm ‖ · ‖ on Rn and any
−1 < q < 0 one has

(4.3) Eµ(‖x‖) 6 C

1 + q

(
Eµ(‖x‖q)

)1/q
,

where C > 0 is an absolute constant.

5 Bourgain’s upper bound for the isotropic constant

In this section we present Bourgain’s O( 4
√
n log n) bound for the isotropic constant.

Theorem 5.1 (Bourgain). If K is an isotropic convex body in Rn then

LK 6 c 4
√
n log n,

where c > 0 is an absolute constant.

We need some auxiliary facts.

Proposition 5.2. Let α > 1 and assume that the random variables {Xi}Ni=1, N > 2, satisfy the ψα-estimate

‖Xi‖ψα 6 b

for all i = 1, . . . , N . Then
E max

16i6N
|Xi| 6 Cb(logN)1/α,

where C > 0 is an absolute constant.
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From Remark 4.9 we know that the random variables 〈·, θ〉 on K satisfy the ψ1-estimate

‖〈·, θ〉‖ψ1
6 c‖〈·, θ〉‖2 = cLK

for all θ ∈ Sn−1, where c > 0 is an absolute constant. Therefore, we get:

Proposition 5.3. Let K be an isotropic convex body in Rn, and let N > 2 and θ1, . . . , θN ∈ Sn−1. Then∫
K

max
16i6N

|〈x, θi〉| dx 6 CLK(logN),

where C > 0 is an absolute constant.

Next, we state our second tool, known as Dudley-Fernique decomposition, in a straightforward geometric
way.

Proposition 5.4. Let K be a convex body in Rn, with 0 ∈ K and K ⊂ RBn2 . There exist Zj ⊆ (3R/2j)Bn2 ,
j ∈ N, with cardinality

log |Zj | 6 cn

(
2jw(K)

R

)2

,

which satisfy the following: for every x ∈ K and any m ∈ N we can find zj ∈ Zj, j = 1, . . . ,m, and
wm ∈ (R/2m)Bn2 such that x = z1 + · · ·+ zm + wm.

Proof. We use elementary properties of covering numbers and Sudakov’s inequality. For every j ∈ N we may
find a subset Nj of K with cardinality

|Nj | = N(K, (R/2j)Bn2 )

such that
K ⊆

⋃
y∈Nj

(y + (R/2j)Bn2 ).

From Sudakov’s inequality we have

log |Nj | 6 cn

(
2jw(K)

R

)2

.

We set N0 = {0} and
Wj = Nj −Nj−1 = {y − y′ : y ∈ Nj , y′ ∈ Nj−1}

for every j > 1. We define Zj = Wj ∩ (3R/2j)Bn2 . Thus log |Zj | 6 log |Wj | 6 c′n
(

2jw(K)
R

)2

. We need

to show that for every x ∈ K and any m ∈ N we can find zj ∈ Wj ∩ (3R/2j)Bn2 , j = 1, . . . ,m, and
wm ∈ (R/2m)Bn2 such that

x = z1 + · · ·+ zm + wm.

Given such x, by the definition of Nj , we can find yj ∈ Nj , j = 1, . . . ,m, such that

|x− yj | 6
R

2j
.

We write
x = (y1 − 0) + (y2 − y1) + · · ·+ (ym − ym−1) + (x− ym).

We set y0 = 0 and wm = x − ym, zj = yj − yj−1 for j = 1, . . . ,m. Then, |wm| = |x − ym| 6 R/2m, and
zj ∈ Nj −Nj−1 = Wj . Also,

|zj | 6 |x− yj |+ |x− yj−1| 6
R

2j
+

R

2j−1
=

3R

2j
.
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Finally, x = z1 + · · ·+ zm + wm as claimed. 2

We are now ready to give S. Dar’s version of the proof of Bourgain’s bound.

Proof of Theorem 5.1. By the reverse Urysohn inequality (see Section 2) there exists a symmetric and
positive definite T ∈ SLn such that

w(TK) 6 c
√
n log n.

Using the elementary properties of the isotropic position we write

nL2
K =

∫
K

|x|2dx 6
trT

n

∫
K

|x|2 =

∫
K

〈x, Tx〉dx.

Therefore,

nL2
K 6

∫
K

max
y∈TK

|〈y, x〉|dx.

If TK ⊂ RBn2 , we can use Proposition 5.4 to find Zj ⊂ (3R/2j)Bn2 such that

(5.1) log |Zj | 6 cn

(
w(TK)2j

R

)2

,

and so that for every m ∈ N, every y ∈ TK can be written in the form y = z1 + · · ·+ zm +wm with zj ∈ Zj
and wm ∈ (R/2m)Bn2 . This implies that

max
y∈TK

|〈y, x〉| 6
m∑
j=1

max
z∈Zj

|〈z, x〉|+ max
w∈(R/2m)Bn2

|〈w, x〉|

6
m∑
j=1

3R

2j
max
z∈Zj

|〈z, x〉|+ R

2m
|x|,

where z denotes the unit vector in the direction of z. Noting that (by Cauchy-Schwarz inequality)
∫
K
|x|dx 6√

nLK and using the above, we see that

nL2
K 6

m∑
j=1

3R

2j

∫
K

max
z∈Zj

|〈z, x〉|dx+
R

2m

∫
K

|x|dx

6
m∑
j=1

3R

2j

∫
K

max
z∈Zj

|〈z, x〉|dx+
R

2m
√
nLK .

From Proposition 5.3 and (5.1) we get

(5.2) nL2
K 6

m∑
j=1

3R

2j
c1nLK

(
w(TK)2j

R

)2

+
R

2m
√
nLK .

The sum on the right hand side is bounded by

c2LKnw
2(TK)

2m

R
.

Solving the equation
nw2(TK)2s

R
=
R
√
n

2s

(where s here can be non-integer), we see that the optimal (integer) value of m satisfies the “equation”

R

2m
' 4
√
nw(TK).

Going back to (5.2), we obtain
nL2

K 6 c3
√
n 4
√
nw(TK)LK .

Since w(TK) 6 c4
√
n log n, we get the result. 2
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6 Alesker and Bobkov-Nazarov

In this section we discuss two results from the 1990’s that have greatly influenced subsequent developments.
The first one is a theorem of Alesker.

Theorem 6.1 (Alesker). There exists an absolute constant c > 0 such that: if K is an isotropic convex body
in Rn then

Voln({x ∈ K : |x| > c
√
nLKt}) 6 2 exp(−t2)

for every t > 0.

It is useful to consider the q-th moment of the function x 7→ |x| on K,

Iq(K) :=

(∫
K

|x|q dx
)1/q

for q > 1. Theorem 6.1 is a direct consequence of Lemma 4.6 and of the next statement.

Theorem 6.2 (Alesker). Let K be an isotropic convex body in Rn. For all q > 1 we have

Iq(K) 6 c
√
qI2(K),

and letting f(x) = |x|, we have
‖f‖ψ2 6 c

√
nLK ,

where c > 0 is an absolute constant.

For the proof we first note the following simple formula:

Lemma 6.3. Let K be a convex body of volume 1 in Rn. For every q > 1,(∫
Sn−1

∫
K

|〈x, θ〉|qdxdσ(θ)

)1/q

'
√

q

q + n
Iq(K).

Proof. For every q > 1 and x ∈ Rn, we check that

(6.1)

(∫
Sn−1

|〈x, θ〉|qdσ(θ)

)1/q

'
√
q

√
q + n

|x|.

To see this, using polar coordinates we first see that∫
Bn2

|〈x, y〉|qdy = nωn

∫ 1

0

rn+q−1dr

∫
Sn−1

|〈x, θ〉|qdσ(θ) =
nωn
n+ q

∫
Sn−1

|〈x, θ〉|qdσ(θ).

But we can also write the left hand side as∫
Bn2

|〈x, y〉|qdy = |x|q
∫
Bn2

∣∣∣〈 x|x| , y〉∣∣∣qdy = |x|q
∫
Bn2

|〈e1, y〉|qdy

= 2ωn−1|x|q
∫ 1

0

tq(1− t2)(n−1)/2dt = ωn−1|x|q
Γ
(
q+1

2

)
Γ
(
n+1

2

)
Γ
(
n+q+2

2

) .

Comparing the two expressions and using Stirling’s formula we get (6.1). A simple application of Fubini’s
theorem gives the result. 2

Proof of Theorem 6.2. By Lemma 4.4, the first assertion implies the second. Thus we concentrate on
proving that for every q > 1

(6.2)

(∫
K

|x|qdx
)1/q

6 c1
√
q
√
nLK
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for some absolute constant c1 > 0. We know that for every θ ∈ Sn−1∫
K

|〈x, θ〉|qdx 6 cq2q
qLqK .

Integrating on the sphere we get ∫
Sn−1

∫
K

|〈x, θ〉|qdx dσ(θ) 6 cq2q
qLqK .

Taking into account Lemma 6.3, we see that(∫
K

|x|qdx
)1/q

6 c3q

√
n+ q

q
LK 6 c4

√
q
√
nLK ,

provided that q 6 n. On the other hand, if q > n, using the fact that K ⊂ cnLKBn2 , we get(∫
K

|x|qdx
)1/q

6 cnLK 6 c
√
q
√
nLK .

Combining the above we see that (6.2) holds true for all q > 1. 2

The second result of this section is due to Bobkov and Nazarov and concerns the case of symmetric convex
bodies which generate a norm with unconditional basis. After a linear transformation, we may assume that
the standard orthonormal basis {e1, . . . , en} of Rn is an unconditional basis for ‖ · ‖K . That is, for every
choice of real numbers t1, . . . , tn and every choice of signs εi = ±1,∥∥ε1t1e1 + · · ·+ εntnen

∥∥
K

=
∥∥t1e1 + · · ·+ tnen

∥∥
K
.

Geometrically, this means that if x = (x1, . . . , xn) ∈ K then the whole rectangle
∏n
i=1[−|xi|, |xi|] is contained

in K.
Note that the matrix of inertia of such a body is diagonal, therefore one can bring it to the isotropic

position by a diagonal operator. This explains that for every unconditional convex body K in Rn there
exists a linear image K̃ of K which has the following properties:

1. The volume of K̃ is equal to 1.

2. If x = (x1, . . . , xn) ∈ K̃ then
∏n
i=1[−|xi|, |xi|] ⊆ K̃.

3. For every j = 1, . . . , n, ∫
K̃

x2
jdx = L2

K .

This last condition implies that K̃ is in isotropic position, because∫
K̃

xixjdx = 0 for all i 6= j

by Property 2.
We assume that K has these three properties. It will be convenient to consider the normalized part

K+ = 2K ∩ Rn+

of K in Rn+ = [0,+∞)n. So, if x = (x1, . . . , xn) is uniformly distributed in K, then (2|x1|, . . . , 2|xn|) is
uniformly distributed in K+. It is easy to check that K+ has the following three properties:

4. The volume of K+ is equal to 1.
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5. If x = (x1, . . . , xn) ∈ K+ and 0 6 yj 6 xj for all 1 6 j 6 n, then y = (y1, . . . , yn) ∈ K+.

6. For every j = 1, . . . , n, ∫
K+

x2
jdx = 4L2

K .

It is not difficult to show that the isotropic constants of unconditional convex bodies are uniformly bounded.
One way to see this is to use the Loomis-Whitney inequality

1 = Voln(K)n−1 6
n∏
i=1

Voln−1(Pe⊥i (K)) =

n∏
i=1

Voln−1(K ∩ e⊥i ),

where the last equality comes from the fact that Pe⊥i (K) = K ∩ e⊥i . This shows that Voln−1(K ∩ ei) > 1 for

some i 6 n, and then Theorem 3.5 shows that Voln−1(K ∩ θ⊥) > c for some absolute constant c > 0 and for
all θ ∈ Sn−1. In fact, Bobkov and Nazarov provide a different direct argument which gives:

Theorem 6.4. Let K be an isotropic unconditional convex body in Rn. Then,

|K ∩ θ⊥| > 1√
6

for every θ ∈ Sn−1.

Our main interest is in the next distributional inequality from the same work.

Theorem 6.5 (Bobkov-Nazarov). Let K be an isotropic unconditional convex body in Rn. Then,

Voln({x ∈ K+ : x1 > α1, . . . , xn > αn}) 6
(

1− α1 + · · ·+ αn√
6n

)n
,

for all (α1, . . . , αn) ∈ K+.

Proof. We define a function u : K+ → [0,∞) by

u(α1, . . . , αn) = Voln({x ∈ K+ : x1 > α1, . . . , xn > αn}).

The Brunn-Minkowski inequality shows that the function h = u
1
n is concave on K+. Observe that u(0) = 1

and

(6.3)
∂u

∂αj
(0) = −Voln−1(K ∩ e⊥j ) 6 − 1√

6
,

where the last inequality comes from Theorem 6.4. Let α ∈ K+ and consider the function hα : [0, 1] → R
defined by hα(t) = h(αt). Note that

h′α(0) =

n∑
j=1

αj
∂h

∂αj
(0) =

n∑
i=1

αi ·
1

n

∂u

∂αj
(0) 6 −α1 + · · ·+ αn√

6n

by (6.3). Since h is concave, hα is concave on [0, 1]. This implies that h′α is decreasing on [0, 1], and hence,

h(α)− 1 = hα(1)− hα(0) 6 h′α(0) 6 −α1 + · · ·+ αn√
6n

for all α ∈ K+. This proves the theorem. 2

As a direct consequence we get the following statement, which is valid for all αj > 0.
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Corollary 6.6. Let K be an isotropic unconditional convex body in Rn. Then,

Voln({x ∈ K+ : x1 > α1, . . . , xn > αn}) 6 exp(−c(α1 + · · ·+ αn)),

for all α1, . . . , αn > 0, where c = 1/
√

6.

Proof. If (α1, . . . , αn) ∈ K+ we apply Theorem 6.5 and then just use the fact that 1−x 6 e−x for all x > 0.
If not, then the left hand side is equal to zero. 2

Let x = (x1, . . . , xn) ∈ Rn+. We write x∗1, . . . , x
∗
n for the coordinates of x in decreasing order. That is,

maxxj = x∗1 > x∗2 > · · · > x∗n = minxj .

Let µ+
K denote the uniform distribution on K+. Corollary 6.6 has the following consequence.

Proposition 6.7. Let K be an isotropic unconditional convex body in Rn. Then,

µ+
K({x ∈ Rn+ : x∗k > α}) 6

(
n

k

)
e−ckα

for all α > 0 and 1 6 k 6 n, where c = 1/
√

6.

Proof. Let 1 6 j1 < · · · < jk 6 n. From Corollary 6.6 we have

µ+
K({x ∈ Rn+ : xj1 > α, . . . , xjk > α}) 6 exp(−ckα).

Since
{x ∈ Rn+ : x∗k > α} =

⋃
16j1<···<jk6n

{x ∈ Rn+ : xj1 > α, . . . , xjk > α},

we get

µ+
K({x : x∗k > α}) 6

∑
16j1<···<jk6n

µ+
K({x : xj1 > α, . . . , xjk > α})

6

(
n

k

)
e−ckα

as claimed. 2

This leads to the next improved version of Alesker’s theorem in the unconditional case.

Theorem 6.8 (Bobkov-Nazarov). Let K be an isotropic unconditional convex body in Rn. Then, for every
t > 4,

Voln({x ∈ K : |x| > c2t
√
n}) 6 exp

(
− t
√
n

2

)
,

where c2 =
√

6.

Proof. Let α1, . . . , αn > 0. From Proposition 6.7 we have

Voln

({
x ∈ K : |x|2 >

n∑
k=1

α2
k

})
= µ+

K

({
x ∈ Rn+ :

n∑
k=1

x2
k > 4

n∑
k=1

α2
k

})

= µ+
K

({
x ∈ Rn+ :

n∑
k=1

(x∗k)2 > 4

n∑
k=1

α2
k

})

6
n∑
k=1

µ+
K({x ∈ Rn+ : x∗k > 2αk})

6
n∑
k=1

(
n

k

)
exp(−2ckαk).
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This shows that

(6.4) Voln

({
x ∈ K : |x|2 >

n∑
k=1

α2
k

c2

})
6

n∑
k=1

exp
(
−k
(

2αk − log
en

k

))
,

where c = 1/
√

6. Given t > 0 we choose

αk =
1

2
log

en

k
+ t

√
n

k
.

We check that if t > 2 then
∑n
k=1 α

2
k 6 4nt2, and going back to (6.4) we have

Voln
({
x ∈ K : |x| > 2

√
6t
√
n
})

6 n exp(−2t
√
n) 6 exp(−t

√
n)

for every t > 2. This proves the theorem. 2

It was after this result that people started thinking whether an analogous estimate might be true in full
generality.

7 Isotropic log-concave measures

Definition 7.1. Let µ be a Borel probability measure in Rn which is absolutely continuous with respect to
Lebesgue measure. We shall say that µ is isotropic if it is centered and satisfies the isotropic condition∫

Rn
〈x, θ〉2 dµ(x) = 1

for all θ ∈ Sn−1. Similarly, we shall say that a centered log-concave function f : Rn → [0,∞) is isotropic if∫
f = 1 and the measure dµ = f(x)dx is isotropic.

As in the case of convex bodies, we easily check that a centered measure µ as above is isotropic if and
only if for any T ∈ L(Rn) one has ∫

Rn
〈x, Tx〉 dµ(x) = tr(T ),

or equivalently if
∫
Rn xixj dµ(x) = δij for all i, j = 1, . . . , n.

