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Abstract

Lecture notes for the introductory workshop of the program “Geometric Functional Analysis and
Applications” at the Mathematical Sciences Research Institute, Fall 2017. We present the main results
on the geometry of isotropic convex bodies. The emphasis is on the slicing problem, a well-known open
question regarding the distribution of volume in high-dimensional convex bodies.

1 Introduction

Our starting point is the slicing problem, which asks if there exists an absolute constant ¢ > 0 such that
maxgegn—1 Vol, (K N 1) > ¢ for every convex body K of volume 1 in R™ that has barycenter at the origin.
It turns out that a natural framework for the study of this problem is the isotropic position of a convex body.
A convex body K in R™ is called isotropic if Vol,(K) = 1, its barycenter is at the origin and its inertia
matrix is a multiple of the identity, that is, there exists a constant Lx > 0 such that

/ (z,0)%dx = L%
K

for every # € S"~!. The number Ly is then called the isotropic constant of K. We will see that the affine
class of any convex body K contains a unique, up to orthogonal transformations, isotropic convex body; this
is the isotropic position of K.

One of our first goals is to show that an affirmative answer to the slicing problem is equivalent to the
following statement:

There exists an absolute constant C > 0 such that

L, := max{Lg : K is an isotropic convex body in R"} < C.

The notion of the isotropic constant can be reintroduced in the more general setting of finite log-concave
measures, and a more general question can be posed in a way that is equivalent to the above when we
consider uniform measures on convex bodies. We say that a finite log-concave measure p in R™ is isotropic
if u is a probability measure, its barycenter is at the origin and the covariance matrix Cov(u) of p is the
identity matrix. The isotropic constant of p is defined in an appropriate way, and a theorem of K. Ball shows
that, in fact, for some absolute constant ¢ > 1,

L,, <sup{L, : p is isotropic in R"} < cL,.

We present the best known upper bounds for L,,. Around 1985-6 (published in 1990), Bourgain obtained the
upper bound L,, < ¢¢/nlogn and, in 2006, this estimate was improved by Klartag to L, < c/n. Actually,
Klartag obtained a solution to the “isomorphic slicing problem”, by showing that, for every convex body
K in R™ and any ¢ € (0,1), one can find a centered convex body T' C R™ and a point € R™ such that
(14+e)" ' TCK+2C(1+¢)T and Ly < C/+/z for some absolute constant C' > 0. Klartag’s method relies
on properties of the logarithmic Laplace transform of the uniform measure on a convex body.



Klartag’s proof of the bound L, < c¢/n combines his solution to the isomorphic slicing problem with
the following very useful deviation inequality of Paouris: if y is an isotropic log-concave measure in R™ then

p({z € R™ : |z] = cty/n}) < exp (—tv/n)

for every t > 1, where ¢ > 0 is an absolute constant. We present the proof of this inequality, and we develop
in parallel the basic theory of the L4-centroid bodies of an isotropic log-concave measure.

Then, we discuss some recent approaches to the slicing problem. Among them are two reductions that
rely heavily on the existence of convex bodies with maximal isotropic constant whose isotropic position
is compatible with regular covering estimates, and an alternative approach of Klartag and E. Milman that
combines the advantages of both the logarithmic Laplace transform and the theory of the L,-centroid bodies.

Finally, we describe E. Milman’s almost sharp estimate for the mean width w(Z,(K)) of the Ly-centroid
bodies Z,(K) of an isotropic convex body K in R™. This is the most recent important result of the theory,
leading to the estimate w(K) < Cy/n(logn)?Ly for the mean width of any isotropic convex body K in R".
An interesting related question is to understand whether an isotropic convex body is sub-Gaussian in most
directions. As a consequence of E. Milman’s theorem, one can show that the answer is affirmative. More
precisely, one has |[(-,0)z,, (x) < C(log n)?Lk for a random 6§ € S"~ 1.

2 Notation and background from asymptotic convex geometry

We work in R", which is equipped with a Euclidean structure (-, -). We denote the corresponding Euclidean
norm by | - |, and write BY for the Euclidean unit ball, and S™~! for the unit sphere. Volume is denoted by
Vol,,. We write w,, for the volume of B} and o for the rotationally invariant probability measure on S™~1.
We also denote the Haar measure on O(n) by v. The Grassmann manifold G,, i, of k-dimensional subspaces
of R" is equipped with the Haar probability measure v, ;. Let £ < n and F € G, ;. We will denote the
orthogonal projection from R™ onto F by Prp. We also define Br = By N F and Sp = S"" 1 N F.

The letters ¢, ¢/, c1, ca etc. denote absolute positive constants whose value may change from line to line.
Whenever we write a ~ b, we mean that there exist absolute constants cqi,cy > 0 such that cia < b < coa.
Also if A, D C R™ we will write A ~ D if there exist absolute constants c1,co > 0 such that ¢t A C D C ¢y A.

Convex bodies

A convez body in R™ is a compact convex subset A of R” with non-empty interior. We say that A is symmetric
if A= —A, and that A is centered if it has barycenter at 0 i.e. if

/ (x,0)dx =0
A
for every § € S"1.

The radial function p4 : R™ \ {0} — R™T of a convex body A with 0 € int(A) is defined as follows:
pa(z) =max{t > 0:tx € A}.
The support function of A is defined for every y € R™ by
haly) = max{(z,9) @ € A},
Note that for every § € S~ one has pa(f) < ha(f). The mean width of A is the quantity
w(A) = /S 1 ha(0)do(0).

The radius of A is
R(A) = max{|z| : x € A}.



If 0 is an interior point of A, we denote by r(A) the largest r > 0 for which rB7 C A. The volume radius of
A is the quantity
Vol,, (A)

()= (L)

The polar body A° of a convex body A with 0 € int(A) is defined as follows:
(2.1) A°={z eR": (x,y) < lforally € A}.

We write A for the multiple of A C R™ that has volume 1; in other words, A := Vol,,(4)~'/"A.

Geometric inequalities

We will often use the following basic inequalities for convex bodies.

(i) Urysohn inequality. If A is a convex body in R™ then

o 1/n
(2.2) w(A) > (\%) .

(ii) Blaschke-Santald inequality. If A is a symmetric convex body in R™, and more generally if A is centered,
then

(2.3) Vol,,(A) Vol,,(A°) < Vol,,(By)?.

(iil) Bourgain—V. Milman inequality. There exists an absolute constant 0 < ¢ < 1 with the following property:
for every n > 1 and any convex body A in R"™ with 0 € int(A),

(2.4) Vol,,(A) Vol,,(A°) > ¢"Vol,,(By)?.

(iv) Rogers—Shephard inequality. If A is a convex body in R™, then the volume of the difference body
A—A:={r—y:x,yec A} satisfies

(2.5) Vol (A — A) < (2:) Vol,,(A).

(v) Reverse Urysohn inequality. From results of Lewis, Figiel and Tomczak-Jaegermann, combined with an
inequality of Pisier, one has the following fact: If A is a centered convex body in R™ then there exists a
symmetric and positive definite T' € GL,, such that the position A = T'(A4) of A satisfies

(2.6) w(A) < ey/nlogn Vol, (A)Y/™,

where ¢ > 0 is an absolute constant.