Note that if µ is isotropic, then ∫
Rn
|x|2 dµ(x) = n,

and more generally, ∫
Rn
|Tx|2dµ(x) = ‖T‖2HS

for any T ∈ L(Rn).
Following the proof of Proposition 3.1, we can check that every non-degenerate absolutely continuous

probability measure µ has an isotropic image ν = µ◦S, where S : Rn → Rn is an affine map. Similarly, every
log-concave f : Rn → [0,∞) with 0 <

∫
f < ∞ has an isotropic image: there exist an affine isomorphism

S : Rn → Rn and a positive number a such that af ◦ S is isotropic.

Remark 7.2. It is useful to compare the definition of an isotropic convex body with the definition of an
isotropic log-concave measure. Note that a convex body K of volume 1 in Rn being isotropic implies that the
covariance matrix of the measure 1Kdx is LK Id. So, we see that a convex body K of volume 1 is isotropic
if and only if the function fK := LnK1 1

LK
K is an isotropic log-concave function.
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Definition 7.3 (general definition of the isotropic constant). Let f be a log-concave function with finite,
positive integral. We define its inertia – or covariance – matrix Cov(f) as the matrix with entries

[Cov(f)]ij :=

∫
Rn xixjf(x) dx∫

Rn f(x) dx
−
∫
Rn xif(x) dx∫
Rn f(x) dx

∫
Rn xjf(x) dx∫
Rn f(x) dx

.

Note that if f is isotropic then Cov(f) is the identity matrix. If f is the density of a measure µ we denote
this matrix also by Cov(µ). The isotropic constant of f is defined by

(7.1) Lf :=

(
supx∈Rn f(x)∫

Rn f(x)dx

) 1
n

[det Cov(f)]
1

2n .

(and given a log-concave measure µ with density fµ we let Lµ := Lfµ).

With the above definition it is easy to check that the isotropic constant Lµ is an affine invariant; we have
Lµ = Lλµ◦A, Lf = Lλf◦A for every invertible affine transformation A of Rn and every positive number λ.

The following characterization of the isotropic constant holds and is completely analogous to the one in
Theorem 3.2: if f : Rn → [0,∞) is a log-concave density, then

nL2
f = inf

T∈SLn
y∈Rn

(
sup
x∈Rn

f(x)
)2/n

∫
Rn
|Tx+ y|2f(x) dx.

A very useful inequality of Fradelizi, that will be frequently used in these notes, asserts that if f : Rn → [0,∞)
is a centered log-concave function, then

f(0) 6 ‖f‖∞ 6 enf(0).

The hyperplane conjecture for log-concave measures can now be stated as follows:

Problem 7.4 (main problem). Let f : Rn → [0,∞) be an isotropic log-concave density. Then

‖f‖1/n∞ 6 C,

where C > 0 is an absolute constant.

One can prove that the isotropic constants of all log-concave measures are uniformly bounded from below
by a constant c > 0 which is independent of the dimension. If f : Rn → [0,∞) is an isotropic log-concave
density, then

(7.2) Lf = ‖f‖1/n∞ ' [f(0)]1/n > c,

where c > 0 is an absolute constant.

8 Convex bodies associated with log-concave measures

In this section we discuss a family of sets Kp(f) associated with any given log-concave function f . The
bodies Kp(f) were introduced by K. Ball who also established their convexity. They play a very important
role as they allow us to study properties of log-concave measures through those of convex bodies and vice
versa.

Definition 8.1 (Ball). Let f : Rn → [0,∞) be a measurable function such that f(0) > 0. For any p > 0 we
define the set Kp(f) as follows:

Kp(f) =

{
x ∈ Rn :

∫ ∞
0

rp−1f(rx) dr >
f(0)

p

}
.

If fµ is the density of a Borel probability measure µ and fµ(0) > 0, then we define

Kp(µ) := Kp(fµ).
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From the definition it follows that the radial function of Kp(f) is given by

(8.1) ρKp(f)(x) =

(
1

f(0)

∫ ∞
0

prp−1f(rx) dr

)1/p

.

Lemma 8.2. Let K be a convex body in Rn with 0 ∈ K. Then, we have Kp(1K) = K for all p > 0.

Proof. For every θ ∈ Sn−1 we have

ρpKp(1K)(θ) =
1

1K(0)

∫ +∞

0

prp−1 1K(rθ) dr =

∫ ρK(θ)

0

prp−1 dr = ρpK(θ).

It follows that Kp(1K) = K. 2

The next proposition describes some basic properties of the sets Kp(f).

Proposition 8.3. Let f, g : Rn → [0,∞) be two integrable functions with f(0) = g(0) > 0, and set

m = inf

{
f(x)

g(x)
: g(x) > 0

}
and M−1 = inf

{
g(x)

f(x)
: f(x) > 0

}
.

Then, for every p > 0 we have the following:

(i) 0 ∈ Kp(f).

(ii) Kp(f) is a star-shaped set.

(iii) Kp(f) is symmetric if f is even.

(iv) m1/pKp(g) ⊆ Kp(f) ⊆M1/pKp(g).

(v) For any θ ∈ Sn−1 we have ∫
Kn+1(f)

〈x, θ〉 dx =
1

f(0)

∫
Rn
〈x, θ〉f(x) dx.

In particular, f is centered if and only if Kn+1(f) is centered.

(vi) For any θ ∈ Sn−1 and p > 0 we have∫
Kn+p(f)

|〈x, θ〉|p dx =
1

f(0)

∫
Rn
|〈x, θ〉|p f(x) dx.

(vii) If p > −n and V is a star-shaped body with gauge function ‖ · ‖V then

(8.2)

∫
Kn+p(f)

‖x‖pV dx =
1

f(0)

∫
Rn
‖x‖pV f(x) dx.

Assuming the log-concavity of f one can prove that the sets Kp(f), p > 0, are convex. The proof is
based on a variant of the Prékopa-Leindler inequality.

Theorem 8.4 (Ball). Let f : Rn → [0,∞) be a log-concave function such that f(0) > 0. For every p > 0,
Kp(f) is a convex setKp(f).

To show that Kn(f) is indeed a convex body, namely is compact and with non-empty interior, one simply
computes its volume to see that it is non-zero and finite:
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Lemma 8.5. For every measurable function f : Rn → [0,∞) such that f(0) > 0 we have

Voln(Kn(f)) =
1

f(0)

∫
Rn
f(x)dx.

In particular, if f is log-concave and such that 0 <
∫
Rn f <∞, then Kn(f) is a convex body.

Proof. We can write

Voln(Kn(f)) =

∫
Kn(f)

1 dx = nωn

∫
Sn−1

∫ ρKn(f)(φ)

0

rn−1drdσ(φ)

=
nωn
f(0)

∫
Sn−1

∫ ∞
0

rn−1f(rφ)drdσ(φ) =
1

f(0)

∫
Rn
f(x)dx

using (8.1) and integration in polar coordinates. 2

The fact that all of the convex sets Kp(f), p > 0, are indeed convex bodies, namely they are compact and
have non-empty interior, whenever the log-concave function f has finite, positive integral, is a consequence
of the next proposition.

Proposition 8.6. Let f : Rn → [0,∞) be a centered log-concave function. For every 0 < p 6 q,

(8.3)
Γ(p+ 1)

1
p

Γ(q + 1)
1
q

Kq(f) ⊆ Kp(f) ⊆ e
n
p−

n
qKq(f).

As a consequence we obtain an approximate formula for the volume of Kn+p(f) when p > 0.

Corollary 8.7. Let f : Rn → [0,∞) be a centered log-concave density. Then, for every p > 0 we have

(8.4) e−1 6 f(0)
1
n+ 1

pVoln(Kn+p(f))
1
n+ 1

p 6 e
n+ p

n
,

while for −n < p < 0 we have

(8.5) e−1 6 f(0)
1
−p−

1
nVoln(Kn+p(f))

1
−p−

1
n 6 e.

A flavor of the applications of the bodies Kp(f) may be given by the next propositions which relate the
isotropic constants of convex bodies with those of log-concave functions.

Proposition 8.8 (Ball). Let f : Rn → [0,∞) be an even log-concave function with finite, positive integral.
Then, the body T = Kn+2(f) is a centrally symmetric convex body with

c1Lf 6 LT 6 c2Lf ,

where c1, c2 > 0 are absolute constants. Furthermore, if f is isotropic, then T = Voln(T )−1/nT is an isotropic
convex body.

Proof. Since f is even and log-concave, T is a centrally symmetric convex body; we also have f(x) 6 f(0)
for all x ∈ Rn. Hence, f(0) > 0. From Proposition 8.3 (vi)∫

T

〈x, θ〉2 dx =
1

f(0)

∫
Rn
〈x, θ〉2f(x) dx,

and more generally ∫
T

〈x, θ〉〈x, φ〉 dx =
1

f(0)

∫
Rn
〈x, θ〉〈x, φ〉f(x) dx
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for all θ, φ ∈ Sn−1. It follows that

Voln(T )Cov(1T ) =

∫
f

f(0)
Cov(f).

By the definition of the isotropic constant we obtain

LT = L1T =
1

Voln(T )
1
2 + 1

n

(
1

f(0)

∫
f

) 1
2 + 1

n

Lf .

On the other hand, applying Corollary 8.7 with p = 2 we see that

Voln(T )
1
2 + 1

n = Voln(Kn+2(f))
1
2 + 1

n '
(

1

f(0)

∫
Rn
f(x) dx

) 1
2 + 1

n

.

This shows that LT ' Lf . Finally, note that if f is isotropic then∫
T

〈x, θ〉2 dx =
1

Voln(T )1+ 2
n

∫
T

〈x, θ〉2 dx =
1

f(0)Voln(T )1+ 2
n

for every θ ∈ Sn−1, which shows that T is in isotropic position. 2

The next proposition, which is due to Klartag, shows that we can further reduce our study of the behavior
of the isotropic constant to the class of symmetric convex bodies.

Proposition 8.9. For every convex body K we can find a symmetric convex body T with the property that

LK 6 cLT ,

where c > 0 is an absolute constant.

Proof. Without loss of generality, we may assume that K has volume 1 and barycenter at the origin. We
define a function f supported on K −K as follows:

f(x) = (1K ∗ 1−K)(x) =

∫
Rn

1K(y)1−K(x− y) dy = Voln(K ∩ (x+K)).

Using the Brunn-Minkowski inequality one can see that f is an even and log-concave function with
∫
Rn f = 1

and that f(x) 6 f(0) = Voln(K) = 1. Therefore,

Lf = [det Cov(f)]
1

2n .

Next, since one easily checks that for any h and g with barycenter at 0 and total mass 1 one has

Cov(h ∗ g) = Cov(h) + Cov(g),

we get that
Cov(f) = Cov(K) + Cov(−K).

As these are positive definite matrices it follows that

[det Cov(f)]1/n > [det Cov(K)]1/n + [det Cov(−K)]1/n = 2[det Cov(K)]1/n,

and hence

LK = [det Cov(K)]
1

2n 6
1√
2

[det Cov(f)]
1

2n =
1√
2
Lf .

It is easy now to check that the body T := Kn+2(f) has the desired properties: T is symmetric because f
is even, and in addition LT ' Lf > LK . 2

Assuming that the function f : Rn → [0,∞) is centered, but not necessarily even, we prefer to work with
the centered body Kn+1(f) instead of Kn+2(f).
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Proposition 8.10. Let f : Rn → [0,∞) be a centered log-concave function with finite, positive integral.
Then, T = Kn+1(f) is a centered convex body in Rn with

c1Lf 6 LT 6 c2Lf ,

where c1, c2 > 0 are absolute constants.

Proof. Note that, f being centered implies f(0) > 0; thus, Kn+1(f) is well-defined and by Proposition 8.3 (v)
and Theorem 8.4 we know that it is a centered convex body. Without loss of generality we may assume that
f is log-concave with

∫
f = 1, otherwise we work with f1 = f∫

f
using the fact that Kn+1(λf) = Kn+1(f)

and Lλf = Lf for any λ > 0. By Proposition 8.3 we have∫
T

|〈x, θ〉| dx =
1

f(0)

∫
|〈x, θ〉|f(x) dx.

Borell’s lemma implies that for every y ∈ Rn(
1

Voln(T )

∫
T

〈x, y〉2 dx
)1/2

' 1

Voln(T )

∫
T

|〈x, y〉| dx =
1

f(0)Voln(T )

∫
|〈x, y〉|f(x) dx

' 1

f(0)Voln(T )

(∫
〈x, y〉2f(x) dx

)1/2

,

which, combined with the fact that T and f are both centered, implies that there exist absolute constants
c1, c2 > 0 such that as positive definite matrices

c2Cov(1T ) 6 (Voln(T )f(0))−2Cov(f) 6 c1Cov(1T ).

Therefore

(8.6) [det Cov(1T )]1/n ' (Voln(T )f(0))−2[det Cov(f)]1/n.

From the definition of the isotropic constant it follows that

LT =
1

Voln(T )1/n
[det Cov(T )]

1
2n ' Voln(T )−1/n(f(0)Voln(T ))−1[det Cov(f)]

1
2n

' (f(0)Voln(T ))−1− 1
nLf ,

where we have also used the fact that one has ‖f‖1/n∞ ' f(0)1/n. Finally, applying Proposition 8.7 with
p = 1 we get that

(8.7) e−1 6 (f(0)Voln(T ))1+ 1
n 6 e

n+ 1

n
6 2e.

This completes the proof. 2

9 Centroid bodies

Let K be a convex body of volume 1 in Rn. For every q > 1 we define the Lq-centroid body Zq(K) of K to
be the symmetric convex body with support function

hZq(K)(y) = ‖〈·, y〉‖Lq(K) =

(∫
K

|〈x, y〉|qdx
)1/q

.
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From Hölder’s inequality it is clear that if 1 6 p 6 q 6∞ then

Zp(K) ⊆ Zq(K) ⊆ Z∞(K) := conv(K ∪ (−K)).

Note that Zq(T (K)) = T (Zq(K)) for every T ∈ SL(n) and any q > 1. Also, a centered convex body K of
volume 1 is isotropic if Z2(K) is a multiple of the Euclidean unit ball.

Analogously, if µ is a log-concave probability measure on Rn, we define

hZq(µ)(y) :=

(∫
Rn
|〈x, y〉|q dµ(x)

)1/q

.

Basic properties

Let K be a convex body of volume 1 in Rn. Using the standard Khintchine-type inequalities for seminorms
we see that if 1 6 p < q then

(9.1) Zp(K) ⊆ Zq(K) ⊆ c1q

p
Zp(K),

where c1 > 0 is an absolute constant. If K has its barycenter at the origin, then

(9.2) Zq(K) ⊇ c2Z∞(K)

for every q > n, where c2 > 0 is an absolute constant. This is a consequence of the inequality∫
K

|〈x, θ〉|qdx >
Γ(q + 1)Γ(n)

2eΓ(q + n+ 1)
max

{
hqK(θ), hqK(−θ)

}
,

which holds true for all θ ∈ Sn−1 and q > 1. Then, if q > n we see that

‖〈·, θ〉‖q ' max{hK(θ), hK(−θ)},

and hence Zq(K) ⊇ cZ∞(K). In particular,

(9.3) c 6 Voln(Zn(K))1/n 6 Voln(K −K)1/n 6 4

for some absolute constant c > 0.
We have similar results in the context of log-concave measures. If µ is a log-concave probability measure

in Rn with density f then for every 1 6 p < q we have

(9.4) Zp(f) ⊆ Zq(f) ⊆ cq

p
Zp(f),

where c > 0 is an absolute constant.
A first basic observation of Paouris is the next asymptotic formula.

Theorem 9.1 (Paouris). Let f be a centered log-concave density on Rn. Then,

(9.5)
c1

f(0)1/n
6 Voln(Zn(f))1/n 6

c2
f(0)1/n

,

where c1, c2 > 0 are absolute constants.

Proof. Using Proposition 8.3 (vi) we check that, for every q > 1,

Voln(Kn+q(f))1+ q
n

∫
Kn+q(f)

|〈x, θ〉|q dx =

∫
Kn+q(f)

|〈x, θ〉|q dx =
1

f(0)

∫
Rn
|〈x, θ〉|q f(x) dx
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for all θ ∈ Sn−1, and hence

(9.6) Zq(Kn+q(f))Voln(Kn+q(f))
1
q+ 1

n f(0)1/q = Zq(f).

Now, let 1 6 q 6 n. Using also Corollary 8.7 we see that

(9.7)
1

e
Zq(Kn+q(f)) ⊆ f(0)1/nZq(f) ⊆ en+ q

n
Zq(Kn+q(f)) ⊆ 2eZq(Kn+q(f)).

On the other hand, using the inclusions in Proposition 8.6, we write

hZq(Kn+q(f))(θ) =
1

Voln(Kn+q(f))
1
q+ 1

n

(∫
Kn+q(f)

|〈x, θ〉|qdx

)1/q

6
1

Voln(Kn+q(f))
1
q+ 1

n

∫
Γ(n+q+1)1/n+q

Γ(n+2)1/n+1
Kn+1(f)

|〈x, θ〉|qdx

1/q

=

(
Voln(Kn+1(f))

Voln(Kn+q(f))

) 1
q+ 1

n

(
Γ(n+ q + 1)

1
n+q

Γ(n+ 2)
1

n+1

)1+n
q

hZq(Kn+1(f))(θ)

6
(
e
n2

n+1−
n2

n+q

) 1
q+ 1

n

(
Γ(n+ q + 1)

1
n+q

Γ(n+ 2)
1

n+1

)1+n
q

hZq(Kn+1(f))(θ)

for every θ ∈ Sn−1. After estimating the constant we get that Zq(Kn+q(f)) ⊆ c1Zq(Kn+1(f)), and in the
same way we establish an analogous inverse inclusion. Therefore, for all 1 6 q 6 n we get

(9.8) c1f(0)1/nZq(f) ⊆ Zq(Kn+1(f)) ⊆ c2f(0)1/nZq(f)

where c1, c2 > 0 are absolute constants.
Now recall that, since f is centered, the body Kn+1(f) is also centered. Applying (9.3) for the body

Kn+1(f) we see that
Voln(Zn(Kn+1(f)))1/n ' 1

and hence, by (9.8),
f(0)1/nVoln(Zn(f))1/n ' Voln(Zn(Kn+1(f)))1/n ' 1.