(vi) M*-inequality. If A is a symmetric convex body in R™ then, for every 1 < k < n, a random subspace
F € G, satisfies
n

ANF) <
R(O)cn_k

w(A)

with probability greater than 1 — exp(—ca(n — k)), where ¢1, co > 0 are absolute constants.



Covering numbers

Let A and B be two convex bodies in R™. The covering number N (A, B) of A by B is the least integer N
for which there exist N translates of B whose union covers A.

Tt

N(A, B) :min{N € N: dJzy,...,zy € R" such that A C (x; —|—B)}.

1

J

A variant of this notion is defined as follows:

N
N(A,B) :min{N e N: Jdzy,...,on € A such that A C U (x; +B)}.
j=1

From the definition we see that N (A, B) < N(A, B). One can also easily check that N(A4, B—B) < N(A, B).
In particular, if B is convex and symmetric, then N(4,2B) < N(4, B).
If A, B are convex bodies in R™, and B is symmetric, for every ¢ > 0 we define

Si(A,B) =max{m € N: 3z1,...,z,, € A such that ||x; — z;||p >t for i # j}.
From the definition we easily check that

where || - || 5 is the norm induced by B on R™ (see the next subsection). We shall use some basic theorems
for covering numbers. The first one is Sudakov’s inequality.

Theorem 2.1 (Sudakov). If A is a convex body in R™ then for every t > 0 one has
(2.7) N(A,tB3) < 2exp (cn (w(A)/t)2) ,

where ¢ > 0 is an absolute constant.
The next theorem is due to Artstein-Avidan, V. Milman and Szarek.

Theorem 2.2 (duality of entropy). There exist absolute positive constants o and 8 such that for any n > 1
and any symmetric convexr body A in R"

(2.8) N(B,a~'4°)" < N(4,B}) < N(B},aA°)’

V. Milman proved that there exists an absolute constant 3 > 0 such that every centered convex body A
in R™ has a linear image A which satisfies Vol (4) = Vol,,(B%) and

(2.9) max{N (A, BY), N(By, A), N(A°, B}), N(By, A°)} < exp(Bn).

We say that a convex body A which satisfies this estimate is in M-position with constant 3.

Pisier has proposed a different approach to this result, which allows one to find a whole family of M-
positions and to give more detailed information on the behavior of the corresponding covering numbers. The
precise statement is as follows.

Theorem 2.3 (Pisier). For every 0 < a < 2 and every symmetric conver body A in R" there exists a linear
image A of A such that

max{N(4,tBy), N(By,tA), N(A° tBy), N(By,tA°)} < exp (C(f;)”>

for every t > 1, where ¢(a) depends only on a, and c(a) = O((2 — a)~*/2) as a — 2.



Some facts from the local theory of normed spaces

We will also need some basic facts from the local theory of normed spaces. Let A be a symmetric convex
body in R™. The function || - |4 : R™ — R* defined by

lz]|a =inf{t >0:2 € tA}

is a norm on R™. The space (R™, || - ||4) will be denoted by X 4. Conversely, if X = (R™,] -||) is a normed
space, then the unit ball A = {z € R": ||z]| < 1} of X is a symmetric convex body.

Let X,Y be two n-dimensional normed spaces. The Banach—Mazur distance from X to Y is defined as
follows:

(2.10) d(X,Y) =inf{||T||- |IT7*|| | T : X = Y linear isomorphism}.

In a geometric language, the Banach—Mazur distance has the following description: if X = X4 and Y = Xp
(i.e. the unit balls of X, Y are the convex bodies A, D respectively) then the distance d(X,Y’) is the smallest
d > 0 such that

(2.11) ACT(D)CdA

for some T' € GL,,.

Besides the Banach-Mazur distance, we often use the geometric distance dg(A, D) of two symmetric
convex bodies A and D in R"™, or more generally two convex bodies having the origin as an interior point,
which is the smallest d > 0 for which there exist a,b > 0 with ab < d such that

(2.12) %A C D C bA.
We define
M@= [ olade(0).
On observing that ||z]4 = hae(z) for every x € R, we see that M (A) = w(A°) and that
M(A)™ < vrad(4) < w(A) = M(A°).

The left hand side inequality is easily checked if we express the volume of A as an integral in polar coordi-
nates and use the inequalities of Holder and Jensen, while the right hand side inequality is an immediate
consequence of Urysohn’s inequality.

The dual Sudakov inequality of Pajor and Tomczak-Jaegermann provides an upper bound for the covering
numbers N(B%,tA) in terms of the parameter M(A).

Theorem 2.4 (Pajor-Tomczak). Let A be a symmetric convex body in R™. For every t > 0,
(2.13) log N (BJ,tA) < en (M(A)/t)?,
where ¢ > 0 is an absolute constant.

We write k. (A) for the largest integer k < n which satisfies

w(A)
2

n
n+k’

i (F € Gos "8 o] < halo) < 20l 0 € 7) >

The next theorem shows that the dimension k. (A) is determined from the parameters w(A4) and R(A) up
to an absolute constant.



Theorem 2.5 (Milman-Schechtman). There exist ¢1,c2 > 0 such that

w(4)? w(A)?
Ry < A S o

for every symmetric conver body A in R™.

cin

For every q # 0 we define

wy 1= wy(A) = (/S hA(O)qda(9)>1/q.

Note that wi(A) = w(A). The parameters wg, ¢ > 1 were studied by Litvak, Milman and Schechtman.
Theorem 2.6. Let A be a symmetric convex body in R™. Then,
R(A R(A
max w(A),qM < wy(A) < max 2w(A),C2M
Vvn Vn
for all q € [1,n], where ¢1,co > 0 are absolute constants.

Note that the behavior of w, changes when g ~ n(w/ R)2. This value of ¢ is roughly equal to the dual
Dvoretzky dimension k,(A) of A. One also has w, ~ R, and since wy < R for every ¢ > 1 we conclude that
wg ~ R for all ¢ > n.

Let A be a symmetric convex body in R™. We define

d.(A) = min{—logo ({x €S ha(x) “](2A)}) n}

The parameter d, was defined by Klartag and Vershynin, who also showed that d.(A) is always greater than
k. (A):

Proposition 2.7 (Klartag-Vershynin). Let A be a symmetric convex body in R™. Then,
d.(A) > ck.(4),
where ¢ > 0 is an absolute constant.

The parameter d.(A) is closely related to estimates on the measure of the set of directions in which a
norm is “much smaller” than its expectation on the sphere.

Theorem 2.8. For every 0 < € < % we have
o({x € 81 ha(z) < ew(A)}) < eard ) < gerka(A)]
where c1,co > 0 are absolute constants.
Theorem implies reverse Holder inequalities.
Theorem 2.9. Let A be a symmetric convex body in R™. Then, for every 0 < q < c1d.(A),

1 —1/q
A) < ——d < A).
)< ([ Grde@) <)
In other words, for every 0 < q < c1d.(A) one has
w_q(A) ~ w(A).
Since d«(A) > ck.(A), combining the above we get:
Theorem 2.10. Let A be a symmetric convex body in R™. Then, wq(A) ~ w_q(A) for every 1 < g < ck.(4).

Indeed, from Theorem [2.6| we have wq(A) ~ w(A) for all ¢ < k,(A), while from Theorem [2.9| we see that
w_q(A) ~ w(A) for all ¢ < ck.(A).

We refer the reader to the book [B] for the theory of convex bodies and to the books [I], [3] and [4] for
the local theory of normed spaces and asymptotic convex geometry.



3 Isotropic position and the slicing problem

A convex body K in R is called isotropic if it has volume Vol,,(K) = 1, it is centered, and there is a constant
a > 0 such that

(3.1) /K (92 = o[y ?

for all y € R™. Let {ei,...,e,} be any orthonormal basis of R”. Note that if K satisfies the isotropic

condition (3.1]) then
BRI / (z,e;)%dx = na?.
Jolatar=3 [ o

Also, it is easily checked that if K is an isotropic convex body in R™ then U(K) is also isotropic for every
U € O(n).
It is useful to check that the isotropic condition (3.1)) is equivalent to the fact that for everyi,j = 1,...,n,

(32) /K xixjdm = 0[2(51']‘,

where x; = (z, e;) are the coordinates of = with respect to some orthonormal basis {e1,...,e,} of R”. This
is in turn equivalent to the fact that for every T' € L(R"™),

(3.3) /K(Q:, Tz)dx = o (trT).

The next proposition shows that every centered convex body has a linear image which satisfies the
isotropic condition.

Proposition 3.1. Let K be a centered convex body in R™. There exists T € GL,, such that T(K) is isotropic.

Proof. The operator M € L(R") defined by M (y) = [} (x, y)zdx is symmetric and positive definite; therefore,

it has a symmetric and positive definite square root S. Consider the linear image K = S “1(K) of K. Then,
for every y € R™ we have

(3.4) /<x,y>2dx=\det5|—1/ (S‘lx,y>2dx:|detS|_1/ (2,5 1y)2da
K K K
- \detS|*1</K<a:,S*1y>xdx,S*1y> — |detS|L(MS~1y, S—1y) = |detS|~y[2.

Normalizing the volume of K we get the result. O

Propositionshows that every centered convex body K in R™ has a position K which is isotropic. The
next theorem shows that the isotropic position of a convex body is uniquely determined up to orthogonal
transformations, and arises as a solution of a minimization problem.

Theorem 3.2. Let K be a centered convexr body of volume 1 in R™. Define
(3.5) A(K) :inf{/ |z|?dx : T € SLn}.
TK
Then, a position K1 of K, of volume 1, is isotropic if and only if
(3.6) / lo2de = A(K).
K1

Furthermore, if K1 and Ky are isotropic positions of K then there exists U € O(n) such that Ko = U(K7).



Proof. Fix an isotropic position K; of K. We know that there exists o > 0 such that
/ (x,Tz)dx = o*(trT)
K1
for every T € L(R™). Then, for every T € SL,, we have
(3.7) / |z|?de = / |Tx|*de = / (x, T*Tx)dx = *tr(T*T) > na® z/ |z|?de,
TK, K K,

K

where we have used the arithmetic-geometric means inequality in the form
tr(T*T) > n[det(TT)]/™.

This shows that K7 satisfies . In particular, the infimum in is a minimum.

Note also that if we have equality in then T*T = 1Id, and hence T € O(n). This shows that any
other position K of K which satisfies is an orthogonal image of K, therefore it is isotropic.

Finally, if K> is some other isotropic position of K then the first part of the proof shows that K5 satisfies
(3.6). By the previous step, we must have Ko = U(K7) for some U € O(n). O

We can now give the following definition for the isotropic constant of a general convex body K in R™.
Definition 3.3. Let K C R™ be a convex body. Its isotropic constant L is defined by

1

. 1
L%{ = —min
n

Vol,,(TK)'*% Jri

where K = K — bar(K) is the centered translate of K.

Note that Ly depends only on the affine class of K. Note also that if K is isotropic then for all § € S™~1
we have

/ (z,0)%dx = L%.
K
The main problem in these notes is the following.

Problem 3.4 (isotropic constant problem). There exists an absolute constant C' > 0 such that for anyn > 1
and any convex body K C R™ we have
L <C.

Equivalently, if K is an isotropic convex body in R™, then

/ (3:,9>2da: < C?
K
for every § € S"~1,

The moments of inertia of a centered convex body are closely related with the volume of its hyperplane
sections that pass through the origin. In the isotropic case this relation takes the following form.

Theorem 3.5. Let K be an isotropic conver body in R™. For every § € S"~1 we have

(3.8) < Vol (K NoY) <
L

C2
Ly’

where c1,co > 0 are absolute constants.



For the proof, given § € S"~1 we consider the function f(t) = fxg(t) = Vol,_1(K N {z : (z,0) = t}),
t € R. We restrict our attention to the symmetric case. Then, f is even and || f||cc = f(0). For the proof in
the general case, which is more or less the same, we need an additional fact (due to Fradelizi) which shows
that hyperplane sections through the center of mass are, up to an absolute constant, maximal: If K is a
centered convex body of volume 1 in R™ then, for every § € S*1,

| fx.60lloe < ef(0) = eVol, 1 (K Not).

Proof of Theorem (symmetric case). Let f := fxg. To prove the left hand side of (3.8]) we set
8= f0+oo f(t)dt = } and define
9(8) = 1£llooLj0,8/11 11101 (£)-

Since g > f on the support of g, we have
| swar< [gwa
0 0

for every 0 < s < B/||f|lco- The integrals of f and g on [0, +00) are both equal to 8. So,

/ g(t)dt < / F(t)d
for every s > 0. It follows that

/Ooo t2f(t)dt = /OOO /Ot 2sf(t)dsdt = /OOO 25 (/m f(t)dt) ds
> /000 2s (/:O g(t)dt) ds = /000 t2g(t)dt

/ﬂ/lfloo 211 33
= ) f]loodt = =
0 31 £11%

It follows that
233 1

2 _ > 2 _
Jorr=2 [ eroa g = s

To prove the right hand side inequality of (3.8)) we distinguish two cases. Assume first that there exists
s > 0 such that f(s) = f(0)/2. Then,

3= [ sz [z sre) = 5102,

because, since f is log-concave, we easily see that f(t) > f(0)'~/*f(s)"/* > f(s) on [0,s]. On the other
hand, if ¢t > s, then ‘

F(s) = [FOI 2 [F(]7,
which implies that f(t) < £(0)27%/5. We now write

/ooth(t)dtz/sth(t)dtJr/oo t2f(t)dt < £(0) /Stht+/oo 2027 5dt

0 0 s 0 s

3 00

= f(0) ((383 + 53/ u22_“du> < cof(0)s® < co/[£(0))%
1

Now, assume that, for every s > 0 on the support of f, we have f(s) > f(0)/2. Then, the role of s is played

by so = sup{s > 0: f(s) > 0}. We have £ > f(0)so/2 and

/°O t*f ()t = 2/000 t2f(t)dt = 2/080 2 f(t)dt < 2f(§)5° < 3[f(20)]2.

— 00




Thus, we get the same estimate as before, without using the fact that log f is concave. O
Theorem [3.5| reveals a close connection between the isotropic constant problem and the slicing problem:

Problem 3.6 (The slicing problem). There exists an absolute constant ¢ > 0 with the following property:
if K is a convex body in R™ with volume 1 and barycenter at the origin, there exists # € S?~! such that

(3.9) Vol,, 1 (KNé#t) >c.