This completes the proof. 2

Marginals and projections

Let f : Rn → [0,∞) be an integrable function. Let 1 6 k < n and F ∈ Gn,k. The marginal πF (f) : F →
[0,∞) of f with respect to F is defined by

(9.9) πF (f)(x) :=

∫
x+F⊥

f(y)dy.

More generally, for every µ ∈ Pn we define the marginal of µ with respect to a k-dimensional subspace F
setting

πF (µ)(A) := µ(P−1
F (A))

for every Borel subset A of F . If µ has a log-concave density fµ then the two definitions agree. We can check
that

fπF (µ) = πF (fµ)
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almost everywhere. Indeed, for every Borel subset A of F we have

πF (µ)(A) = µ(P−1
F (A)) =

∫
fµ(x)1A(PFx) dx =

∫
F

∫
F⊥

fµ(x+ y)1A(x) dy dx,(9.10)

from Fubini’s theorem. A change of variables shows that

πF (µ)(A) =

∫
A

(∫
x+F⊥

fµ(y) dy

)
dx =

∫
A

πF (fµ)(x) dx.

In the next proposition we collect some basic properties of marginals.

Proposition 9.2. Let f : Rn → [0,∞) be an integrable function and let F ∈ Gn,k.

1. If f is even then πF (f) is also even.

2. We have ∫
F

πF (f)(x) dx =

∫
Rn
f(x) dx.

3. For every measurable function g : F → R we have∫
Rn
g(PFx)f(x) dx =

∫
F

g(x)πF (f)(x) dx.

4. For every θ ∈ SF ,

(9.11)

∫
F

〈x, θ〉πF (f)(x)dx =

∫
Rn
〈x, θ〉f(x)dx.

In particular, if f is centered then, for every F ∈ Gn,k we have that πF (f) is also centered.

5. For every p > 0 and any θ ∈ SF ,∫
Rn
|〈x, θ〉|pf(x)dx =

∫
F

|〈x, θ〉|pπF (f)(x)dx.

In particular, if f is isotropic then πF (f) is also isotropic.

6. If f is log-concave then πF (f) is also log-concave.

Similar results are valid for any measure µ ∈ Pn.

A second basic observation of Paouris is that any projection of the Lq-centroid body of a density f
coincides with the Lq-centroid body of the corresponding marginal of f . The proof is a direct application of
Fubini’s theorem.

Theorem 9.3 (Paouris). Let f : Rn → [0,∞) be a density in Rn. For every 1 6 k 6 n and any F ∈ Gn,k
and q > 1, we have

(9.12) PF (Zq(f)) = Zq(πF (f)).

Proof. Given q > 1 and θ ∈ SF , we write∫
Rn
|〈x, θ〉|qf(x)dx =

∫
F

|〈x, θ〉|qπF (f)(x)dx,

because 〈x, θ〉 = 〈PF (x), θ〉 for every x ∈ Rn. Equivalently,

hZq(f)(θ) = hZq(πF f)(θ),
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θ ∈ SF , and the result follows from the observation that hPF (Zq(f))(θ) = hZq(f)(θ) θ ∈ SF . 2

Let f be a centered log-concave density in Rn. Then, for every F ∈ Gn,k, the function πF (f) is a centered
log-concave density on F . Therefore, we may apply Theorem 9.1 for πF (f) to get

c1
πF (f)(0)1/k

6 Volk(Zk(πF (f)))1/k 6
c2

πF (f)(0)1/k
.

Combining this inequality with (9.12) we have the following.

Theorem 9.4. Let f be a log-concave density with bar(f) = 0 in Rn. Then, for every 1 6 k < n and any
F ∈ Gn,k we have

(9.13) c1 6 [πF (f)(0)]
1
kVolk(PF (Zk(f)))1/k 6 c2,

where c1, c2 > 0 are absolute constants.

Marginals and sections

The next proposition gives some very useful expressions for the volume of central sections of an isotropic
convex body.

Proposition 9.5. Let K be an isotropic convex body in Rn. We denote by µK the isotropic log-concave
measure with density LnK1 K

LK

. Then, for every 1 6 k < n and F ∈ Gn,k, the body Kk+1(πF (µK)) is almost

isotropic and

(9.14) Voln−k(K ∩ F⊥)1/k '
LKk+1(πF (µK))

LK
,

Also, for all 1 6 q 6 k,

(9.15) Zq
(
Kk+1(πF (µK))

)
' Voln−k(K ∩ F⊥)1/kPF (Zq(K)).

Proof. Fix 1 6 k < n and F ∈ Gn,k. Let fK be the density of µK . Since fK is isotropic, Proposition 9.2
shows that πF (fK) is isotropic. Hence, by Proposition 8.10 we get that Kk+1(πF (fK)) is almost isotropic
with some absolute constant C > 0. Using (9.8) (with q = 2) we get:

LKk+1(πF (fK)) =

(
Volk(Z2(Kk+1(πF (fK))))

Volk(BF )

)1/k

' πF (fK)(0)1/k

(
Volk(Z2(πF (fK)))

Volk(BF )

)1/k

= πF (fK)(0)1/k

(
Volk(PF (Z2(fK)))

Volk(BF )

)1/k

,

where we have used the fact that Z2(πF (f)) = PF (Z2(f)) for any log-concave function f . Note that, since
K is isotropic, we get

Z2(fK) = L−1
K Z2(K) = Bn2 and hence PF (Z2(fK)) = BF .

Moreover, we have

πF (fK)(0) =

∫
F⊥

fK(y) dy = LnKVoln−k

(
1
LK

K ∩ F⊥
)

= LkKVoln−k(K ∩ F⊥).

Combining the above we conclude that

LKk+1(πF (fK)) ' LKVoln−k(K ∩ F⊥)1/k.

The second assertion follows immediately from (9.8) and the equalities πF (µK)(0)1/k = LK |K ∩F⊥|1/k and
Zq(πF (µK)) = L−1

K PF (Zq(K)). 2
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Volume of the centroid bodies

A lower bound for the volume of Lq-centroid bodies follows from the Lq-affine isoperimetric inequality of
Lutwak, Yang and Zhang. Using our normalization we can write it in the following form.

Proposition 9.6 (Lutwak-Yang-Zhang). Let K be a convex body of volume 1 in Rn. Then,

Voln(Zq(K))1/n > Voln(Zq(Bn2 ))1/n > c
√
q/n

for every 1 6 q 6 n, where c > 0 is an absolute constant.

We will see that a reverse inequality holds true (up to the isotropic constant).

Theorem 9.7 (Paouris). If µ is an isotropic log-concave measure on Rn, then for every 2 6 q 6 n we have
that

(9.16) Voln(Zq(µ))1/n 6 c
√
q/n.

Moreover, if K is a centered convex body of volume 1 in Rn, then for every 2 6 q 6 n we have that

(9.17) Voln(Zq(K))1/n 6 c
√
q/nLK ,

where c > 0 is an absolute constant.

For the proof we will use Steiner’s formula: recall that for every convex body C in Rn we have

Voln(C + tBn2 ) =

n∑
k=0

(
n

k

)
Wk(C)tk

for all t > 0, where Wk(C) = Vn−k(C) = V (C;n − k,Bn2 ; k) is the k-th quermassintegral of C. Also,
the Alexandrov-Fenchel inequality implies the log-concavity of the sequence (W0(C), . . . ,Wn(C)), and in
particular we have that

(9.18)

(
Wn−i(C)

ωn

)1/i

>

(
Wn−j(C)

ωn

)1/j

,

for all 1 6 i < j 6 n. We will also use Kubota’s integral formula:

(9.19) Wn−m(C) =
ωn
ωm

∫
Gn,m

Volm(PF (C)) dνn,m(F ), (1 6 m 6 n).

Proof of Theorem 9.7. It is enough to prove (9.16) for integer values of 1 6 q 6 n− 1. Observe that for
any F ∈ Gn,q we have

Volq(PF (Zq(µ)))1/q = Volq(Zq(πF (µ)))1/q 6
c1

[fπF (µ)(0)]1/q
6 c2,

where we have used Theorem 9.3, Theorem 9.1 and (7.2) respectively, for the isotropic function fπF (µ) =
πF (fµ). Applying (9.19) we get

Wn−q(Zq(µ)) 6
ωn
ωq
cq2.

Now, we apply (9.18) for C = Zq(µ) with j = n and i = q; this gives

W
1/q
n−q(Zq(µ)) > Voln(Zq(µ))1/nω1/q−1/n

n .

Combining the above, we get

Voln(Zq(µ))1/n 6
ω

1/n
n

ω
1/q
q

c2.

Since ω
1/k
k ' 1/

√
k, we get (9.16). For the second assertion of the theorem we may assume that K is

isotropic (because the volume of Zq(T (K)) is the same for all T ∈ SL(n)). Consider the measure µ with
density fµ = LnK1 K

LK

. Then, µ is isotropic and Zq(µ) = L−1
K Zq(K). Thus, the result follows immediately

from (9.16). 2
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10 Paouris’ inequality

We are now ready to prove a very useful inequality of Paouris.

Theorem 10.1 (Paouris). Let µ be an isotropic log-concave probability measure in Rn. Then,

(10.1) µ({x ∈ Rn : |x| > ct
√
n}) 6 exp

(
−t
√
n
)

for every t > 1, where c > 0 is an absolute constant.

The proof of Theorem 10.1 is reduced to the behavior of the moments of the function x 7→ |x|. For every
q > 1 we define

Iq(µ) =

(∫
Rn
|x|qdµ(x)

)1/q

.

Theorem 4.8 shows that for all y ∈ Rn and p, q > 1 we have

‖〈·, y〉‖pq 6 c1q‖〈·, y〉‖p,

where c1 > 0 is an absolute constant. Moreover, since |x| is a norm, for every p, q > 1 we have

Ipq(K) 6 c1qIp(K).

In particular, we have

(10.2) Iq(µ) 6 c1qI2(µ)

for all q > 2. Paouris proved the following.

Theorem 10.2 (Paouris). There exist absolute constants c3, c4 > 0 such that if µ is an isotropic log-concave
probability measure on Rn then

(10.3) Iq(µ) 6 c4I2(µ)

for all q 6 c3
√
n.

Assuming that we have proved Theorem 10.2, we obtain Theorem 10.1 as follows: we consider an isotropic
log-concave probability measure µ in Rn. From Markov’s inequality, for every q > 2 we have

µ({|x| > e3Iq(µ)}) 6 e−3q.

Then, Borell’s lemma gives

µ({|x| > e3Iq(µ)s}) 6 (1− e−3q)

(
e−3q

1− e−3q

)(s+1)/2

6 e−qs

for every s > 1. Choosing q = c3
√
n, and using (10.3), we see that

µ({|x| > c4e
3I2(µ)s}) 6 exp(−c3

√
ns)

for all s > 1. Since µ is isotropic, we have I2(µ) =
√
n. This proves the theorem.

We pass to the proof of Theorem 10.2. We will actually prove a stronger statement.

Theorem 10.3. Let µ be a centered log-concave probability measure on Rn. For every q > 1,

(10.4) Iq(µ) 6 C (I2(µ) +R(Zq(µ))) .
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Note that if µ is isotropic then R(Zq(µ)) 6 cq, and hence the right hand side of (10.4) is bounded by
C1 max{I2(µ), q}. Since I2(µ) =

√
n, for all q 6

√
n we get

Iq(µ) 6 C1 max{I2(µ), q} = C1I2(µ),

which is exactly the statement of Theorem 10.2.
We start with the next lemma, which relates the q-moment of the Euclidean norm with respect to µ with

the parameters wq and the Lq-centroid bodies of µ through the next lemma.

Lemma 10.4. Let µ be a log-concave probability measure in Rn. For every q > 1 we have

wq(Zq(µ)) = an,q

√
q

q + n
Iq(µ)

where an,q ' 1.

Proof. This is in fact a different way to express Alsker’s computation: for every x ∈ Rn we have(∫
Sn−1

|〈x, θ〉|qdσ(θ)

)1/q

= an,q

√
q

√
q + n

|x|,

where an,q ' 1. Since

wq(Zq(µ)) =

(∫
Sn−1

∫
Rn
|〈x, θ〉|qdµ(x)σ(dθ)

)1/q

,

the lemma follows.

Proof of Theorem 10.3. We start with the formula

(10.5) Iq(µ) = cn,qwq(Zq(µ)),

where cn,q ' max{1,
√
n/q}. Therefore, we need to show that

wq(Zq(µ)) 6 C min{1,
√
q/n} (I2(µ) +R(Zq(µ))) .

Since wq(Zq(µ)) 6 R(Zq(µ)), we clearly have the result when q > n, and hence in the sequel we may assume
that q is an integer and 1 6 q 6 n.

Recall the result of Litvak, Milman and Schechtman (Theorem 2.6): we have

(10.6) wq(Zq(µ)) 6 c1 max{w(Zq(µ)),
√
q/nR(Zq(µ))}.

Therefore, the theorem will follow if we show that, for all 1 6 q 6 n,

(10.7) w(Zq(µ)) 6 C
√
q/n(I2(µ) +R(Zq(µ))).

If q > k∗(Zq(µ)) then we have

(10.8) w(Zq(µ)) 6 c2
√
q/nR(Zq(µ))

by the definition of k∗(Zq(µ)). If q 6 k∗(Zq(µ)) then Theorem 2.6 (Dvoretzky theorem for Zq(µ)) shows
that a random F ∈ Gn,q satisfies ∫

|PF (x)|2 dµ(x) 6 c3(q/n)I2
2 (µ)
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(this is justified by averaging over all F ∈ Gn,k and then applying Markov’s inequality) and

(10.9) w(Zq(µ))BF ⊆ c4PF (Zq(µ)).

Since PF (Zq(µ)) = Zq(πF (µ)) (by Theorem 9.3) and πF (µ) is a q-dimensional centered log-concave proba-
bility measure, from Theorem 9.4 we get

(10.10) vrad(Zq(πF (µ))) '
√
q

‖πF (µ)‖1/q∞
=
√
q
|det Cov(πF (µ))|

1
2q

LπF (µ)
.

Using the the fact that LπF (µ) > c > 0, we see that

vrad(Zq(πF (µ))) 6 c5

(∫
|x|2dπFµ(x)

)1/2
LπF (µ)

6 c6

(∫
|PF (x)|2 dµ(x)

)1/2

6 c7
√
q/nI2(µ).(10.11)

Combining (10.9), (10.10) and (10.11) we have

(10.12) w(Zq(µ)) 6 c8
√
q/nI2(µ).

This completes the proof. 2

We end this section with a basic application of the previous results.

Theorem 10.5. Let µ be an isotropic log-concave probability measure in Rn. If 1 6 q 6
√
n, then

(10.13) w(Zq(µ)) ' √q.

For Theorem 10.5 we write w(Zq(µ)) ' wq(Zq(µ)) '
√
q/nIq(µ) ' √q, where the first equality holds

because
√
n 6 q∗(µ), the second comes from Lemma 10.4 and the third follows from Theorem 10.2.

11 The isomorphic slicing problem

In this section we describe Klartag’s affirmative answer to the isomorphic slicing problem

Theorem 11.1 (Klartag). Let K be a convex body in Rn. For every ε ∈ (0, 1) we can find a centered convex
body T ⊂ Rn and a point x ∈ Rn such that

(11.1)
1

1 + ε
T ⊆ K + x ⊆ (1 + ε)T

and

LT 6
C√
ε

for some absolute constant C > 0.

The body T will be of the form Kn+1(g) for some function g on the centered translate of K, which is not
much different from 1K . More precisely, g will be chosen from a family of functions proportional to e〈x,ξ〉1K .
We start with the next lemma which will allow us to compare the isotropic constant of a function f and of
Kn+1(g) when g is the centered translate of f .

Lemma 11.2. Let K be a convex body in Rn and let f : K → (0,∞) be a log-concave function such that

sup
x∈K

f(x) 6 mn+1 inf
x∈K

f(x)
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for some m > 1. We write x0 = bar(f) and denote the centered translate of f by g, namely g(x) := f(x+x0)
for all x ∈ K − x0. Then the body T := Kn+1(g) is centered,

Lf = Lg ' LT

and

(11.2)
1

m
T ⊆ K − x0 ⊆ mT.

Proof. It is easy to check that f seen as a function on all of Rn (where we set f(x) = 0 for x /∈ K) is
log-concave as well, and that x0 = bar(f) ∈ K. The facts that T is centered and that LT ' Lg = Lf follow
easily from Proposition 8.10, so it remains to prove (11.2). Since Kn+1(λg) = Kn+1(g) for every λ > 0, we
may assume without loss of generality that g(0) = 1K−x0(0) = 1. Then,

inf

{
g(x)

1K−x0
(x)

: 1K−x0
(x) > 0

}
= inf
x∈K−x0

g(x) = inf
y∈K

f(y) > m−(n+1)

and

inf

{
1K−x0

(x)

g(x)
: g(x) > 0

}
=

(
sup
y∈K

f(y)

)−1

> m−(n+1).

From Lemma 8.2 and Proposition 8.3 (iv) we obtain

1

m
Kn+1(g) ⊆ Kn+1

(
1K−x0

)
= K − x0 ⊆ mKn+1(g),

and this completes the proof. 2

We consider the uniform measure on K, which we denote by µ = 1Kdx, and a family of measures
{µξ}ξ∈Rn which will be probability measures with density proportional to e〈x,ξ〉1K(x). The properties of
these measures are closely related to the logarithmic Laplace transform of the measure µ, which is defined
by

(11.3) Λµ(ξ) = log

(
1

µ(Rn)

∫
Rn
e〈ξ,x〉dµ(x)

)
.