We will show that the two problems are equivalent. One direction is simple, by the previous discussion;
assume that the slicing problem has an affirmative answer. If K is isotropic, Theorem shows that all
sections K N @+ have volume bounded from above by ¢o/Lk. Since (3.9) must be true for at least one
0 e Sl we get Ly < cofc.

Conversely, we will show that if there exists an absolute bound C' for the isotropic constant, then the
slicing problem has an affirmative answer. One way to see this is through the Binet ellipsoid of inertia.

Let K be a centered convex body of volume 1 in R". Let M(K) = (m;;)};_; be the matrix of inertia of
K, which is defined by m;; = fK x;x;dx. As we saw in the proof of Proposition M(K) has a symmetric
and positive definite square root S. Consider the ellipsoid £5(K) := S~1(B%); then

1112, ) = ISyl = (Sy, Sy) = (My, ) = /K ().

Ep(K) is called the Binet ellipsoid of K. Observe that K is in isotropic position if and only if £5(K) =
L'By.
The next proposition shows that the volume of Eg(K) is invariant under the action of SL,,.

Proposition 3.7. Let K be a centered convexr body of volume 1 in R™. Then,
Vol,,(Ep(K)) = w, L.

Proof. If K is an isotropic convex body in R” then £g(K) = L' BY, and hence Vol,,(E5(K)) = w, L. Tt
is easily checked that if 7' € SL,, then Mpx)y = TMgT™, and hence | det M| = | det My (x|; furthermore,
by definition we have Eg(T(K)) = S~1(BY) where S? = Myp(g. It follows that

Vol (E5(TK)) = wn| det My )| ™% = wy| det M| 71/ = Vol,, (Ep(K))
for every T' € SL,. O

Corollary 3.8. Let K be a centered convex body of volume 1 in R™. There exists § € S"~1 such that

/ (z,0)%dx < L%.
K

Proof. Note that by integration in polar coordinates

1 K
Wn gn-1 B

It follows that mingcgn—1 ||0||s,(x) < Li- O

—n

Assume that the isotropic constant problem has an affirmative answer and let K be a centered convex
body of volume 1 in R™. According to Corollary there exists a direction § € S"~! such that

/ (x,0)%dr < L% < C2
K

Then, the proof of Theorem [3.5] shows that

1

Vol, 1(KN#-) >ci= ———.
i ) 2v/3eC

10



Simple bounds for the isotropic constant

We start with a lower bound Lg; in fact, it is quite simple to check that the Euclidean ball is the extremal
body.

Proposition 3.9 (lower bound). For every isotropic convex body K in R™
Lk > Lpy > ¢,
where ¢ > 0 is an absolute constant.

Proof. If r,, = wn 1 " then Vol,(r,B%) = 1 and r, B is isotropic. Let K be an isotropic convex body.
Observe that |x| > 7, on K\ r, By and |z| < r, on r, By \ K. Since K \ 7, B} and r,, B} \ K have the same
volume, it follows that

nL? :/ |x|2dx:/ |ac|2dx+/ |z|?dx
K Knr, BY K\r,BY}

2/ |£C|2d$£'+/ |z|?dx :/ |z|?dx = nL%,.
KNr, BY rn BI\K T BY 2

A simple computation shows that

2 1 2 L nwn 40 wn 2" 2
Lgn = — || d,r:fﬁrn :7226,
o By nn-+ n+
where ¢ > 0 is an absolute constant, therefore Lx > Lpy > c. O

Remark 3.10 (radius and inradius). It is useful to note that the inradius 7(K) and the radius R(K) of an
isotropic convex body K in R™ satisfy the bounds

(310) ClLK < ’I“(K) < R(K) < CQ”LK,

where c1, co > 0 are absolute constants. The following simple argument proves the right hand side inequality:
given 0 € S"~! one knows that

(3.11) Vol,, 1 (K No+) ~ i
Let 29 € K such that (zg,0) = hi(0) and consider the cone

C(0) = conv(K N O, x).
Then C(f) C K, and hence

Vol 1 (K N6LY) - hi(0)

1 = Vol,,(K) > Vol,(C(6)) n

It follows that hx(0) < canLk.
For the left hand side inequality, let § € S*~1. By a classical lemma of Griinbaum’s we know that

Vol,({z : (z,0) > 0}) > %.

This implies that e™! < || fx gl|cohx (0) and we get that
e~! <eVol, 1 (K N6 )hg(6).
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Taking into account (3.11) we see that hx(0) > ¢1 Lk, and since § was arbitrary, this gives r(K) > ¢1Lk.
In the symmetric case one actually has the bound r(K) > Ly, because |(x,0)| < hx(#), and hence

e(0)> ([ <x,9>2dm)1/2 _ Ly

for every § € S"1.

We can now easily prove a first general upper bound for the isotropic constant of any convex body K in
R™.

Proposition 3.11 (simple upper bound). For every isotropic convezr body K in R"
Li < cvn,
where ¢ > 0 is an absolute constant.
Proof. Assume that K is in isotropic position. Since r(K)BY C K and r(K) > ¢1 Lk, we get
wr(e1Li)" < wy(r(K))™ = Vol, (r(K)BY) < Vol,,(K) = 1.

It follows that L < cl_lwgl/" < ¢y/n for an absolute constant ¢ > 0. O

4 Log-concave measures and tail estimates
We denote by P,, the class of all Borel probability measures in R™ which are absolutely continuous with

respect to the Lebesgue measure. The density of a measure y € P, is denoted by f,,.
We say that a measure p € P, has barycenter at zo € R™, and we write z¢o = bar(u), if

[ (@6)dutz) = (ao.0)

20 = / ()

The subclass CP,, of P, consists of all centered i € P,,. These are the measures p € P,, that have barycenter
at the origin; so, p € CP,, if

for all § € S»~!. Equivalently, if

/ (x,0)du(x) =0
for all § € S™1.
The subclass SP,, of P, consists of all even measures p € P,; p is called even (or symmetric) if
w(A) = p(—A) for every Borel subset A of R™.

Let f : R™ — [0,00) be an integrable function with finite, positive integral. As in the case of measures,
the barycenter of f is defined as
g xf(2)da

bar(f) = W.

In particular, f has barycenter at the origin if
[ @016z =0

for all § € S™~L. If so, we will say that f is centered.
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Definition 4.1. (i) A measure u € P, is called log-concave if for all compact subsets A, B of R™ and all
0 < A <1 we have
p((L=NA+AB) = p(A)u(B)*.

(ii) A function f:R™ — [0,00) is called log-concave if

F((L =Nz +Ay) = (@) ()
for all z,y € R™ and any 0 < A < 1.

Let f:R™ — [0,00) be a log-concave function with fRn f(x)dz =1 (then we say that f is a log-concave
density). From the Prékopa-Leindler inequality it follows that the measure p with density f is log-concave.
The next theorem of Borell shows that, conversely, any non-degenerate log-concave probability measure in
R™ belongs to the class P, and has a log-concave density.

Theorem 4.2 (Borell). Let p be a log-concave probability measure in R™ such that p(H) < 1 for any
hyperplane H. Then, p is absolutely continuous with respect to the Lebesgue measure and has a log-concave
density f, that is du(x) = f(z) dx.

Let (Q, A, 1) be a probability space. Let ® : R — [0, 400) be an even convex function satisfying ®(0) = 0
and lim,_, o, () = +oo (we say that @ is an Orlicz function). The Orlicz space Lg () that corresponds to @
consists of all the A-measurable functions f for which there is a constant x > 0 such that fQ (f/r)dp < .
The norm of any such function f is defined to be the infimum of all £ > 0 such that fQ (f/r)dp < 1.

One can check that Le(p) C Li(u): if a measurable function f has finite ®(u)-norm then f is integrable
with respect to p.

The family of ¥,-norms, which is a subclass of Orlicz norms, will play a central role in these notes.

Definition 4.3 (i,-norm). Let (2,4, 1) be a probability space and let f : £ — R be an A-measurable
function. For any a > 1 we define the ,-norm of f as follows:

£l mf{t 205 [ e ((761/0%) dute) < 2},

provided that the set on the right hand side is non-empty. Note that the ¥,-norm is exactly the Orlicz norm
corresponding to the function t € R — eltl” — 1.

The next lemma gives an equivalent expression for the ,-norm in terms of the L,-norms.

Lemma 4.4. Let (2, A, 1) be a probability space. Let a > 1 and let f: Q — R be an A-measurable function.

Then,
12,0
[l =~ sup i

pZa

up to some absolute constants.

Definition 4.5. Let i € P, a > 1 and § € S?~!. We say that u satisfies a 1),-estimate with constant
bo = bo(0) in the direction of 6 if we have

15 O [we < Oall(:, 0)l2-

We say that p is a 1,-measure with constant B, > 0 if

I
sests 1602
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Using Lemmawe see that  satisfies a 1,-estimate with constant b/, ~ b,, in the direction of § € S"~!
if
165 0)llg < bag"“11(-0)l2
for all ¢ > «a.
Remark 4.6. Let ;1 € P, and let @ > 1 and § € S*~ L.
(i) If p satisfies a 9),-estimate with constant b in the direction of @ then for all ¢ > 0 we have u({z :
[(2,0)] = tlI{-, 0)[l2}) < 2e7/%".

(ii) If we have pu({z : |(x,0)] = t||(-,0)|]2}) < 2e7*"/*" for some b > 0 and for all ¢ > 0 then yu satisfies a
Pq-estimate with constant < ¢b in the direction of 8, where ¢ > 0 is an absolute constant.

Lemma 4.7 (Borell). Let p be a log-concave measure in P,,. Then, for any symmetric convezr set A in R™
with u(A) = a € (0,1) and any t > 1 we have

t+1

(4.1) 1M(tA)<a<1O‘>2.

[e%

Proof. Using the symmetry and convexity of A we check that

t—1
- n = n .
7 1(R \(tA))+t 1ACR \A

for every t > 1. Then, we apply the log-concavity of u to get the result. O

Using Borell’s lemma we see that there exists an absolute constant C' > 0 such that every log-concave
measure p € P, is a 11-measure with constant C.

Theorem 4.8. Let y € Py, be log-concave. If f : R™ — R is a seminorm then, for any q > p > 1, we have

1/p 1/q 1/p
q
(/ Ifl”du> < (/ flqdu) <o (/ Iflpdu) ,

where ¢ > 0 is an absolute constant.

Proof. We write || f|[? := [ |f[" du. Then, the set
A=A{z eR": [f(x)] <3S}

is symmetric and convex. Also, for any ¢ > 0 we get

tA={z eR": |f(z)] <3| fllp},

while u(A) > 1 —37P. So, in our case é —1< 13;,, < e P/2, Using Borell’s lemma we see that

pla < |f(@)] = 3tl|f]p) < et

for any ¢t > 1, with ¢; = . Now, we write
/Rn 1%y = /Ooo ¢s" p({z : f(2)] = s}) ds
< Gl + Bl )7 / 7 gta-lement=1) gy
< B f )7 + (3] f]1) /0 T gt leert gy

3 q
<@+ e () g4 ),

Stirling’s formula and the fact that (a4 b)Y/? < a/?+ b/ for all a,b > 0 and ¢ > 1, imply that || f||fa(,) <
el Fllze - O
P
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Remark 4.9. Let K be a convex body of volume 1 in R”. We define a probability measure px in R,
setting

,uK(A):Voln(KﬂA)z/AlK(x)dx

for every Borel A C R™. From the convexity of K we easily check that 1x is a log-concave function, and
hence px is a log-concave probability measure.
For every 0 € S"~! the function z — |(z,0)|, x € K, satisfies the hypothesis of Theorem Therefore,

15O lq < cqll (- 0) [l
for all € S"~! and ¢ > 1, where ¢ > 0 is an absolute constant. It follows that
{5 O, < el 011
for all € S™~ 1.
The next result provides a small ball probability estimate for log-concave probability measures.

Theorem 4.10 (Latala). Let p be a log-concave probability measure in R™. For any norm || - | on R™ and
any 0 <t <1 one has

(4.2) p{z = lofl < tEL([[z])}) < Ct,
where C' > 0 is an absolute constant.
A consequence of Theorem is the next Kahane-Khintchine inequality for negative exponents.

Theorem 4.11. Let u be a log-concave probability measure in R™. For any norm || - || on R™ and any
—1 < g <0 one has

c
1+¢

(4.3) E, () < —— (Eu(lal) ",

where C > 0 is an absolute constant.

5 Bourgain’s upper bound for the isotropic constant
In this section we present Bourgain’s O({/nlogn) bound for the isotropic constant.
Theorem 5.1 (Bourgain). If K is an isotropic convex body in R™ then
Ly < ci/nlogn,
where ¢ > 0 s an absolute constant.
We need some auxiliary facts.
Proposition 5.2. Let o > 1 and assume that the random variables {X;}N |, N > 2, satisfy the 1,-estimate
[ Xillpo <O
foralli=1,... N. Then

1< 1/«
IE11<11;25V|XZ| < Cb(log N/,

where C > 0 is an absolute constant.
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From Remark we know that the random variables (-, 0) on K satisfy the 1)1-estimate
1€ Ml < ell(, 02 = cLi
for all § € S"~1, where ¢ > 0 is an absolute constant. Therefore, we get:

Proposition 5.3. Let K be an isotropic convex body in R™, and let N > 2 and 01,...,0n € S"~1. Then
/ max [{(x,0;)| dv < CLk(log N),

where C' > 0 is an absolute constant.

Next, we state our second tool, known as Dudley-Fernique decomposition, in a straightforward geometric
way.

Proposition 5.4. Let K be a convex body in R"™, with 0 € K and K C RBY. There exist Z; C (3R/27)Bg,
7 € N, with cardinality
; 2
29w(K)

log|Z;| < — | >

ogl|Z;| < cn < 7 )
which satisfy the following: for every x € K and any m € N we can find z; € Z;, j = 1,...,m, and

€ (R/2™)BY such that x = z1 4+ - + Zm + Wy,

Proof. We use elementary properties of covering numbers and Sudakov’s inequality. For every j € N we may
find a subset N; of K with cardinality

IN;| = N(K, (R/2’)B3)
such that

K< | (w+(R/29)Bp).

yeEN;

; 2
22w(K
log |N;| < en (%y) .