We summarize some of its basic properties in the next proposition.

Proposition 11.3. If µ = µK is Lebesgue measure on some convex body K in Rn, then

(11.4) (∇Λµ)(Rn) = int(K).

If µξ is the probability measure in Rn with density proportional to e〈ξ,x〉1K(x), then

(11.5) bar(µξ) = ∇Λµ(ξ)

and

(11.6) (HessΛµ)(ξ) = Cov(µξ).

Moreover, the map ∇Λµ transports the measure ν with density det(HessΛµ)(ξ) to µ. Equivalently, for every
continuous non-negative function φ : Rn → R,

(11.7)

∫
K

φ(x) dx =

∫
Rn
φ(∇Λµ(ξ)) det(Hess(Λµ)(ξ)) dξ =

∫
φ(∇Λµ(ξ))dν(ξ).
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Proof. Let F = Λµ, that is

F (x) = log

(
1

Voln(K)

∫
K

e〈x,y〉 dy

)
.

Observe that F is a C2-smooth, strictly convex function. Smoothness is clear, as we are integrating a smooth
function on a compact set. The strict convexity follows from Cauchy-Schwarz inequality. Differentiating
under the integral sign we get:

(11.8) ∇F (ξ) =

∫
K
ye〈ξ,y〉 dy∫

K
e〈ξ,z〉 dz

=

∫
y dµξ(y) = bar(µξ).

Since µξ is supported on the compact, convex set K we obtain that∇F (ξ) = bar(µξ) ∈ K for all ξ ∈ Rn. This
shows that∇F (Rn) ⊆ K. In fact, this is what we really need, although one can check that∇F (Rn) = int(K).

To compute the Hessian we differentiate twice to get:

∂2F (ξ)

∂ξj∂ξi
=

∫
K
xixje

〈ξ,x〉 dx−
∫
K
xie
〈ξ,x〉 dx

∫
K
xje
〈ξ,x〉 dx(∫

K
e〈ξ,x〉 dx

)2(11.9)

=

∫
xixj dµξ(x)−

∫
xi dµξ(x)

∫
xj dµξ(x)

= Cov(µξ)ij

For the last assertion note that since F is strictly convex, ∇F is one-to-one. So, for any continuous function
g : Rn → R, changing variables y = ∇F (ξ) we get

(11.10)

∫
∇F (Rn)

g(y) dy =

∫
Rn
g(∇F (ξ)) det(HessF )(ξ) dξ =

∫
Rn
g(∇F (ξ)) dν(ξ).

This completes the proof of the proposition. 2

Proof of Theorem 11.1. Without loss of generality we may assume that K is centered and that Voln(K) =
1. We denote again by µ = µK the Lebesgue measure restricted on K, and

dν(ξ) = det(Hess Λµ)(ξ) ≡ det Cov(µξ)dξ

as in Proposition 11.3. Using (11.7) with φ = 1 we get that

ν(Rn) =

∫
Rn

1 det(Hess Λµ)(ξ) dξ =

∫
K

1 dx = Voln(K) = 1.

Thus, for every ε > 0 we may write

Voln(εn(K−K)◦) min
ξ∈εn(K−K)◦

det Cov(µξ) 66
∫
εn(K−K)◦

det Cov(µξ) dξ = ν(εn(K−K)◦) 6 1.

By the Bourgain-Milman inequality we have Voln(εn(K−K)◦)1/n ' ε. Therefore, there exists ξ0 ∈ εn(K−K)◦

such that

det Cov(µξ0) = min
ξ∈εn(K−K)◦

det Cov(µξ) 6 Voln(εn(K−K)◦)−1
(c1
ε

)n
.

From the definition of µξ0 and of the isotropic constant we have that

Lµξ0 =

(
supx∈K e

〈ξ0,x〉∫
K
e〈ξ0,x〉dx

) 1
n

[det Cov(µξ0)]
1

2n .

37



Since ξ0 ∈ εn(K−K)◦ and K ∪ (−K) ⊂ K−K, we know that |〈ξ0, x〉| 6 εn for all x ∈ K, therefore

sup
x∈K

e〈ξ0,x〉 6 eεn and sup
x∈K

e〈ξ0,x〉 > e−εn.

On the other hand, since K is centered, from Jensen’s inequality we have that∫
K

e〈ξ0,x〉dx > e(
∫
K
〈ξ0,x〉 dx) = 1.

Combining the above we get

(11.11) Lµξ0 6
c2√
ε
.

Finally, we note that the function fξ0(x) = e〈ξ0,x〉1K(x) (which is proportional to the density of µξ0) is
obviously log-concave and satisfies

sup
x∈supp(fξ0 )

fξ0(x) 6 e2εn inf
x∈supp(fξ0 )

fξ0(x).

Therefore, applying Lemma 11.2, we can find a centered convex body Tξ0 in Rn such that

LTξ0 ' Lfξ0 = Lµξ0 6
c2√
ε

and
1

e2ε
Tξ0 ⊆ K − bξ0 ⊆ e2εTξ0

where bξ0 is the barycenter of fξ0 . Since e2ε 6 1 + cε when ε ∈ (0, 1), the result follows. 2

12 Klartag’s upper bound for the isotropic constant

Using Theorem 11.1 and Paouris’ distributional inequality, Klartag was also able to slightly improve Bour-
gain’s upper bound for the isotropic constant.

Theorem 12.1 (Klartag). Let K be a convex body in Rn. Then

(12.1) LK 6 C 4
√
n,

where C > 0 is an absolute constant.

Theorem 12.1 will follow from Theorem 11.1 and the next lemma.

Lemma 12.2. Let K,T be two convex bodies in Rn and t > 1. Suppose that

(12.2)
1

1 + t√
n

(T + y) ⊆ K + x ⊆
(

1 +
t√
n

)
(T + y)

for some x, y ∈ Rn. Then
LK 6 ctLT ,

where c > 0 is an absolute constant.
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Proof. We may assume that t <
√
n, otherwise the conclusion of the lemma is trivial since by Proposition

3.11 and Proposition 3.9 we have LK < c
√
n 6 c′

√
nLT . Note that (12.2) continues to hold (with possibly

different x, y ∈ Rn) if we translate either K or T or if we apply an invertible linear transformation to both
of them, thus we may assume that T is in isotropic position. Then by Paouris’s inequality we have that

Voln(T \ Ct
√
nLTB

n
2 ) 6 exp(−4t

√
n)

for some absolute constant C > 1. We set

K1 =
(

1 +
t√
n

)−1

(K + x)− y,

and by (12.2) we have K1 ⊆ T , and hence

(12.3) Voln(K1 \ Ct
√
nLTB

n
2 ) 6 exp(−4t

√
n).

By (12.2) we also see that

Voln(K1) =
(

1 +
t√
n

)−n
Voln(K) >

(
1 +

t√
n

)−2n

Voln(T ) > e−2t
√
n,(12.4)

which combined with (12.3) gives

Voln(K1 ∩ (Ct
√
nLTB

n
2 )) >

Voln(K)

2
.

Therefore the median of the Euclidean norm on K1, with respect to the uniform measure on K1, is not
larger than Ct

√
nLT . Since K1 is convex, and hence the uniform measure on K1 is a log-concave probability

measure, using Theorem 4.11 we obtain

(12.5)

(
1

Voln(K1)

∫
K1

|x|2 dx
)1/2

6 C ′t
√
nLT ,

for some absolute constant C ′ > 0. Recall that by Theorem 3.2

√
nLK =

√
nLK1

= min


(

1

Voln(S(K0))1+ 2
n

∫
S(K0)

|x|2 dx

)1/2 ∣∣S ∈ GLn
 ,

where K0 is the centered translate of K1, that is,

K0 = K1 − bar(K1) = K1 −
1

Voln(K1)

∫
K1

xdx.

It is also not hard to check that

1

Voln(K0)1+ 2
n

∫
K0

|x|2 dx =
1

Voln(K1)1+ 2
n

∫
K1

|x|2 dx− 1

Voln(K1)
2
n

|bar(K1)|2

6
1

Voln(K1)1+ 2
n

∫
K1

|x|2 dx,

and thus
√
nLK 6

(
1

Voln(K1)1+ 2
n

∫
K1

|x|2 dx
)1/2

6
C ′t
√
nLT

Voln(K1)1/n
6 C ′′t

√
nLT

by (12.4) and (12.5). This proves the lemma. 2
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Proof of Theorem 12.1. Let K be a convex body in Rn. According to Theorem 11.1, given ε ∈ (0, 1) we
can find a centered convex body T = Tε such that

LT 6
C√
ε

and
1

(1 + ε)
T ⊆ K + x ⊆ (1 + ε)T

for some x = xε ∈ Rn. If we choose ε = 1√
n

, Lemma 12.2 shows that

LK 6 cLT 6 c
C√
ε

= C ′ 4
√
n,

which was the assertion of the theorem. 2

13 Negative moments and small ball probability estimates

A parameter which was originally central in the work of Paouris is q∗(µ), which is defined for every centered
log-concave probability measure µ in Rn, as follows:

q∗(µ) = max{q > 2 : k∗(Zq(µ)) > q}.

We shall need a lower bound for q∗(µ).

Proposition 13.1. There exists an absolute constant c > 0 with the following property: if µ is a centered
log-concave probability measure in Rn then

q∗(µ) > c
√
k∗(Z2(µ)).

Proof. We set q∗ := q∗(µ). From Theorem 2.6 (i), Lemma 10.4, Hölder’s inequality and the simple observation
I2(µ) = w2(Z2(µ)) we get

w(Zq∗(µ)) > c1wq∗(Zq∗(µ)) = c1an,q∗

√
q∗

n+ q∗
Iq∗(µ) > c1an,q∗

√
q∗

n+ q∗
I2(µ)(13.1)

= c1an,q∗

√
q∗

n+ q∗

√
nw2(Z2(µ)).

In other words,

(13.2) w(Zq∗(µ)) > c2
√
q∗w(Z2(µ)).

Since R(Zq∗(µ)) 6 Cq∗R(Z2(µ)), using the definition of q∗ and Theorem 2.5 we write

2q∗ > k∗(Zq∗(µ)) > c3n

(
w(Zq∗(µ))

R(Zq∗(µ))

)2

> c3n
c22q∗
C2q2

∗

w2(Z2(µ))

R2(Z2(µ))
= c5

k∗(Z2(µ))

q∗
.(13.3)

This shows that q∗(µ) > c
√
k∗(Z2(µ)) for some absolute constant c > 0. 2

Note that if µ is isotropic then k∗(Z2(µ)) = n. Therefore, in the isotropic case we have:

Corollary 13.2. There exists an absolute constant c > 0 with the following property: for every isotropic
log-concave probability measure µ in Rn,

q∗(µ) > c
√
n.
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If µ is a centered log-concave probability measure in Rn, we extend the definition of Iq(µ), allowing
negative values of q, in the obvious way: for every q ∈ (−n,∞), q 6= 0, we define

Iq(µ) :=

(∫
Rn
|x|qdµ(x)

)1/q

.

The main result of this section is the next theorem.

Theorem 13.3 (Paouris). Let µ be a centered log-concave probability measure in Rn. For every integer
1 6 k 6 q∗(µ) we have

I−k(µ) ' Ik(µ).

In particular, this theorem shows that for every k 6 q∗(µ) we have Ik(µ) 6 CI2(µ), where C > 0 is an
absolute constant. This was precisely the assertion of Theorem 10.2.

The proof of Theorem 13.3 is based on two identities:

(i) If f is a centered log-concave density on Rn and 1 6 k < n is a positive integer, then

(13.4) I−k(f) = cn,k

(∫
Gn,k

πF (f)(0)dνn,k(F )

)−1/k

,

where

cn,k =

(
(n− k)ωn−k

nωn

)1/k

'
√
n.

Proof. Let 1 6 k < n. Then, we have∫
Gn,k

πF (f)(0) dνn,k(F ) =

∫
Gn,n−k

πE⊥(f)(0) dνn,n−k(E) =

∫
Gn,n−k

∫
E

f(y) dy dνn,n−k(E)

=

∫
Gn,n−k

(n− k)ωn−k

∫
SE

∫ ∞
0

rn−k−1f(rθ) dr dσE(θ) dνn,n−k(E)

=
(n− k)ωn−k

nωn
nωn

∫
Sn−1

∫ ∞
0

rn−k−1f(rθ) dr dσ(θ)

=
(n− k)ωn−k

nωn

∫
Rn
|x|−kf(x) dx =

(n− k)ωn−k
nωn

I−k−k (f).

It follows that

I−k(f) =

(
(n− k)ωn−k

nωn

)1/k
(∫

Gn,k

πF (f)(0) dνn,k(F )

)−1/k

.

Check that cn,k =
(

(n−k)ωn−k
nωn

)1/k

'
√
n. 2

(ii) If C is a symmetric convex body in Rn and 1 6 k < n is a positive integer, then

(13.5) w−k(C) '
√
k

(∫
Gn,k

Volk(PF (C))−1dνn,k(F )

)− 1
k

.

Proof. Using the Blaschke-Santaló and the Bourgain-Milman inequality, we write

w−1
−k(C) =

(∫
Sn−1

1

hkC(θ)
dσ(θ)

)1/k

=

(∫
Gn,k

∫
SF

1

‖θ‖k(PFC)◦
dσ(θ)dνn,k(F )

)1/k

=

(∫
Gn,k

Volk(PF (C))◦

Volk(Bk2 )
dνn,k(F )

)1/k

'

(∫
Gn,k

Volk(Bk2 )

Volk(PF (C))
dνn,k(F )

)1/k

,

and the result follows. 2
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Now, consider a centered log-concave density f in Rn, an integer 1 6 k < n and some F ∈ Gn,k. From
Theorem 9.4 we have

1

Volk(PF (Zk(f)))1/k
' πF (f)(0)1/k.

Combining the two identities we get:

Theorem 13.4. Let f be a centered log-concave density in Rn. For every integer 1 6 k < n we have

w−k(Zk(f)) '
√
k

(∫
Gn,k

πF (f)(0)dνn,k(F )

)− 1
k

and

(13.6) I−k(f) '
√
n

k
w−k(Zk(f)).

Proof of Theorem 13.3. Recall that, for every 1 6 k < n,

(13.7) wk(Zk(µ)) '
√
k/n Ik(µ).

On the other hand, from (13.6) we see that

w−k(Zk(µ)) '
√
k/n I−k(µ).

We set k0 = bq∗c, q∗ = q∗(µ). Then,

(13.8) k∗(Zk0
(µ)) ' k∗(Zq∗(µ)) > c1q∗ > c1k0.

From Theorem 2.10 we have

(13.9) w−k(Zk0
(µ)) ' wk(Zk0

(µ))

for every 1 6 k 6 c2k∗(Zk0
(µ)), and (13.8) shows that (13.9) holds for every k 6 c3q∗(µ). Setting k1 =

bc3q∗(µ)c ' k0, and using the fact that Zk0(µ) ' Zk1(µ), we get

(13.10) w−k1
(Zk1

(µ)) ' wk1
(Zk1

(µ)).

It is now clear that I−k1(µ) ' Ik1(µ) and since k1 ' q∗(µ) we see that q 7→ Iq(µ) is “constant” in the range
1 6 |q| 6 cq∗(µ). 2

A useful consequence of Theorem 13.3 is the next small ball probability estimate:

Theorem 13.5. Let µ be an isotropic log-concave probability measure on Rn. Then, for every 0 < ε < ε0

we have

(13.11) µ({x ∈ Rn : |x| < ε
√
n}) 6 εc

√
n,

where ε0, c > 0 are absolute constants.

Proof. Let 1 6 k 6 q∗(µ). We write

µ({x ∈ Rn : |x| < εI2(µ)}) 6 µ({x : |x| < c1εI−k(µ)})
6 (c1ε)

k 6 εk/2,

for every 0 < ε < c−2
1 and k 6 c2q∗(µ). Since q∗(µ) > c3

√
n, the result follows with ε0 = c−2

1 c = c2c3/2.
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14 Reduction to the negative moments

In this section we describe the work of Dafnis and Paouris: they proved that a positive answer to the
hyperplane conjecture is equivalent to some very strong small probability estimates for the Euclidean norm
on isotropic convex bodies. Recall that, for −n < p 6∞, p 6= 0,

Ip(K) :=

(∫
K

|x|pdx
)1/p

and, given any ζ > 1, consider the parameter

(14.1) q−c(K, ζ) := max{p > 1 : I2(K) 6 ζI−p(K)}.

The results in this section imply that the hyperplane conjecture is equivalent to the following statement:

There exist absolute constants C, ξ > 0 such that, for every isotropic convex body K in Rn,

q−c(K, ξ) > Cn.

We already know that there exists a parameter q∗ := q∗(K) (related to the Lq-centroid bodies of K) with
the following properties:

1. q∗(K) > c
√
n,

2. q−c(K, ξ0) > q∗(K) for some absolute constant ξ0 > 1, and hence, I2(K) 6 ξ0I−q∗(K).

What is not clear is the behavior of I−p(K) when p lies in the interval [q∗, n].

The main idea of Dafnis and Paouris is to start with an “extremal” isotropic convex body K in Rn with
maximal isotropic constant LK ' Ln which is at the same time in α-regular M -position. Their starting
point, which has a rather technical proof, is the following precise statement.

Theorem 14.1 (Dafnis-Paouris). There exist absolute constants κ, τ > 1 and δ > 0 such that, for every
α ∈ [1, 2), we can find an isotropic convex body Kα in Rn with the following properties:

(i) LKα > δLn,

(ii) for every t > τ(2− α)−3/2

(14.2) logN(Kα, t
√
nBn2 ) 6

κn

(2− α)2α tα
.

Then, they try taking advantage of the fact that small ball probability estimates are closely related to
estimates for covering numbers. The key lemma is the following.

Lemma 14.2. Let K be a centered convex body of volume 1 in Rn. Assume that, for some s > 0,

(14.3) rs := logN(K, sBn2 ) < n.

Then,
I−rs(K) 6 3es.

Proof. Let z0 ∈ Rn be such that Voln(K ∩ (−z0 + sBn2 )) > Voln(K ∩ (z + sBn2 )) for every z ∈ Rn. It follows
that

(14.4) Voln((K + z0) ∩ sBn2 ) ·N(K, sBn2 ) > Voln(K) = 1.

Let q = rs. Then, using Markov’s inequality, the definition of I−q(K + z0) and (14.3), we get

Voln((K + z0) ∩ 3−1I−q(K + z0)Bn2 ) 6 3−q < e−q = e−rs 6
1

N(K, sBn2 )
.

43



From (14.4) we obtain

Voln((K + z0) ∩ 3−1I−q(K + z0)Bn2 ) < Voln((K + z0) ∩ sBn2 ),

and this implies
3−1I−q(K + z0) 6 s.

Since K is centered, we get that I−k(K+ z) > 1
eI−k(K) for any 1 6 k < n and z ∈ Rn. To see this, we write

I−k(K + z) = cn,k

(∫
Gn,k

Voln−k(K + z) ∩ F⊥) dνn,k(F )

)−1/k

>
cn,k
e

(∫
Gn,k

Voln−k(K ∩ F⊥) dνn,k(F )

)−1/k

=
1

e
I−k(K).

This proves the lemma. 2

We can now prove the main theorem.

Theorem 14.3 (Dafnis-Paouris). Assume that q−c(K, ζ) > βn for some ζ > 1, some β ∈ (0, 1) and every
isotropic convex body K in Rn. Then,

(14.5) Ln 6
Cζ√
β

log2
( e
β

)
,

where C > 0 is an absolute constant.

Proof. Set α := 2 − log(e/β)−1 and with this α apply Theorem 14.1 to find an isotropic convex body Kα

which satisfies its conclusion: for some absolute constants κ, τ > 1 and δ > 0 it holds that LKα > δLn and

logN(Kα, t
√
nBn2 ) 6

κn

(2− α)2αtα
for all t > τ log3/2

( e
β

)
.

We may clearly assume that τ2 6 eκ as well. We choose

t1 = (eκ)1/α 1√
β

log2
( e
β

)
;

then tα1 = eκ(2−α)−2α(
√
β)−α and, since τ 6

√
eκ 6 (eκ)1/α, we have that t1 > τ(2−α)−3/2 = τ log3/2(e/β).

Therefore,

r1 := logN(Kα, t1
√
nBn2 ) 6

κn

(2− α)2αtα1
6

1

e
(
√
β)αn 6 βn,

and hence by Lemma 14.2 we obtain that

I−r1(Kα) 6 3et1
√
n.

On the other hand, since r1 6 βn and since q−c(Kα, ζ) > βn, we have that

√
nLKα = I2(Kα) 6 ζI−r1(Kα).

It follows that

LKα 6 3eζt1 = 3eζ(eκ)1/α 1√
β

log2
( e
β

)
6

3e2ζκ√
β

log2
( e
β

)
.

Since LKα > δLn, the result follows. 2
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Remark 14.4. Since q−c(K, ξ0) > q∗(K) > c
√
n for some absolute constants ξ0 > 1 and c > 0, we may

apply Theorem 14.3 with ζ = ξ0 and β = c/
√
n to get

(14.6) Ln 6
Cζ√
c

4
√
n log2

(e√n
c

)
6 C1

4
√
n(log n)2,

where C1 > 0 is an absolute constant.

In the opposite direction, one can show that if the hyperplane conjecture is correct then there are absolute
constants σ, ξ > 0 such that, for every isotropic convex body K in Rn, one has q−c(K, ξ) > σn. This is an
immediate consequence of the next theorem.

Theorem 14.5 (Dafnis-Paouris). There exists an absolute constant C > 0 such that, for every n and for
every isotropic convex body K in Rn,

q−c(K,CLn) > n− 1.

Proof. We start with the formula

(14.7) I−s(K) '
√
n

(∫
Gn,s

Voln−s(K ∩ F⊥) dνn,s(F )

)−1/s

.

Recall from Proposition 9.5 that

Voln−s(K ∩ F⊥)1/s '
LKs+1(πF (µK))

LK
.

for every F ∈ Gn,s. Thus, we get

I−s(K) '
√
n

(∫
Gn,s

(
LKs+1(πF (f))

LK

)s
dνn,s(F )

)−1/s

.

Now, ∫
Gn,s

(
LKs+1(πF (f))

LK

)s
dνn,s(F ) 6

(
Ls
LK

)s
.

Therefore,

I−s(K) >
c1
√
nLK
Ls

>
c2
√
nLK
Ln

because it is known that Ls 6 c3Ln for all integers s 6 n− 1. Since I2(K) =
√
nLK , we get

q−c(K, δ) := max{p > 1 : I2(K) 6 c−1
2 LnI−p(K)} > n− 1.

This is the claim of the theorem. 2

15 A variant of Bourgain’s argument and one more reduction

Let K be a centered convex body of volume 1 in Rn. We consider the parameter

I1(K,Z◦q (K)) =

∫
K

‖〈·, x〉‖Lq(K)dx.

Generally, if K is a centered convex body of volume 1 in Rn, then for every symmetric convex body C in
Rn and for every q ∈ (−n,∞), q 6= 0, we define

Iq(K,C) :=

(∫
K

‖x‖qC dx
)1/q

.
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The notation I1(K,Z◦q (K)) is then justified by the fact that ‖〈·, x〉‖Lq(K) is the norm induced on Rn by the
polar body Z◦q (K) of the Lq-centroid body of K.

The purpose of this section is to describe a work of Giannopoulos, Paouris and Vritsiou which reduces
the hyperplane conjecture to the study of the parameter I1(K,Z◦q (K)) when K belongs to the following
subclass of isotropic convex bodies. We start with a definition which formalizes Theorem 14.1 from the
previous section.

Definition 15.1. Let κ, τ > 0. We say that an isotropic convex body K in Rn is (κ, τ)-regular if

logN(K, tBn2 ) 6
κn2 log4 n

t2
for all t > τ

√
n log3/2 n.

Applying Theorem 14.1 with α = 2 − (log n)−1, we see that there are absolute constants κ, τ > 1 and
δ > 0 such that, for every n ∈ N, there exist (κ, τ)-regular isotropic convex bodies with maximal isotropic
constant. More precisely, we start with the next fact.

Theorem 15.2. For every n ∈ N we can find an isotropic convex body K in Rn with the following properties:

(i) LK > δLn,

(ii) logN(K, tBn2 ) 6 κn2 log4 n/t2 for all t > τ
√
n log3/2 n,

where κ > τ2 > 1 and δ > 0 are absolute constants.

The main result of this section is the next reduction of the slicing problem.

Theorem 15.3 (Giannopoulos-Paouris-Vritsiou). There exists an absolute constant ρ ∈ (0, 1) with the
following property. Given κ > τ2 > 1, for every n > n0(τ) and every (κ, τ)-regular isotropic convex body K
in Rn we have: if

(15.1) 2 6 q 6 ρ2n and I1(K,Z◦q (K)) 6 ρnL2
K ,

then

L2
K 6 Cκ

√
n

q
log4 n max

{
1,
I1(K,Z◦q (K))
√
qnL2

K

}
,

where C > 0 is an absolute constant.

Observe that, for every isotropic convex body K in Rn, we have that

I1(K,Z◦2 (K)) 6
√
nL2

K 6 ρnL2
K

if n is sufficiently large. From Theorem 15.2 we know that, for some absolute constants κ > τ2 > 1 and
δ > 0, there exists a (κ, τ)-regular isotropic convex body K in Rn with LK > δLn. Therefore, Theorem 15.3
gives

(15.2) L2
K 6 C1

√
n log4 n,

which already leads to the bound Ln 6 C2
4
√
n log2 n for Ln.

However, the behavior of I1(K,Z◦q (K)) may allow us to use much larger values of q. For every isotropic
convex body K in Rn one can prove some simple general estimates:

(i) For every 2 6 q 6 n,

c1 max
{√

nL2
K ,
√
qn,R(Zq(K))LK

}
6 I1(K,Z◦q (K)) 6 c2q

√
nL2

K .

(ii) If 2 6 q 6
√
n, then

c1 max
{√

nL2
K ,
√
qnLK

}
6 I1(K,Z◦q (K)) 6 c2q

√
nL2

K .
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Any improvement of the exponent of q in the upper bound I1(K,Z◦q (K)) 6 cq
√
nL2

K would lead to an

estimate Ln 6 Cnα with α < 1
4 . It seems plausible that one could even have I1(K,Z◦q (K)) 6 c

√
qnL2

K , at
least when q is small, say 2 6 q �

√
n. Some evidence is given by the following facts:

(iii) If K is an unconditional isotropic convex body in Rn, then

c1
√
qn 6 I1(K,Z◦q (K)) 6 c2

√
qn logn

for all 2 6 q 6 n.

(iv) If K is an isotropic convex body in Rn then, for every 2 6 q 6
√
n, there exists a set Aq ⊆ O(n) with

ν(Aq) > 1− e−q such that I1(K,Z◦q (U(K))) 6 c3
√
qnL2

K for all U ∈ Aq.

For the proof of Theorem 15.3 we need two auxiliary results. The first one provides an estimate for the
Lq-norm of the maximum of N linear functionals on K.

Lemma 15.4. Let K be a convex body of volume 1 in Rn, and consider any points z1, z2, . . . , zN ∈ Rn. If
q > 1 and p > max{logN, q}, then

(15.3)

(∫
K

max
16i6N

|〈x, zi〉|qdx
)1/q

6 β1 max
16i6N

hZp(K)(zi),

where β1 > 0 is an absolute constant.

Proof. Let p > max{logN, q} and θ ∈ Sn−1. Markov’s inequality shows that

Voln({x ∈ K : |〈x, θ〉) > e3hZp(K)(θ)}) 6 e−3p.

Since x 7→ |〈x, θ〉| is a seminorm, from Borell’s lemma we get that

Voln({x ∈ K : |〈x, θ〉) > e3thZp(K)(θ)}) 6 (1− e−3p)

(
e−3p

1− e−3p

) t+1
2

6 e−pt

for every t > 1. We set S := e3 max
16i6N

hZp(K)(zi). Then, for every t > 1 we have that

Voln({x ∈ K : max
16i6N

|〈x, zi〉| > St}) 6
N∑
i=1

Voln({x ∈ K : |〈x, zi〉| > e3thZp(K)(zi)}) 6 Ne−pt.

It follows that∫
K

max
16i6N

|〈x, zi〉|qdx = q

∫ ∞
0

sq−1Voln({x ∈ K : max
16i6N

|〈x, zi〉| > s}) ds

6 Sq + q

∫ ∞
S

sq−1Voln({x ∈ K : max
16i6N

|〈x, zi〉| > s}) ds

= Sq
(

1 + q

∫ ∞
1

tq−1Voln({x ∈ K : max
16i6N

|〈x, zi〉| > St}) dt
)

6 Sq
(

1 + qN

∫ ∞
1

tq−1e−ptdt

)
= Sq

(
1 +

qN

pq

∫ ∞
p

tq−1e−tdt

)
6 Sq

(
1 +

qN

pq
e−ppq

)
6 (3S)q,
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where we have also used the fact that, for every p > q > 1,∫ ∞
p

tq−1e−tdt 6 e−ppq.

This finishes the proof (with β1 = 3e3). 2

The second lemma concerns the Lq-centroid bodies of subsets of K.

Lemma 15.5. Let K be a convex body of volume 1 in Rn and let 1 6 q, r 6 n. There exists an absolute

constant β2 > 0 such that if A is a convex subset of K with Voln(A) > 1− e−β2q, then

(15.4) Zp(K) ⊆ 2Zp(A)

for all 1 6 p 6 q. For the opposite inclusion, if Voln(A) > 2−
r
2 then

(15.5) Zp(A) ⊆ 2Zp(K)

for all r 6 p 6 n.

Proof. Let θ ∈ Sn−1. Note that

hZp(A)(θ) =

(∫
A

|〈x, θ〉|pdx
)1/p

=
1

Voln(A)
1
p+ 1

n

(∫
A

|〈x, θ〉|pdx
)1/p

.

We first prove (15.5): since A ⊆ K and assuming that Voln(A) > 2−
r
2 , we have

hZp(K)(θ) =

(∫
K

|〈x, θ〉|pdx
)1/p

>

(∫
A

|〈x, θ〉|pdx
)1/p

> 2−
r
2p−

r
2n

(∫
A

|〈x, θ〉|pdx
)1/p

>
1

2
hZp(A)(θ)

for all r 6 p 6 n. On the other hand, assuming that Voln(A) > 1 − e−β2q and using the fact that
‖〈·, θ〉‖2p 6 c‖〈·, θ〉‖p for some absolute constant c > 0, we have∫

K

|〈x, θ〉|pdx =

∫
A

|〈x, θ〉|pdx+

∫
K\A
|〈x, θ〉|pdx

6 Voln(A)1+ p
n

∫
A

|〈x, θ〉|pdx+ Voln(K \A)1/2

(∫
K

|〈x, θ〉|2pdx
)1/2

6
∫
A

|〈x, θ〉|pdx+ e−β2q/2cp
∫
K

|〈x, θ〉|pdx

6
∫
A

|〈x, θ〉|pdx+
1

2

∫
K

|〈x, θ〉|pdx

for every 1 6 p 6 q, if β2 > 0 is chosen large enough. This proves (15.4). 2

Proof of Theorem 15.3. Let κ > τ2 > 1 and consider a (κ, τ)-regular isotropic convex body K in Rn.
Assume that the conditions (15.1) are also satisfied. We define a convex body W in Rn, setting

W := {x ∈ K : hZq(K)(x) 6 C1I1(K,Z◦q (K))},

where C1 = e2β2 and β2 > 0 is the constant which was defined in Lemma 15.5. From Markov’s inequality

we have that Voln(W ) > 1− e−2β2 and also trivially that Voln(W ) > 1
2 > 2−q/2 (as long as β2 > 1). Then

we set
K1 := W.
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Applying both cases of Lemma 15.5 to the set W with p = 2, we see that

1

2
Z2(K1) ⊆ Z2(K) ⊆ 2Z2(K1).

This implies that
1

4
L2
K =

1

4

∫
K

〈x, θ〉2dx 6
∫
K1

〈x, θ〉2dx 6 4

∫
K

〈x, θ〉2dx = 4L2
K

for every θ ∈ Sn−1, and hence,

nL2
K

4
6

n∑
i=1

∫
K1

〈x, ei〉2dx =

∫
K1

|x|2dx 6 4nL2
K .

We also have
K1 = Voln(W )−1/nW ⊆ 2W ⊆ 2K,

thus for every x ∈ K1 we have x/2 ∈W and, using (15.5) of Lemma 15.5 (with p = q) we write

(15.6) hZq(K1)(x) 6 2hZq(K)(x) = 4hZq(K)(x/2) 6 4C1I1(K,Z◦q (K)).

Finally,

logN(K1, tB
n
2 ) 6 logN(2K1, tB

n
2 ) 6 logN(4K, tBn2 ) 6

16κn2 log4 n

t2
,

for all t > 4τ
√
n log3/2 n. We write

nL2
K 6 4

∫
K1

|x|2dx 6 4

∫
K1

max
z∈K1

|〈x, z〉| dx.

Observe now that for every t > 4τ
√
n log3/2 n we can find z1, . . . , zNt ∈ K1, with |Nt| 6 exp(16κn2 log4 n/t2),

such that K1 ⊆
Nt⋃
i=1

(zi + tBn2 ). It follows that

max
z∈K1

|〈x, z〉| 6 max
16i6Nt

|〈x, zi〉|+ max
w∈tBn2

|〈x,w〉| = max
16i6Nt

|〈x, zi〉|+ t|x|,

and hence

(15.7) nL2
K 6 4

∫
K1

max
16i6Nt

|〈x, zi〉|dx+ 4t

∫
K1

|x| dx 6 4

∫
K1

max
16i6Nt

|〈x, zi〉|dx+ 8t
√
nLK .

Recall also that by Borell’s lemma we can find absolute constants β1, β2 > 0 so that

(15.8) Zq(K) ⊆ β1qZ1(K) and Zq(K) ⊆ β2
q

p
Zp(K)

for all 1 6 p < q. We choose

t20 = 64C2κmax

{
1,
I1(K,Z◦q (K))
√
qnL2

K

}
n3/2

√
q

log4 n,

where C2 = 16C1β1β1 with β1 the constant from Lemma 15.4. With this choice of t0, we have

(15.9) t20 > 64C2κ

√
n

q
n log4 n >

64C2κ

ρ
n log4 n
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and

(15.10) t20 > 64C2κ
I1(K,Z◦q (K))

qL2
K

n log4 n.

From (15.9) it is clear that

t20 > 64C2κ
n log4 n

ρ
> 16τ2n log3 n,

provided that n > n0(τ, ρ), so the above argument, leading up to (15.7), holds with t = t0. We also set p0 :=
16κn2 log4 n

t20
. Observe that p0 > q: since q is such that I1(K,Z◦q (K)) 6 ρnL2

K , we have max
{

1,
I1(K,Z◦q (K))
√
qnL2

K

}
6

ρ
√
n/q, and hence

t20 6 64C2κρ
n2 log4 n

q
.