Wj :Nj —Nj,1 = {y—y/ : yENj,y’ GNjfl}

From Sudakov’s inequality we have

We set Ny = {0} and

for every j > 1. We define Z; = W; N (3R/27)BY. Thus log|Z;| < log|W;| < (21“]1351()) We need

to show that for every x € K and any m € N we can find z; € W; N (3R/23)BQ,
€ (R/2™)BY such that

1,...,m, and

T=2z1+ -+ 2Zm+ Wy
Given such z, by the definition of N;, we can find y; € N;, j =1,...,m, such that

R

[z —y;] < 5

We write
= = 0)+ (g2 —y1) + -+ (Ym = Ym—1) + (& = Ym)-

We set yo = 0 and wy, = & — Ym, 2; = y; — yj—1 for j = 1,...,m. Then, |wy,| = |z — yn| < R/2™, and
Z5 € Nj — Nj—l = Wj. 1AISO7

R R 3R

25l < o =yl + |o — il < 5 + 557 = 55
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Finally, x = 21 + - - - + 2, + Wy, as claimed. O
We are now ready to give S. Dar’s version of the proof of Bourgain’s bound.

Proof of Theorem By the reverse Urysohn inequality (see Section 2) there exists a symmetric and
positive definite T' € SL,, such that
w(TK) < c¢y/nlogn.

Using the elementary properties of the isotropic position we write
tr’l
nL3 = / |z|?dx < —/ |z|? = / (x, Tz)dx.
K n Jk K

L% < , )| da.
nli /Kyrgggg\@ z)|dz
If TK C RBY, we can use Proposition [5.4] to find Z; C (3R/27)BY such that

i\ 2
TK)27
(5.1) log|Z;| < en (w()) ,

Therefore,

R

and so that for every m € N, every y € TK can be written in the form y = 21 + - - - + 2y, + Wy, With 2; € Z;
and wy, € (R/2™)B%. This implies that

max |(y, z E Inax| z,x) max
yeTK we(R/zm)Bg

— 3R R
gz max\(z )|+ —|z|,

_123 2m
J

(w, )|

where Z denotes the unit vector in the direction of z. Noting that (by Cauchy-Schwarz inequality) [, [z|dz <
vnLg and using the above, we see that

nL3 < / max |(Z, x)|dx + —/ |x|dx
K 2€Z;
/ max |(Z, ) \dx+—fLK
K 2€Z;
From Proposition [5.3|and (.1]) we get
m i\ 2
3R w(TK)2) R

The sum on the right hand side is bounded by
2m
coLgnw?(TK) = iR

Solving the equation
wA(TK)2*  Ryn
R o2
(where s here can be non-integer), we see that the optimal (integer) value of m satisfies the “equation”

2£m~\/>w(TK)

Going back to ([5.2), we obtain
nL3 < csv/nynw(TK)Lg

Since w(TK) < cqy/nlogn, we get the result. O
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6 Alesker and Bobkov-Nazarov

In this section we discuss two results from the 1990’s that have greatly influenced subsequent developments.
The first one is a theorem of Alesker.

Theorem 6.1 (Alesker). There exists an absolute constant ¢ > 0 such that: if K is an isotropic conver body
in R™ then
Vol,,({z € K : |z| > ev/nLgt}) < 2exp(—t?)

for every t > 0.

It is useful to consider the ¢g-th moment of the function z — |z| on K,

()"

for ¢ > 1. Theorem [6.1]is a direct consequence of Lemma [4.6] and of the next statement.
Theorem 6.2 (Alesker). Let K be an isotropic convex body in R™. For all ¢ > 1 we have
14(K) < ¢/q1>(K),

and letting f(x) = |z|, we have
1£lly. < ev/nLk,

where ¢ > 0 is an absolute constant.
For the proof we first note the following simple formula:

Lemma 6.3. Let K be a convex body of volume 1 in R™. For every q > 1,

\(x, 0)|9dzdo (8) YL I,(K).
(L), ) =i

Proof. For every ¢ > 1 and x € R™, we check that

6.1 ([ o)~ g

To see this, using polar coordinates we first see that

nwy,

1
/ (&, )|ty = ne, / P g / (2, 6)[2do(6) = / \(z,6)[9do (6).
; 0 Sn—l n+q Snfl

But we can also write the left hand side as

x q
[ Vawatedy=tatt [ (S| 'ty = ol [ er )iy
By By || By

! a1y T (ntl
— 2wy [a]? / 191 — )V g = Lo w_
0

I (=4

Comparing the two expressions and using Stirling’s formula we get (6.1). A simple application of Fubini’s
theorem gives the result. O

Proof of Theorem By Lemma [£:4] the first assertion implies the second. Thus we concentrate on
proving that for every ¢ > 1

(62) (] |z|qu)1/q < VAVl
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for some absolute constant ¢; > 0. We know that for every § € S"~1

/K |(z,0)|%dx < c3qLY, .

Integrating on the sphere we get

/ / |(z,0)|%dx do(0) < ciq?Ls,.
sn-1JK

Taking into account Lemma we see that

1/q
(/ Iaslqu) < esq n;—qLK<C4\/a\/ﬁLKa
K

provided that ¢ < n. On the other hand, if ¢ > n, using the fact that K C cnLx B%, we get

1/q
(/ |:E|qu> < enLg < ey/gv/nLg.
K

Combining the above we see that (6.2)) holds true for all ¢ > 1. O

The second result of this section is due to Bobkov and Nazarov and concerns the case of symmetric convex
bodies which generate a norm with unconditional basis. After a linear transformation, we may assume that
the standard orthonormal basis {e,...,e,} of R™ is an unconditional basis for || - ||x. That is, for every
choice of real numbers t4,...,t, and every choice of signs ¢; = +1,

Haltlel + -+ EntnenHK = Ht161 + - —|—tnen||K.

Geometrically, this means that if = (z1,...,,) € K then the whole rectangle []""_, [—|;|, |z;]] is contained
in K.

Note that the matrix of inertia of such a body is diagonal, therefore one can bring it to the isotropic
position by a diagonal operator. This explains that for every unconditional convex body K in R"™ there
exists a linear image K of K which has the following properties:

1. The volume of K is equal to 1.
2. If v = (21,...,2,) € K then [[I, [~ |z, |z:|] € K.

3. Forevery j =1,...,n,

[ x?dm =L3%.
K

This last condition implies that K is in isotropic position, because

[ z;xjde =0 for alli # j
K

by Property 2.
We assume that K has these three properties. It will be convenient to consider the normalized part

K+ =2KNR"

of K in R%} = [0,400)". So, if x = (x1,...,2y) is uniformly distributed in K, then (2|zy|,...,2[z,|) is
uniformly distributed in K. It is easy to check that KT has the following three properties:

4. The volume of K¥ is equal to 1.
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5. If o = (21,...,2,) € KT and 0 < y; <z forall 1 < j < n, theny = (y1,...,y,) € K.

6. For every j =1,...,n,

/K+ x?d:r =4L%.