But then, if we choose ρ < 1/(4C2), we have

p0 =
16κn2 log4 n

t20
>

16κn2q log4 n

64C2κρn2 log4 n
=

q

4C2ρ
> q

as claimed. Therefore, using Lemma 15.4 with q′ = 1, we can write∫
K1

max
16i6Nt0

|〈x, zi〉|dx 6 β1 max
16i6Nt0

hZp0 (K1)(zi) 6 β1β1
p0

q
max

16i6Nt0
hZq(K1)(zi).

Combining the above with (15.7), (15.6) and the definition of C2, we get

(15.11) nL2
K 6 C2

p0

q
I1(K,Z◦q (K)) + 8t0

√
nLK .

Also, from (15.10) and the definition of p0, we have

C2
p0

q
I1(K,Z◦q (K)) =

16C2κI1(K,Z◦q (K))

qt20
n2 log4 n 6

1

4
nL2

K .

Therefore, (15.11) gives
nL2

K 6 C3t0
√
nLK .

This shows that

L2
K 6 C4

t20
n

= Cκmax

{
1,
I1(K,Z◦q (K))
√
qnL2

K

}√
n

q
log4 n,

as claimed. 2

16 Volume of the centroid bodies and the isotropic constant

Klartag and E. Milman further exploited the logarithmic Laplace transform to obtain additional information
on the Lq-centroid bodies of an isotropic log-concave probability measure µ in Rn and an alternative proof
of the bound Lµ = O( 4

√
n). Recall that the logarithmic Laplace transform of a Borel probability measure µ

on Rn is defined by

Λµ(ξ) = log
(∫

Rn
e〈ξ,x〉dµ(x)

)
.

It is easily checked that Λµ is convex and Λµ(0) = 0. If bar(µ) = 0 then Jensen’s inequality shows that

Λµ(ξ) = log
(∫

Rn
e〈ξ,x〉dµ(x)

)
>
∫
Rn
〈ξ, x〉dµ(x) = 0

for all ξ; therefore, Λµ is a non-negative function. Further properties of Λµ in the log-concave case are
described in the next proposition.
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Proposition 16.1. Let µ be an n-dimensional log-concave probability measure. The set A(µ) = {Λµ <∞}
is open and Λµ is C∞ and strictly convex on A(µ). Moreover, for every t > 0 and α > 1,

(16.1)
1

α
{Λµ 6 αt} ⊆ {Λµ 6 t} ⊆ {Λµ 6 αt}.

Definition 16.2. For every p > 0 we define

Λp(µ) = {Λµ 6 p} ∩ (−{Λµ 6 p}).

The level sets Λp(µ) of Λµ can be expressed in terms of the Lq-centroid bodies of µ; it is not hard to
check the following.

Proposition 16.3. Let µ be a log-concave probability measure with bar(µ) = 0. For every p > 1,

Λp(µ) ' pZp(µ)◦.

Lemma 16.4. Let µ be a log-concave probability measure with bar(µ) = 0. For every q, r > 0,

∇Λµ

(
1

2
{Λµ 6 q}

)
⊆ (q + r){Λµ 6 r}◦.

Proof. Let x ∈ 1
2{Λµ 6 q}. Then, Λµ(2x) 6 q. For every z ∈ {Λµ 6 r} we may write〈
∇Λµ(x),

z

2

〉
6 Λµ(x) +

〈
∇Λµ(x),

z

2

〉
6 Λµ

(
x+

z

2

)
6

Λµ(2x) + Λµ(z)

2
6
q + r

2
,

using the fact that Λµ(x) > 0 and the convexity of Λµ. Since

〈∇Λµ(x), z〉 6 q + r

for every z ∈ {Λµ 6 r} we see that ∇Λµ(x) ∈ (q + r){Λµ 6 r}◦. 2

Corollary 16.5. Let µ be a log-concave probability measure with bar(µ) = 0. For every p > 0,

∇Λµ

(
1

2
Λp(µ)

)
⊆ 2pΛp(µ)◦.

Proof. We apply Lemma 16.4 with q = r = p. We have

∇Λµ

(
1

2
Λp(µ)

)
⊆ ∇Λµ

(
1

2
{Λµ 6 p}

)
⊆ 2p {Λµ 6 p}◦ ⊆ 2pΛp(µ)◦,

because {Λµ 6 p} ⊇ Λp(µ) implies that {Λµ 6 p}◦ ⊆ Λp(µ)◦. 2

Definition 16.6. For every p > 0 we define

Ψp =

(
1

Voln
(

1
2Λp(µ)

) ∫
1
2 Λp(µ)

det Hess (Λµ)(x) dx

)1/n

.

Proposition 16.7. For every p > 0,

Voln(Λp(µ))1/n 6 C

√
p

n

1√
Ψp

.
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Proof. Using Corollary 16.5 and the change of variables x = ∇Λµ(y), we write

Voln(2pΛp(µ)◦) > Voln

(
∇Λµ

(
1

2
Λp(µ)

))
=

∫
1
2 Λp(µ)

det Hess (Λµ)(y) dy

= Voln

(
1

2
Λp(µ)

)
Ψn
p .

In other words,

Voln(Λp(µ)◦)1/n >
Ψp

4p
Voln(Λp(µ))1/n.

From the Blaschke-Santaló inequality we have

Voln(Λp(µ)◦)1/n 6
c

n

1

Voln(Λp(µ))1/n
,

and hence,

Voln(Λp(µ))2/n 6
C2p

n

1

Ψp
,

where C2 = 4c. 2

Let µ be a log-concave probability measure on Rn with density ρ. For every ξ ∈ A(µ) = {Λµ < ∞} we
set

ρξ(x) =
1

Zξ
ρ(x)e〈ξ,x〉,

where Zξ > 0 is chosen so that ρξ becomes a probability density. Next, we set

bξ =
1

Zξ

∫
Rn
xρ(x)e〈ξ,x〉dx

and we define a probability measure µξ with density

1

Zξ
ρ(x+ bξ)e

〈ξ,x+bξ〉.

Lemma 16.8. We have
bξ = ∇Λµ(ξ) and Cov(µξ) = Hess (Λµ)(ξ).

Proof. Both equalities follow from simple calculations: just observe that since the log-concave density
ρ(x)e〈ξ

0,x〉 decays exponentially for every ξ0 ∈ A(µ), we can differentiate twice under the integral sign. 2

Theorem 16.9 (Klartag-E. Milman). Let µ be a log-concave probability measure on Rn with bar(µ) = 0.
For every 1 6 p 6 n,

Voln(Zp(µ))1/n '
√
p

n
inf

ξ∈ 1
2 Λp(µ)

[det Cov(µξ)]
1

2n .

Proof of the lower bound. We combine Propositions 16.3 and 16.7. We have

Voln(Λp(µ))1/n 6 C

√
p

n

1√
Ψp

and
Λp(µ) ' pZp(µ)◦.
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Therefore, by the reverse Santaló inequality,

Voln(Zp(µ))1/n >
c1

nVoln(Zp(µ)◦)1/n
>

c2p

nVoln(Λp(µ))1/n
> c3

p

n

√
n

p

√
Ψp = c3

√
p

n

√
Ψp

= c3

√
p

n

(
1

Voln
(

1
2Λp(µ)

) ∫
1
2 Λp(µ)

det Hess (Λµ)(ξ) dξ

) 1
2n

> c3

√
p

n
inf

ξ∈ 1
2 Λp(µ)

[det Hess (Λµ)(ξ)]
1

2n

= c3

√
p

n
inf

ξ∈ 1
2 Λp(µ)

[det Cov(µξ)]
1

2n .

For the proof of the upper bound we need the following.

Proposition 16.10. Let µ be a log-concave probability measure on Rn with bar(µ) = 0. For every ξ ∈
1
2Λp(µ),

(16.2) Zp(µξ) ' Zp(µ).

Proof. From Proposition 16.3, it is enough to show that, for every ξ ∈ 1
2Λp(µ),

Λp(µξ) ' Λp(µ).

We first observe that

(16.3) Λµξ(z) = Λµ(z + ξ)− Λµ(ξ)− 〈z,∇Λµ(ξ)〉.

To see this, first note that

logZξ = log

∫
Rn
ρ(x)e〈ξ,x〉dx = Λµ(ξ)

and
〈z, bξ〉 = 〈z,∇Λµ(ξ)〉.

Then, write

Λµξ(z) = log
(∫

Rn

1

Zξ
e〈z,y〉ρξ(y)dy

)
= log

(∫
Rn
e〈z,y〉e〈ξ,y+bξ〉ρ(y + bξ)dy

)
− logZξ

= log
(∫

Rn
e−〈z,bξ〉e〈z,y+bξ〉e〈ξ,y+bξ〉ρ(y + bξ)dy

)
− Λµ(ξ)

= −〈z, bξ〉+ log
(∫

Rn
e〈z+ξ,y+bξ〉ρ(y + bξ)dy

)
− Λµ(ξ)

= −〈z, bξ〉+ Λµ(z + ξ)− Λµ(ξ).

Claim. Let D, p > 0. If Λµ(2y) 6 Dp and z ∈ Λp(µ), then

Λµ(z/2 + y)− Λµ(y)− 〈z/2,∇Λµ(y)〉 6 (D + 1)p.

Proof of the Claim. We apply Lemma 16.4 with q = Dp and r = p. We have Λµ(2y) 6 Dp and Λµ(−z) 6 p.
Therefore,

−〈∇Λµ(y), z〉 6 (D + 1)p.
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Then,

Λµ(z/2 + y)− Λµ(y)− 〈z/2,∇Λµ(y)〉 6 Λµ(z/2 + y) +
(D + 1)p

2

6
Λµ(z) + Λµ(2y)

2
+

(D + 1)p

2
6 (D + 1)p.

We can now continue the proof of Proposition 16.10:

(i) Assume that z ∈ Λp(µ). Note that Λµ(2ξ) 6 p because ξ ∈ 1
2Λp(µ). The claim (with D = 1 and y = ξ)

combined with (16.3) shows that

Λµξ(z/2) = Λµ(z/2 + ξ)− Λµ(ξ)− 〈z/2,∇Λµ(ξ)〉 6 2p.

From Proposition 16.1 it follows that Λµξ(z/4) 6 p. By symmetry, the same argument applies to −z, and
hence z ∈ 4Λp(µξ). In other words,

Λp(µ) ⊆ 4Λp(µξ).

(ii) Assume that z ∈ Λp(µξ). From (16.3) we know that

Λµξ(−2ξ) = Λµ(−ξ)− Λµ(ξ) + 2〈ξ,∇Λµ(ξ)〉.

Note that

Λµ(−ξ) 6 Λµ(−2ξ) + Λµ(0)

2
6
p+ 0

2
=
p

2
,

and similarly Λµ(ξ) 6 p
2 . From Lemma 16.4 we have

〈ξ,∇Λµ(ξ)〉 6 3p

2
.

Since Λµ(ξ) > 0 we conclude that

Λµξ(−2ξ) 6
7p

2
.

Since (µξ)−ξ = µ, we may apply the argument from (i), using that Λµξ(−2ξ) 6 Dp for D = 7
2 . We write

Λµ(z/2) = Λµξ(z/2− ξ)− Λµξ(−ξ) + 〈−z/2,∇Λµξ(−ξ)〉.

Using the facts that Λµξ(z/2− ξ) 6 1
2 (Λµξ(z) + Λµξ(−2ξ)) 6 9p

4 , Λµξ(−ξ) > 0 and 〈−z/2,∇Λµξ(−ξ)〉 6
9p
4

(by a last application of Lemma 16.4 for the pair −z,−ξ) we see that Λµ(z/2) 6 9p/2, which shows that
Λµ(z/9) 6 p. Using the same argument for −z we finally conclude that

Λp(µξ) ⊆ 9Λp(µ),

and the result follows. 2

We will also use the known upper bound for Voln(Zp(µ))1/n:

Fact 16.11. Let ν be a log-concave probability measure on Rn with bar(ν) = 0. For every 2 6 p 6 n,

Voln(Zp(ν))1/n 6 C
√
pVoln(Z2(ν))1/n.

Proof of the upper bound. Since

[det Cov(µξ)]
1

2n '
√
nVoln(Z2(µξ))

1/n,

applying Fact 16.11 we get

inf
ξ∈ 1

2 Λp(µ)
Voln(Zp(µξ))

1/n 6 C

√
p

n
inf

ξ∈ 1
2 Λp(µ)

[det Cov(µξ)]
1

2n .
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From Proposition 16.10 we know that Zp(µξ) ' Zp(µ) for all ξ ∈ 1
2Λp(µ). It follows that

Voln(Zp(µ))1/n 6 C

√
p

n
inf

ξ∈ 1
2 Λp(µ)

[det Cov(µξ)]
1

2n .

This completes the proof of Theorem 16.9. 2

An immediate consequence of Theorem 16.9 is the following.

Theorem 16.12 (Klartag-E. Milman). Let µ be a log-concave probability on Rn with bar(µ) = 0. For every
1 6 p 6 q 6 n,

Voln(Zp(µ))1/n

√
p

> c
Voln(Zq(µ))1/n

√
q

,

where c > 0 is an absolute constant.

Proof. Since Λp(µ) ⊆ Λq(µ), we have

inf
ξ∈ 1

2 Λp(µ)
[det Cov(µξ)]

1
2n > inf

ξ∈ 1
2 Λq(µ)

[det Cov(µξ)]
1

2n .

Then, we apply the formula of Theorem 16.9. 2

Remark 16.13. Another consequence of Theorem 16.9 is that if x0 ∈ 1
2Λp(µ) is such that

[det Cov(µx0)]
1

2n ' inf
x∈ 1

2 Λp(µ)
[det Cov(µx)]

1
2n ,

then, using (16.2) as well, we get that

Voln(Zp(µx0
))1/n '

√
p

n
[det Cov(µx0

)]
1

2n .

Naturally, the aim is to show a similar equivalence for the corresponding quantities of the measure µ instead
of those of µx0 . To accomplish this, we need to be able to prove that

(16.4) inf
x∈ 1

2 Λp(µ)
[det Cov(µx)]

1
2n >

1

γ
[det Cov(µ)]

1
2n

for as small a constant γ > 1 and for as large an interval of p ∈ [1, n] as possible. Observe that if we establish
(16.4) for some p and γ > 1, then we have by Theorem 16.9 that

Voln(Zp(µ))1/n >
c

γ

√
p

n
[det Cov(µ)]

1
2n ,

and hence, by the definition of Lµ and by Theorem 9.1, we can conclude that

Lµ = ‖µ‖1/n∞ [det Cov(µ)]
1

2n 6 c′
[det Cov(µ)]

1
2n

Voln(Zn(µ))1/n
6 c′

[det Cov(µ)]
1

2n

Voln(Zp(µ))1/n
6 c′′γ

√
n

p
,(16.5)

where c > 0, c′ and c′′ are absolute constants (independent of the measure µ, the dimension n, or p and γ).

Klartag and E. Milman defined a hereditary parameter qH] (µ) for isotropic measures µ, and gave a lower
bound of the correct order for the volume radius of Zp(µ) for every p up to that parameter. We shall work
with a different parameter, introduced afterwards by Vritsiou.
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Definition 16.14. Let µ be an isotropic log-concave measure in Rn. For any γ > 1, we define

(16.6) r](µ, γ) := max{1 6 k 6 n− 1 : ∃E ∈ Gn,k such that LπEµ 6 γ}

In other words, r](µ, γ) is the largest dimension 6 n − 1 in which we can find at least one marginal of µ
that has isotropic constant bounded above by γ; as a convention, when µ is an 1-dimensional measure, we
set r](µ, γ) = 1 for every γ. Next, we define a “hereditary” variant of r](µ, γ) which controls the behavior
of all marginals of µ with respect to r](·, γ): set

(16.7) rH] (µ, γ) := n inf
k

inf
E∈Gn,k

r](πEµ, γ)

k
.

A modification of the method of Klartag and E. Milman establishes the lower bound Voln(Zp(µ))1/n >
cγ−1

√
p/n for all p 6 r](µ, γ). Also, both q](µ) and q∗(µ) are dominated by r](µ, γ0) for some absolute

constant γ0 > 1. Thus, the next theorem extends the result of Klartag and E. Milman.

Theorem 16.15 (Klartag-E. Milman, Vritsiou). Let µ be an isotropic log-concave measure in Rn and let
γ > 1. Then, for every p ∈ [1, rH] (µ, γ)], we have that

|Zp(µ)|1/n >
c

γ

√
p

n
,

where c > 0 is an absolute constant.

In Remark 16.13 we explained that what we have to show is that

[det Cov(µx)]
1

2n >
c′

γ

for every x ∈ 1
2Λp(µ). The reason for introducing the hereditary parameter rH] (µ, γ) is that in order to

compare det Cov(µx) with det Cov(µ) we need to compare the corresponding eigenvalues of each covariance
matrix, taken in increasing order, one pair at a time; this requires that we have control over r](πEµ, γ) of
several marginals of µ of different dimensions.

In what follows, we denote the eigenvalues of Cov(µx) by λx1 6 λx2 6 · · · 6 λxn, and we write Ek for the
k-dimensional subspace which is spanned by eigenvectors corresponding to the first k eigenvalues of Cov(µx).

Lemma 16.16. For every two integers 1 6 s 6 k 6 n we have that

(16.8)
√
λxk > c1 sup

F∈GEk,s
Voln(Zs(πFµx))1/s,

where c1 > 0 is an absolute constant.

Proof. Note that

(16.9) λxk = max
θ∈SEk

∫
Ek

〈z, θ〉2 dπEkµx(z) = sup
F∈GEk,s

max
θ∈SF

∫
F

〈z, θ〉2 dπFµx(z).

This is because, for every subspace F of Ek and every θ ∈ SF ⊆ SEk , we have that∫
F

〈z, θ〉2 dπFµx(z) =

∫
Rn
〈z, θ〉2 dµx(z) =

∫
Ek

〈z, θ〉2 dπEkµx(z),

while λxk is the largest eigenvalue of Cov(πEkµx).
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On the other hand, since µx is a centered, log-concave probability measure, which means that so are its
s-dimensional marginals πFµx, we get from Theorem 9.1 that

(16.10) Voln(Zs(πFµx))1/s ' 1

‖fπFµx‖
1/s
∞

=
[det Cov(πFµx)]

1
2s

LπFµx
.

Since Lν > c for any isotropic measure ν, for some absolute constant c > 0, it follows that

Voln(Zs(πFµx))1/s 6 c′[det Cov(πFµx)]
1
2s 6 c′ max

θ∈SF

√∫
F

〈z, θ〉2 dπFµx(z)

for every F ∈ GEk,s, which combined with (16.9) gives us (16.8). 2

To bound the right-hand side of (16.8) by an expression that involves det Cov(µ), we have to compare
the volume of Zs(πFµx) to that of Zs(πFµ) (we are able to do that because of Proposition 16.10). Recall
that for some fixed x ∈ 1

2Λp(µ) and every integer k 6 n, we denote by Ek the k-dimensional subspace which
is spanned by eigenvectors corresponding to the first k eigenvalues of Cov(µx). For convenience, we also set
sxk := r](πEkµ, γ). The right choice of s is prompted by the following lemma.

Lemma 16.17. We have

sup
F∈GEk,sxk

Volsxk (Zsxk (πFµ))1/sxk >
c2
γ

[det Cov(µ)]
1

2n =
c2
γ
,

where c2 > 0 is an absolute constant.

Proof. As in (16.10), we can write

Volsxk (Zsxk (πFµ))1/sxk >
c2

‖fπFµ‖
1/sxk∞

=
c2 [det Cov(πFµ)]

1
2sx
k

LπFµ

for some absolute constant c2 > 0 and for every F ∈ GEk,sxk . Since µ is isotropic, we have

[det Cov(πFµ)]1/(2s
x
k) = [det Cov(µ)]1/(2n) = 1.

Moreover, by the definition of sxk = r](πEkµ, γ), there is at least one sxk-dimensional subspace of Ek, say
F0, such that the marginal πF0

(πEkµ) ≡ πF0
µ has isotropic constant bounded above by γ. Combining all of

these, we get

sup
F∈GEk,sxk

Volsxk (Zsxk (πFµ))1/sxk > Volsxk (Zsxk (πF0
µ))1/sxk >

c2
γ

as required. 2

In order to compare Zsxk (πFµx) and Zsxk (πFµ) for every F ∈ GEk,sxk , we have two cases to consider:

(i) If p 6 sxk = r](πEkµ, γ), then by Proposition 16.10 (and the fact that x ∈ 1
2Λp(µ) ⊆ 1

2Λsxk (µ)) we have
that Zsxk (µx) ' Zsxk (µ), and therefore for every F ∈ GEk,sxk ,

Zsxk (πFµx) = PF
(
Zsxk (µx)

)
' PF

(
Zsxk (µ)

)
= Zsxk (πFµ)

as well.

(ii) If sxk < p, then we can write

Zsxk (πFµx) ⊇ c0
sxk
p
Zp(πFµx) ⊇ c′0

sxk
p
Zp(πFµ) ⊇ c′0

sxk
p
Zsxk (πFµ)
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for some absolute constants c0, c
′
0 > 0. We also recall that since

p 6 rH] (µ, γ) = n inf
k

inf
E∈Gn,k

r](πEµ, γ)

k
6
n

k
r](πEkµ, γ),

it holds that sxk/p = r](πEkµ, γ)/p > k/n.

To summarize the above, we see that in any case and for every F ∈ GEk,sxk ,

(16.11) Zsxk (πFµx) ⊇ c′′0 min
{

1,
sxk
p

}
Zsxk (πFµ) ⊇ c′′0

k

n
Zsxk (πFµ),

where c′′0 > 0 is a small enough absolute constant. We now have everything we need to bound Voln(Zp(µ))1/n

from below.

Proof of Theorem 16.15. Combining Lemmas 16.16 and 16.17 with (16.11), we see that for every p ∈
[1, rH] (µ, γ)] and for every x ∈ 1

2Λp(µ),

[det Cov(µx)]1/2 =

n∏
k=1

√
λxk >

n∏
k=1

c

γ

k

n
=
cn

γn
n!

nn
.

If we take n-th roots, the theorem then follows from Theorem 16.9. 2

We will now show that rH] is equivalent to a hereditary variant of the parameter q−c(µ, δ) of Dafnis and
Paouris. Recall that for every δ > 1 and every isotropic log-concave measure µ, we write

q−c(µ, δ) := max{1 6 p 6 n− 1 : I−p(µ) > δ−1I2(µ) = δ−1
√
n}.

Now, set

qH−c(µ, δ) := n inf
k

inf
E∈Gn,k

bq−c(πEµ, δ)c
k

.

Then, the following theorem comparing rH] and qH−c holds.

Theorem 16.18. There exist absolute constants C1, C2 > 0 such that for every isotropic measure µ on Rn
and every γ > 1,

(16.12) rH] (µ, γ) 6 qH−c(µ,C1γ) 6 rH] (µ,C2γ).

Note that by Theorem 16.15 and Remark 16.13 we get:

Theorem 16.19. Let µ be an isotropic log-concave measure in Rn. Then,

(16.13) Lµ 6 Cγ

√
n

rH] (µ, γ)
6 Cγ

√
n

qH−c

(
µ, C1

C2
γ
)

for every γ > C2/C1.

Since qH−c(µ, ξ0) > c
√
n for an absolute constant ξ0, from Theorem 16.19 we get (at least) once again the

bound Lµ 6 C 4
√
n.

For the proof of Theorem 16.18 we need the following consequence of Theorem 16.15.

Lemma 16.20. There exists a positive absolute constant C1 such that, for every n-dimensional isotropic
measure µ and every γ > 1,

rH] (µ, γ) 6 bq−c(µ,C1γ)c.

In other words, for every p 6 drH] (µ, γ)e we have that

I−p(µ) >
1

C1γ
I2(µ) =

1

C1γ

√
n.
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Proof. Set pγ := rH] (µ, γ) and observe that

Voln(Zdpγe(µ))1/n > Voln(Zpγ (µ))1/n >
c′

γ

√
dpγe
n

.

By Hölder’s and Santaló’s inequalities, this gives us that

w−dpγe
(
Zdpγe(µ)

)
> w−n

(
Zdpγe(µ)

)
>

Voln(Zdpγe(µ))1/n

ω
1/n
n

>
c′′

γ

√
dpγe.

Since rH] (µ, γ) 6 r](µ, γ) 6 n−1 by definition, we have dpγe 6 n−1, and thus we can use (13.6) to conclude
that

I−dpγe(µ) >
1

C1γ

√
n

for some absolute constant C1 > 0. This completes the proof. 2

Proof of Theorem 16.18. For the left-hand side inequality of (16.12) we apply Lemma 16.20 for every
marginal πEµ of µ; we get that

rH] (πEµ, γ) 6 bq−c(πEµ,C1γ)c.

In addition, we observe that

rH] (µ, γ) = n inf
k

inf
F∈Gn,k

r](πFµ, γ)

k
6 n inf

s6dimE
inf

F∈GE,s

r](πFµ, γ)

s
=

n

dimE
rH] (πEµ, γ),

which means that for every integer k, for every subspace E ∈ Gn,k,

rH] (µ, γ) 6
n

k
rH] (πEµ, γ) 6

n

k
bq−c(πEµ,C1γ)c,

or equivalently that rH] (µ, γ) 6 qH−c(µ,C1γ).

For the other inequality of (16.12) we recall the formula

I−k(µ) '
√
n

(∫
Gn,k

fπEµ(0) dνn,k(E)

)−1/k

>
1

C1γ
I2(µ) =

1

C1γ

√
n,

namely if k 6 bq−c(µ,C1γ)c, then there must exist at least one E ∈ Gn,k such that fπEµ(0) 6 (C ′1γ)k for
some absolute constant C ′1 (depending only on C1). Since πEµ is isotropic, we have

LπEµ = ‖fπEµ‖1/k∞ 6 e(fπEµ(0))1/k 6 C2γ.

This means that
r](µ,C2γ) > bq−c(µ,C1γ)c,

and the same will hold for every marginal πFµ of µ. The inequality now follows from the definitions of
rH] (µ,C2γ) and qH−c(µ,C1γ). 2

17 E. Milman’s bound for the mean width

In this section we describe E. Milman’s almost sharp estimate for the mean width of an isotropic convex
body in Rn. In fact, the next theorem gives sharp bounds for the mean width w(Zq(K)) of the Lq-centroid
bodies Zq(K) of K.
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Theorem 17.1 (E. Milman). Let K be an isotropic convex body in Rn. Then,

(17.1) w(K) 6 C
√
n(log n)2LK ,

and for every q > 1 we have

(17.2) w(Zq(K)) 6 C log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK ,

where C > 0 is an absolute constant.

The starting point of E. Milman is the idea to use Dudley-type estimates. Recall that the covering
number N(K,T ) of K by T is the least number of translates of T whose union covers K. For every k > 1
we set

(17.3) ek(K,T ) := inf{s > 0 : N(K, sT ) 6 2k}.

In particular, the k-th entropy number of K is ek(K) := ek(K,Bn2 ). Dudley’s bound for the mean width
takes the following form: if K is a symmetric convex body in Rn, then

(17.4)
√
nw(K) 6 c1

∑
k>1

1√
k
ek(K,Bn2 ),

where c1 > 0 is an absolute constant. If K is an isotropic convex body in Rn then one can check in an
“elementary” way that

(17.5) logN(K, sBn2 ) 6 C1
n3/2LK

s

for every s > 0. Therefore,

(17.6) ek(K,Bn2 ) = inf{s > 0 : N(K, sBn2 ) 6 2k} 6 C2

√
nLK

n

k
.

Combining this estimate with (17.4) we get

(17.7) w(K) 6 C3

∑
k>1

1√
k

n

k
LK ,

which finally gives the bound w(K) 6 Cn3/4LK .
E. Milman uses a stronger version of Dudley’s bound, which had been proved by V. Milman and Pisier.

For every k > 1 they introduced the parameter

(17.8) vk(K) := sup{vrad(PF (K)) : F ∈ Gn,k}.

Note that, for every F ∈ Gn,k,
(17.9)

Volk(PF (K)) 6 N(PF (K), ekPF (Bn2 ))Volk(ekBF ) 6 N(K, ek(K)Bn2 )ekkVolk(BF ) 6 (2ek)kVolk(BF ),

and hence,

(17.10) vk(K) 6 2ek(K).

From (17.10) it is clear that the next theorem gives an estimate which is stronger than (17.4).
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Theorem 17.2 (V. Milman-Pisier). For every symmetric convex body K in Rn one has

(17.11)
√
nw(K) 6 c2

n∑
k=1

1√
k

Radk(K)vk(K),

where Radk(K) := sup{Rad(XPF (K)) : F ∈ Gn,k}, and Rad(Y ) 6 c3 log(d(Y, `
dim(Y )
2 )+1) is the Rademacher

constant of Y .

A direct consequence of Theorem 17.2 is the inequality

(17.12)
√
nw(K) .

n∑
k=1

1√
k
vk(K),

where . denotes that (17.12) holds true up to a fixed power of log n. We shall apply (17.12) for an isotropic
convex body K in Rn. In this case we know that

(17.13) Zn(K) ' Z∞(K) ⊇ K,

and hence, in order to prove (17.1), it suffices to obtain an upper bound fror w(Zn(K)), and more generally
for w(Zq(K)), 1 6 q 6 n. From (17.12) we have

(17.14)
√
nw(Zq(K)) .

n∑
k=1

1√
k
vk(Zq(K)).

It is necessary to estimate the parameter vk(Zq(K)); we consider any F ∈ Gn,k and try to give an upper
bound for

(17.15) vrad(PF (Zq(K))) =

(
Volk(PF (Zq(K)))

Volk(Bk2 )

)1/k

.

At this point we use the fact that if µ is an isotropic log-concave probability measure in Rn then for every
F ∈ Gn,k we have PF (Zq(µ)) = Zq(πF (µ)). Since πF (µ) is an isotropic log-concave probability measure on
F we may use the next estimates:

Lemma 17.3. If ν is an isotropic log-concave probability measure in Rk then

(17.16) vrad(Zq(ν)) 6 c4
√
q q 6 k,

and

(17.17) vrad(Zq(ν)) 6 c5(q/k)
√
k q > k.

Proof. We have already seen (17.16). Since vrad(Zk(ν)) 6 c4
√
k and Zq(ν) ⊆ c qkZk(ν) for all q > k, we

easily get (17.17). 2

Proof of Theorem 17.1. Applying Lemma 17.3 for ν = πF (µK), we get

(17.18) vk(Zq(K)) 6 c6

√
q

k
max(

√
q,
√
k)LK .

It follows that

L−1
K

√
nw(Zq(K)) . L−1

K

n∑
k=1

1√
k
vk(zq(K)) '

n∑
k=1

max

(√
q

k
,
q

k

)
(17.19)

' q
q∑

k=1

1

k
+
√
q

n∑
k=q

1
√
q
' q log q +

√
q
√
n 6
√
n
√
q log q.

This concludes the proof of (17.2) and of the theorem. 2
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18 Sub-Gaussian directions

We have seen that every θ ∈ Sn−1 is a ψ1-direction for any convex body K in Rn with an absolute constant
C. An open question, asked by V. Milman, is if there exists an absolute constant C > 0 such that every
K has at least one sub-Gaussian direction (ψ2-direction) with constant C. It was first proved by Klartag in
that for every centered convex body K of volume 1 in Rn there exists θ ∈ Sn−1 such that

(18.1) Voln({x ∈ K : |〈x, θ〉| > ct‖〈·, θ〉‖2}) 6 e
− t2

[log(t+1)]2a

for all t > 1, where a = 3 (equivalently, ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)a‖〈·, θ〉‖2). The best known estimate

is due to Giannopoulos, Paouris and Valettas who showed that the body Ψ2(K) with support function
y 7→ ‖〈·, y〉‖Lψ2

(K) has volume

(18.2)

(
Voln(Ψ2(K))

Voln(Z2(K))|

)1/n

6 c
√

log n.

From (18.2) it follows immediately that there exists at least one sub-Gaussian direction for K with constant
b 6 C

√
log n.

Using Theorem 17.1, Brazitikos and Hioni proved that if K is isotropic then logarithmic bounds for
‖〈·, θ〉‖Lψ2

(K) hold true with probability polynomially close to 1: For any a > 1 one has

‖〈·, θ〉‖Lψ2
(K) 6 C(log n)3/2 max

{√
log n,

√
a
}
LK

for all θ in a subset Θa of Sn−1 with σ(Θa) > 1− n−a, where C > 0 is an absolute constant.
Here, we consider the question if one can have an estimate of this type for all directions θ of a subspace

F ∈ Gn,k of dimension k increasing to infinity with n. We say that F ∈ Gn,k is a sub-Gaussian subspace for
K with constant b > 0 if

(18.3) ‖〈·, θ〉‖Lψα (K) 6 b‖〈·, θ〉‖2

for all θ ∈ SF := Sn−1∩F . We will show that if K is isotropic then a random subspace of dimension (log n)4

is sub-Gaussian with constant b ' (log n)2.

Theorem 18.1. Let K be an isotropic convex body in Rn. If k ' (log n)4 then there exists a subset Γ of

Gn,k with νn,k(Γ) > 1− n−(logn)3

such that

(18.4) ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)2LK

for all F ∈ Γ and all θ ∈ SF , where C > 0 is an absolute constant.

We need the next fact on the diameter of k-dimensional projections of symmetric convex bodies.

Proposition 18.2. Let D be a symmetric convex body in Rn and let 1 6 k < n and α > 1. Then there
exists a subset Γn,k ⊂ Gn,k with measure νn,k(Γn,k) > 1− e−c2α2k such that the orthogonal projection of D
onto any subspace F ∈ Γn,k satisfies

(18.5) R(PF (D)) 6 c3αmax{w(D), R(D)
√
k/n},

where c2 > 0, c3 > 1 are absolute constants.

Combining Proposition 18.2 with Theorem 17.1 and the fact that R(Zq(K)) 6 cqLK , we get:
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Lemma 18.3. Let K be an isotropic convex body in Rn. Given 1 6 q 6 n define k0(q) by the equation

(18.6) k0(q) = log2(1 + q) max{log2(1 + q), n/q}.

Then, for every 1 6 k 6 k0(q), a random F ∈ Gn,k satisfies

(18.7) R(PF (Zq(K))) 6 c1α log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK

with probability greater than 1− e−c2α2k0(q), where c1, c2 > 0 are absolute constants.

Proof. Since R(Zq(K)) 6 cqLK we see that

R(Zq(K))
√
k0(q)√

n
6

cq√
n

log(1 + q) max

{
log(1 + q),

√
n
√
q

}
LK = c log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK .

(18.8)

From Theorem 17.1 we have an upper bound of the same order for w(Zq(K)). Then, we apply Proposition
18.2 for Zq(K). 2

Remark 18.4. Note that if 1 6 s 6 k then the conclusion of Proposition 18.2 continues to hold for a random
F ∈ Gn,s with the same probability on Gn,s; this is an immediate consequence of Fubini’s theorem and of
the fact that R(PH(D)) 6 R(PF (D)) for every s-dimensional subspace H of a k-dimensional subspace F of
Rn.