It is not difficult to show that the isotropic constants of unconditional convex bodies are uniformly bounded.
One way to see this is to use the Loomis-Whitney inequality

1 = Vo, (K)" " <[] Voln-1(P.+(K)) = ] Voln_1(K Nne}"),
i=1 =1

where the last equality comes from the fact that P,. (K) = K Ne;. This shows that Vol,_1(K Ne;) > 1 for

some i < n, and then Theorem shows that Vol,,_1 (K N GJ-) > ¢ for some absolute constant ¢ > 0 and for
all @ € S~ 1. In fact, Bobkov and Nazarov provide a different direct argument which gives:

Theorem 6.4. Let K be an isotropic unconditional convex body in R™. Then,

IKNot| >

5l

for every § € S,
Our main interest is in the next distributional inequality from the same work.
Theorem 6.5 (Bobkov-Nazarov). Let K be an isotropic unconditional convez body in R™. Then,

Vol,({x € Kt :21 > ay,...,1, = an}) < (1_a1—|—-~-—|—an) ,

V6n
for all (aq,...,an) € KT.
Proof. We define a function u : K™ — [0,00) by

u(ag,...,an) =Vol,({zr € KT : 21 > ay,...,0, = ap}).

The Brunn-Minkowski inequality shows that the function h = u# is concave on K+. Observe that u(0) = 1
and
ou

da;

S

\/6’

where the last inequality comes from Theorem Let o € KT and consider the function h,, : [0,1] — R
defined by h,(t) = h(at). Note that

(63) (0) = —Vol,_1(K Nej) < —

n

n 1

B (0) = aja@h (0) = o ou 0) < o+ + ay,
Z o Z
j=1 J

n O
i=1 J

by (6.3)). Since h is concave, h,, is concave on [0,1]. This implies that h!, is decreasing on [0, 1], and hence,

_a1+...+an

V6én

for all « € KT. This proves the theorem. 0

h(a) — 1 = ha(1) — ha(0) < B, (0) <

As a direct consequence we get the following statement, which is valid for all a; > 0.
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Corollary 6.6. Let K be an isotropic unconditional convexr body in R™. Then,
Vol,{z € K¥ x> a1,...,2, = an}) <exp(—clag + -+ + ap)),
for all ay,. .., =0, where c = 1/+/6.
Proof. If (aq,...,a,) € KT we apply Theorem and then just use the fact that 1 —z < e™* for all z > 0.

If not, then the left hand side is equal to zero. ]
Let x = (21,...,2,) € R. We write 27, ..., }, for the coordinates of = in decreasing order. That is,
maxe; =] =Ty = -+ 2> &, = ming;.

Let ,u}r( denote the uniform distribution on K*. Corollary has the following consequence.

Proposition 6.7. Let K be an isotropic unconditional convex body in R™. Then,
n
pi({z €RY 12} > a}) < (kz) e~ cka

forallaa >0 and 1 < k < n, where c = l/f
Proof. Let 1 < ji < -++ < ji < n. From Corollary [6.6] we have

p({z eRY 1zj > a,..., x5 > a}) <exp(—cka).

Since
{xeRY 1o > a} = U {x eRY 12y, > a,...,z5 > a},
1< < <jr<n
we get
pi({z x> a}) < > wk{ria, 2 a1 > a))
1<ii<-<gp<n
ny _
< <k>e cka
as claimed. O

This leads to the next improved version of Alesker’s theorem in the unconditional case.

Theorem 6.8 (Bobkov-Nazarov). Let K be an isotropic unconditional convex body in R™. Then, for every
t> 4,

Vol,({z € K : |z > eatv/n}) < exp( tgﬁ)

where ¢o = /6.
Proof. Let o, ..., ay, > 0. From Proposition [6.7] we have

vl ({2051 > 3 }) < ({23300 243t}

k=1 k=1 k=1
=uk <{:L’ ERT:Y (1) = 42&%})
k=1 k=1
n
Zu ({zr € RY s a3 > 204 })
k=1

3

< (k) exp(—2ckayg).
k=1
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This shows that

o vl ({6 > 3 ) < S (o oo b)),
k=1 k=1
where ¢ = 1/4/6. Given ¢t > 0 we choose

r
,liti
k+k

We check that if ¢ > 2 then Y ;_, ak < 4nt?, and going back to we have

Vol, ({z € K : |z| > 2V/6tv/n}) < nexp(—2ty/n) < exp(—ty/n)
for every t > 2. This proves the theorem. O

It was after this result that people started thinking whether an analogous estimate might be true in full
generality.

7 Isotropic log-concave measures

Definition 7.1. Let p be a Borel probability measure in R™ which is absolutely continuous with respect to
Lebesgue measure. We shall say that p is isotropic if it is centered and satisfies the isotropic condition

[ @0 dut) =1

for all & € S"~1. Similarly, we shall say that a centered log-concave function f : R — [0, 00) is isotropic if
J f =1 and the measure dp = f(z)dx is isotropic.

As in the case of convex bodies, we easily check that a centered measure p as above is isotropic if and
only if for any T' € L(R™) one has

/ (o, T () = tr(T),

or equivalently if fR" zixjdu(x) =6; forall i, =1,...,n
Note that if p is isotropic, then
[ laf? dutw) = n.
]R'n.

/R TePdu(x) = T3

and more generally,

for any T' € L(R™).

Following the proof of Proposition we can check that every non-degenerate absolutely continuous
probability measure p has an isotropic image v = poS, where S : R™ — R” is an affine map. Similarly, every
log-concave f : R™ — [0,00) with 0 < [ f < oo has an isotropic image: there exist an affine isomorphism
S :R™ — R™ and a positive number a such that af oS is isotropic.

Remark 7.2. It is useful to compare the definition of an isotropic convex body with the definition of an
isotropic log-concave measure. Note that a convex body K of volume 1 in R™ being isotropic implies that the
covariance matrix of the measure 1 de is Li Id. So, we see that a convex body K of volume 1 is isotropic
if and only if the function fx := L1 LK is an isotropic log-concave function.
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Definition 7.3 (general definition of the isotropic constant). Let f be a log-concave function with finite,
positive integral. We define its inertia — or covariance — matrix Cov(f) as the matrix with entries

ol L o dre TS @) de fy @i f(2)de [y @if (@) do
o) = 2 — e

Note that if f is isotropic then Cov(f) is the identity matrix. If f is the density of a measure y we denote
this matrix also by Cov(u). The isotropic constant of f is defined by

(7.1) Ly:= <W> ' [det Cov(f)] 2.

(and given a log-concave measure p with density f, we let L, := Ly, ).

With the above definition it is easy to check that the isotropic constant L, is an affine invariant; we have
L, = Lyyoa, Ly = Lyfoa for every invertible affine transformation A of R™ and every positive number .

The following characterization of the isotropic constant holds and is completely analogous to the one in
Theorem if f:R™ — [0,00) is a log-concave density, then

/n
nL} = inf (sup f(x))2 /Rn Tz +y* f(z) da.

A very useful inequality of Fradelizi, that will be frequently used in these notes, asserts that if f : R™ — [0, 00)
is a centered log-concave function, then

F0) <1 flle < €”f(0).
The hyperplane conjecture for log-concave measures can now be stated as follows:
Problem 7.4 (main problem). Let f: R™ — [0,00) be an isotropic log-concave density. Then
IFI" < €,
where C' > 0 is an absolute constant.