Proof of Theorem 18.1. We define q0 by the equation

(18.9) q0 log2(1 + q0) = n.

Note that q0 ' n/(log n)2 and log(1 + q0) ' log n. For every 2 6 q 6 q0 we have q log2(1 + q) 6 n, therefore

(18.10) k0(q) =
n log2(1 + q)

q
>
c1n log2(1 + q0)

q0

for some absolute constant c1 > 0, because q 7→ log2(1 + q)/q is decreasing for q > 4. It follows that

(18.11) k0(q) > c1 log4(1 + q0) > c2(log n)4

for all 2 6 q 6 q0.
Now, we fix α > 1 and define

(18.12) k0 = c1 log4(1 + q0).

Using Lemma 18.3 and Remark 18.4, for every q 6 q0 we can find a set Γq ⊆ Gn,k0
with νn,k0

(Γq) > 1−e−cα2k0

such that

(18.13) R(PF (Zq(K))) 6 c3α log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK 6 c3α

√
q log(1 + q)LK

for all F ∈ Gn,k0
. If Γ :=

⋂blog2 q0c
s=1 Γ2s , then

(18.14) νn,k0

(
Gn,k0

\ Γ
)
6 νn,k0

(
Gn,k0

\
blog2 nc⋂
s=1

Γ2s

)
6 c(log n)e−cα

2k0 6
1

nlog3 n
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if α ' 1 is chosen large enough. Then for every F ∈ Γ, for all θ ∈ SF and for every 1 6 s 6 blog2 q0c we
have

(18.15)
hZ2s (K)(θ)√

2s
=
hPF (Z2s (K))(θ)√

2s
6 c3α log(1 + 2s)LK 6 c4α(log n)LK .

Taking into account the fact that if 2s 6 q < 2s+1 then

(18.16)
hZq(K)(y)
√
q

6
hZ2s+1 (K)(y)

2s/2
=
√

2
hZ2s+1 (K)(y)

2(s+1)/2
,

we see that

(18.17)
hZq(K)(y)
√
q

6 c5α(log n)LK

for every F ∈ Γ, for all θ ∈ SF and for every 2 6 q 6 q0.
Next, observe that if q0 6 q 6 n then we may write

hZq(K)(y)
√
q

6
c6q

q0

hZq0 (K)(y)
√
q

=
c6
√
q

√
q0

hZq0 (K)(y)
√
q0

6
c6
√
n

√
q0

hZq0 (K)(y)
√
q0

(18.18)

= c6 log(1 + q0)
hZq0 (K)(y)
√
q0

6 c7(log n)
hZq0 (K)(y)
√
q0

,

and hence

(18.19)
hZq(K)(y)
√
q

6 c7α(log n)2LK

for every F ∈ Γ, for all θ ∈ SF and for every q0 6 q 6 n.
Recall that Ψ2(K) is the convex body with support function hΨ2(K)(y) = ‖〈·, y〉‖Lψ2

(K). One also has

(18.20) hΨ2(K)(y) ' sup
q>2

hZq(K)(y)
√
q

' sup
26q6n

hZq(K)(y)
√
q

because hZq(K)(y) ' hZn(K)(y) for all q > n. Then, (18.17) and (18.19) and the fact that α ' 1 show that

(18.21) ‖〈·, θ〉‖Lψ2
(K) 6 C(log n)2LK

for every F ∈ Γ and for all θ ∈ SF , where C > 0 is an absolute constant. 2

19 Notes and References

1. The hyperplane conjecture appears for the first time in the work of Bourgain [13] on high-dimensional maximal
functions associated with arbitrary convex bodies. The conjecture was stated in this form in the article of V. Milman
and Pajor [50] and in the PhD Thesis of K. Ball [8].

Bourgain’s article [13] concerned high-dimensional maximal functions associated with arbitrary convex bodies.
He was interested in bounds for the Lp-norm of the maximal function

MKf(x) = sup

{
1

Voln(tK)

∫
tK

|f(x+ y)| dy | t > 0

}
of f ∈ L1

loc(Rn), where K is a centrally symmetric convex body in Rn. Let Cp(K) denote the best constant such that
‖MKf‖p 6 Cp(K)‖f‖p is satisfied. Bourgain showed that there exists an absolute constant C > 0 (independent of n
and K) such that

‖MK‖L2(Rn)→L2(Rn) 6 C.
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Earlier, Stein had proved in [65] that if K = Bn2 is the Euclidean unit ball then Cp(B
n
2 ) is bounded independently

of the dimension for all p > 1. By the definition of MK it is clear that in order to obtain a uniform bound on
‖MK‖2→2 one can start with a suitable position T (K) (where T ∈ GLn) of K. Bourgain used the isotropic position;
the property that played an important role in his argument was that when K is isotropic then LKVoln−1(K∩θ⊥) ' 1
for all θ ∈ Sn−1. Bourgain mentioned the fact that LK > c and asked whether a reverse inequality holds true.

The result for ‖MK‖2→2 was generalized to all p > 3/2 by Bourgain [14] and, independently, by Carbery [22].
Afterwards, Müller [52] obtained dimension free maximal bounds for all p > 1, which however depend on LK and on
the maximal volume of hyperplane projections of K. In the case of the cube, Bourgain [17] showed that for every
p > 1 there exists a constant Cp > 0 such that Cp(B

n
∞) 6 Cp for all n.

2. The bodies Kp(µ) were introduced by K. Ball (see [8] and [9]) who established their convexity. One should also
mention Busemann’s paper [20], where the case of a density which is the indicator of a convex body (and, say, p = 1)
is proved. Ball [9] showed that if µ is an even isotropic log-concave measure then the body T = Kn+2(µ) is an
isotropic symmetric convex body with Lµ ' LT . The observation that one can reduce the study of the behavior of
the isotropic constants of all log-concave measures to the class of centrally symmetric convex bodies is due to Klartag
[38].

3. Bourgain’s bound LK = O( 4
√
n logn) appeared in [15]. We present a modification of his argument, which is due

to Dar [24]. Bourgain showed in [16] that if K is a symmetric convex body and K is a ψ2-body with constant b then
one can improve this estimate to LK 6 cb log(1 + b). It was later proved by Klartag and E. Milman [42] that in this
case one has LK 6 cb.

4. There are several results confirming the hyperplane conjecture for important classes of convex bodies. To be more
precise, let us say that a class C of symmetric convex bodies satisfies the hyperplane conjecture uniformly if there
exists a positive constant C such that LK 6 C for all K ∈ C.

The fact that the isotropic constants of unconditional convex bodies are bounded by an absolute constant is due
to Bourgain, see [50]; a different proof using the Loomis-Whitney inequality is given by Schmuckenschläger in [63].
One more proof, leading to the bound LK 6 1/

√
2, can be found in the article [11] of Bobkov and Nazarov. A more

general result, with a different proof, can be found in Milman and Pajor [50]. Uniform bounds are known for the
isotropic constants of some other classes of convex bodies: convex bodies whose polar bodies contain large affine
cubes (see again [50]), the unit balls of 2-convex spaces with a given constant α (see Klartag and E. Milman [41]),
bodies with small diameter (in particular, the class of zonoids) etc.

Uniform boundedness of the isotropic constants of the unit balls of the Schatten classes was established by König,
Meyer and Pajor in [44]. One of the main ingredients of the proof is a formula of Saint-Raymond from [59]. Before
the work of König, Meyer and Pajor, Dar had obtained the estimate LB(Snp ) 6 C

√
logn in [25] (see [24] for the case

p = 1).
Upper bounds for the isotropic constant of polytopes, which depend on the number of their vertices or facets,

follow from results of Ball [10], Junge [36] and [37] and E. Milman [48]. A more geometric approach, that covers the
case of not necessarily symmetric polytopes too, was given of Alonso-Gutiérrez in [7].

5. Lq-centroid bodies were introduced by Lutwak and Zhang [46] who used a different normalization. If K is a convex
body in Rn then, for every 1 6 q <∞, the body Γq(K) was defined in [46] through its support function

hΓq(K)(y) =

(
1

cn,qVoln(K)

∫
K

|〈x, y〉|qdx
)1/q

,

where
cn,q =

ωn+q

ω2ωnωq−1
.

In other words, Zq(K) = c
1/q
n,qΓq(K) if Voln(K) = 1. The normalization of Γq(K) is chosen so that Γq(B

n
2 ) = Bn2 for

every q. Lutwak, Yang and Zhang [47] have established the following Lq affine isoperimetric inequality (see Campi
and Gronchi [21] for an alternative proof): For every q > 1,

Voln(Γq(K)) > 1,

with equality if and only if K is a centered ellipsoid of volume 1.
Alesker’s theorem is from [6]; it is the starting point of the work of Paouris. His study of the Lq-centroid bodies

from an asymptotic point of view started with [53] and [54], where the parameter q∗(µ) is introduced. The deviation
inequality was proved in [55] and the extension to negative moments in [56].

In the particular case of unconditional isotropic convex bodies, the inequality of Paouris had been previously
proved by Bobkov and Nazarov (see [11] and [12]). The origin of the work of Bobkov and Nazarov is in the work of
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Schechtman, Zinn and Schmuckenschläger on the volume of the intersection of two Lnp -balls (see [60], [61], [62] and
[64]). Before Paouris’ theorem, Guédon and Paouris had studied in [34] the case of the unit balls of the Schatten
classes.

6. Klartag’s solution to the isomorphic slicing problem and his O( 4
√
n) bound for the isotropic constant are from

[39]. A second proof of the same estimate was given by Klartag and E. Milman in [42].
Klartag and E. Milman in [42] defined the “hereditary” variant

(19.1) qH∗ (µ) := n inf
k

inf
E∈Gn,k

q∗(πEµ)

k

of q∗(µ) and then, for every q 6 qH∗ (µ), they showed that Voln(Zq(µ))1/n > c3
√
q/n where c3 > 0 is an absolute

constant. An immediate consequence of this inequality and of the fact that qH∗ (µ) > c
√
n is an alternative proof of

the bound Lµ = O( 4
√
n) for the isotropic constant. Vritsiou [66] introduced a new parameter r](µ,A) that dominates

qH∗ (µ) and modified the argument of Klartag and E. Milman to show that the lower bound Voln(Zp(µ))1/n >
cA−1

√
p/n continues to hold for all p 6 r](µ,A).

Giannopoulos, Paouris and Vritsiou observed in [32] that one can use Klartag’s approach in order to give a purely
convex geometric proof of the reverse Santaló inequality is due to

7. Bourgain, Klartag and V. Milman proved in [18] a reduction of the hyperplane conjecture to the case of convex
bodies whose volume ratio is bounded by some absolute constant. The same fact follows from Klartag’s approach in
[38].

Dafnis and Paouris introduced in [23] the parameter q−c(µ, ζ) := max{p > 1 : I2(µ) 6 ζI−p(µ)}; among other
things they proved that a positive answer to the hyperplane conjecture is equivalent to the existence of two absolute
constants C, ξ > 0 such that q−c(K, ξ) > Cn for every isotropic convex body K in Rn.

Giannopoulos, Paouris and Vritsiou proposed in [31] a reduction of the hyperplane conjecture to the study of
the parameter I1(K,Z◦q (K)) =

∫
K
‖〈·, x〉‖qdx in the sense that it immediately recovers a bound that is slightly worse

than Bourgain’s and Klartag’s bounds and opens the possibility for improvements: an upper bound of the form
I1(K,Z◦q (K)) 6 C1q

s√nL2
K for some q > 2 and 1

2
6 s 6 1 and for all isotropic convex bodies K in Rn leads to the

estimate

Ln 6
C2

4
√
n logn

q
1−s

2

.

8. A question, originally posed by V. Milman in the framework of convex bodies, asks if there exists an absolute
constant C > 0 such that every centered convex body K of volume 1 has at least one ψ2 direction with constant
C. Klartag, using again properties of the logarithmic Laplace transform, proved in [40] that for every log-concave
probability measure µ on Rn there exists θ ∈ Sn−1 such that

µ ({x : |〈x, θ〉| > ct‖〈·, θ〉‖2}) 6 e
− t2

(log(t+1))2α ,

for all 1 6 t 6
√
n logα n, where α = 3 (see also [28] for a first improvement). The best known estimate, is due to

Giannopoulos, Paouris and Valettas who proved in [29] and [30] that one can always have α = 1/2.
The main idea in all these works is to define the symmetric convex set Ψ2(µ) whose support function is hΨ2(µ)(θ) =

‖〈·, θ〉‖ψ2 and to estimate its volume. A logarithmic in the dimension bound on the volume radius of Ψ2(µ) was
first obtained by Klartag in [40] and then by Giannopoulos, Pajor and Paouris in [28]. The best known estimate
v.rad(Ψ2(µ)) 6 c

√
logn is proved in [29]. The main tool in the proof of this result is estimates for the covering

numbers N(Zq(K), sBn2 ).

9. The question to obtain an upper bound for the mean width of an isotropic convex body

w(K) :=

∫
Sn−1

hK(x) dσ(x),

that is, the L1-norm of the support function of K with respect to the Haar measure on the sphere, was open for
a number of years. The upper bound w(K) 6 cn3/4LK appeared in the Ph.D. Thesis of Hartzoulaki [35]. Other
approaches leading to the same bound can be found in Pivovarov [58] and in Giannopoulos Paouris and Valettas [30].
E. Milman showed in [49] that if K is an isotropic convex body in Rn then, for all q > 1 one has

w(Zq(K)) 6 C log(1 + q) max

{
q log(1 + q)√

n
,
√
q

}
LK
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where C > 0 is an absolute constant. In particular,

w(K) 6 C
√
n(logn)2LK .

The dependence on n is optimal up to the logarithmic term.
An interesting related question is to determine the distribution of the function θ 7→ ‖〈·, θ〉‖ψ2 on the unit sphere;

that is, to understand whether most of the directions have ψ2-norm that is, say, logarithmic in the dimension. For
a discussion and partial results see [30]. As a consequence of E. Milman’s theorem, Brazitikos and Hioni showed in
[19] that the answer is affirmative. More precisely, they showed that for any a > 1 one has

‖〈·, θ〉‖Lψ2
(K) 6 C(logn)3/2 max

{√
logn,

√
a
}
LK

for all θ in a subset Θ of Sn−1 with σ(Θ) > 1−n−a, where C > 0 is an absolute constant. Theorem 18.1 is from [26].
The dual problem to estimate as the respective L1-norm of the Minkowski functional of K,

M(K) :=

∫
Sn−1

‖x‖K dσ(x),

when K is a centrally symmetric isotropic convex body, had not been studied until recently; partial non-trivial results

can be found in [33]. The currently best known estimate estimate M(K) 6 C log2/5(e+n)
10√nLK

is due to Giannopoulos and

E. Milman (see [27]).

10. There are several other challenging conjectures and important results about isotropic log-concave measures. The
first one is the central limit problem, that asks if the 1-dimensional marginals of high-dimensional isotropic log-concave
measures are approximately Gaussian with high probability. It is generally known through results of Sudakov that,
if µ is an isotropic probability measure in Rn that satisfies the thin shell condition,

µ

(∣∣∣∣ |x|√n − 1

∣∣∣∣ > ε

)
6 ε

for some ε ∈ (0, 1), then, for all directions θ in a subset A of Sn−1 with σ(A) > 1− exp(−c1
√
n), one has

|µ ({x : 〈x, θ〉 6 t})− Φ(t)| 6 c2(ε+ n−α) for all t ∈ R,

where Φ(t) is the standard Gaussian distribution function and c1, c2, α > 0 are absolute constants. Thus, the central
limit problem is reduced to the question whether every isotropic log-concave measure µ in Rn satisfies such a thin
shell condition with ε = εn tending to 0 as n tends to infinity. An affirmative answer to the problem was given
by Klartag who obtained power-type estimates verifying the thin-shell condition; he showed that if µ is an isotropic
log-concave measure in Rn then

E
( |x|2
n
− 1
)2

6
C

nα

with some α ' 1/5, and, as a consequence, that the density fθ of x 7→ 〈x, θ〉 with respect to µ satisfies∫ ∞
−∞
|fθ(t)− γ(t)| dt 6 1

nκ

and

sup
|t|6nκ

∣∣∣∣fθ(t)γ(t)
− 1

∣∣∣∣ 6 1

nκ
,

for all θ in a subset A of Sn−1 with measure σ(A) > 1−c1 exp(−c2
√
n), where γ is the density of a standard Gaussian

random variable, and c1, c2, κ are absolute constants. Although some sharper estimates were obtained afterwards,
the following quantitative conjecture remains open:

There exists an absolute constant C > 0 such that, for any n > 1 and any isotropic log-concave measure
µ in Rn, one has

σ2
µ :=

∫
Rn

(
|x| −

√
n
)2
dµ(x) 6 C2.

Another conjecture concerns the Cheeger constant Isµ of an isotropic log-concave measure µ: this is defined as the
best constant κ > 0 such that

µ+(A) > κmin{µ(A), 1− µ(A)}
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for every Borel subset A of Rn, where µ+(A) is the Minkowski content of A. The Kannan-Lovász-Simonovits conjecture
asks if there exists an absolute constant c > 0 such that

Isn := inf{Isµ : µ is isotropic log-concave measure on Rn} > c.

Another way to formulate this conjecture is to ask for a Poincaré inequality to be satisfied by every isotropic log-
concave measure µ in Rn with a constant c > 0 that is independent of the measure or the dimension n; more precisely,
the KLS-conjecture is equivalent to asking if there exists an absolute constant c > 0 such that

c

∫
Rn
ϕ2dµ 6

∫
Rn
|∇ϕ|2dµ

for every isotropic log-concave measure µ in Rn and for every smooth function ϕ with
∫
Rn ϕdµ = 0. For a detailed

discussion of this area we refer to the book [2].
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