One can prove that the isotropic constants of all log-concave measures are uniformly bounded from below
by a constant ¢ > 0 which is independent of the dimension. If f : R™ — [0,00) is an isotropic log-concave
density, then

(7.2) Ly = | fIX" = [F O > ¢,

where ¢ > 0 is an absolute constant.

8 Convex bodies associated with log-concave measures

In this section we discuss a family of sets K,(f) associated with any given log-concave function f. The
bodies K, (f) were introduced by K. Ball who also established their convexity. They play a very important
role as they allow us to study properties of log-concave measures through those of convex bodies and vice
versa.

Definition 8.1 (Ball). Let f : R™ — [0, 00) be a measurable function such that f(0) > 0. For any p > 0 we
define the set K,(f) as follows:

K,(f) = {xeR" : /Ooorp—lf(m)dr> ffoo)}.

If f, is the density of a Borel probability measure p and f,(0) > 0, then we define
Kp(p) = Kp(fy)-
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From the definition it follows that the radial function of K, (f) is given by

(8.1) P, () (%) = (f(lo) /Ooo pr? =t f(rz) d?“)

Lemma 8.2. Let K be a convex body in R™ with 0 € K. Then, we have K,(1x) = K for all p > 0.

1/p

Proof. For every § € S~ we have

1

+oo pic(8)
P ® = 15 / prP ! 1y (r0) dr / pro =t dr = g (6).

It follows that K,(1x) = K. O

The next proposition describes some basic properties of the sets K,(f).

Proposition 8.3. Let f,g: R™ — [0,00) be two integrable functions with f(0) = g(0) > 0, and set

minf{ggg:g(a:po} and Mlinf{?iz;:f(x)>0}.

Then, for every p > 0 we have the following:
(i) 0 € Ky (f).

) Kp(f) is a star-shaped set.
) Kp(f) is symmetric if f is even.

() M7 K, (g) C Kyp(f) € MYPK,(g).
)

For any 6 € S"~! we have

1
/Kn+1(f) (w,0) do = 7(0) /n<x,9>f(x) da.

In particular, f is centered if and only if K,11(f) is centered.

(vi) For any 6 € S"~! and p > 0 we have

SR S
/Kn+p(f)|<x70> d f((]) /n|< ’9>‘ f( )d .

(vii) If p> —n and V is a star-shaped body with gauge function || - ||y then
1
(8.2) [ el de =5 [ el oo
e N (O

Assuming the log-concavity of f one can prove that the sets K,(f), p > 0, are convex. The proof is
based on a variant of the Prékopa-Leindler inequality.

Theorem 8.4 (Ball). Let f: R™ — [0,00) be a log-concave function such that f(0) > 0. For every p > 0,
K,(f) is a convex setK,(f).

To show that K, (f) is indeed a convex body, namely is compact and with non-empty interior, one simply
computes its volume to see that it is non-zero and finite:
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Lemma 8.5. For every measurable function f : R™ — [0,00) such that f(0) > 0 we have

L
f(0) Jen

In particular, if f is log-concave and such that 0 < fR” f < oo, then K, (f) is a convex body.

Vol (Kn(f)) = f(z)dz

Proof. We can write

Vol, (K, (f)) = /K var—nw, [ [ O o drdo(s)

'n.

nwn

_ /S/ 7Lt (r)drdo () = f() f(w)de

using (8.1) and integration in polar coordinates. O

The fact that all of the convex sets K,(f), p > 0, are indeed convex bodies, namely they are compact and
have non-empty interior, whenever the log-concave function f has finite, positive integral, is a consequence
of the next proposition.

Proposition 8.6. Let f : R™ — [0,00) be a centered log-concave function. For every 0 < p < g,

T'(p+1)

Tg1) T Ky(f)-

m;

(8.3) K,(f) S Ky(f)Ce

Q| sie

As a consequence we obtain an approximate formula for the volume of K,,+,(f) when p > 0.

Corollary 8.7. Let f:R™ — [0,00) be a centered log-concave density. Then, for every p > 0 we have

_ 141 141 n+p
(8.4) e < F0)7"TF Vol (K p(f))7 7 <e 2,
while for —n < p < 0 we have
_ Y a1
(8.5) e 1 < f(0)=F Vol (Kpsp(f))=7 7 <e.

A flavor of the applications of the bodies K,(f) may be given by the next propositions which relate the
isotropic constants of convex bodies with those of log-concave functions.

Proposition 8.8 (Ball). Let f: R™ — [0,00) be an even log-concave function with finite, positive integral.
Then, the body T = K, 12(f) is a centrally symmetric convexr body with

ClLf LT CgLf,

where c1, ¢y > 0 are absolute constants. Furthermore, if f is isotropic, then T = Vol,, (T)fl/"T s an isotropic
convex body.

Proof. Since f is even and log-concave, T is a centrally symmetric convex body; we also have f(z) < f(0)
for all z € R™. Hence, f(0) > 0. From Proposition [8.3|(vi)

/T<a:,9>2dx - ﬁ/n@:,@)?f(x) da,

and more generally

1
| @o@oar =< | @i
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for all §,¢ € S"~ 1. It follows that

/f
Vol,,(T)Cov(1y) = =——=Cov(f).
By the definition of the isotropic constant we obtain
+

1 1
LT:LIT:VOln(T)%"—% (f(())/f> Lf.

On the other hand, applying Corollary [8:7] with p = 2 we see that

[
Bl

1 1
1 3tw
Vol, (T) 2% = Vol, (Kppa(f))2 7 ~ ( f(z) d:z:>
f(0) Jgn
This shows that Ly ~ L. Finally, note that if f is isotropic then
1 1

Jaordo = e [ @0

T Vol,,(T)** = Jr F(0)Vol, (T) =
for every 6 € S"~!, which shows that T is in isotropic position. O

The next proposition, which is due to Klartag, shows that we can further reduce our study of the behavior
of the isotropic constant to the class of symmetric convex bodies.

Proposition 8.9. For every convex body K we can find a symmetric convex body T with the property that
Lk < cLr,
where ¢ > 0 is an absolute constant.

Proof. Without loss of generality, we may assume that K has volume 1 and barycenter at the origin. We
define a function f supported on K — K as follows:

(@) = (1x *1g)() = / Lic(y) k(= y) dy = Vol (K 1 (2 + K).

Using the Brunn-Minkowski inequality one can see that f is an even and log-concave function with fR" f=1
and that f(z) < f(0) = Vol (K) = 1. Therefore,

Ly = [det Cov(f)]?".
Next, since one easily checks that for any h and g with barycenter at 0 and total mass 1 one has
Cov(h x g) = Cov(h) + Cov(g),

we get that
Cov(f) = Cov(K) + Cov(—K).
As these are positive definite matrices it follows that

[det Cov(£)]!/" > [det Cov(K)]"/" + [det Cov(~K)]"/" = 2[det Cov(K)] /",

and hence

Rl 1,

V2 N

It is easy now to check that the body T := K,,1o(f) has the desired properties: T is symmetric because f
is even, and in addition Ly ~ Ly > L. O

Lx = [det Cov(K)]7m < —=[det Cov(f)]zr =

Assuming that the function f : R™ — [0, 00) is centered, but not necessarily even, we prefer to work with
the centered body K, 1(f) instead of Kp4o(f).
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Proposition 8.10. Let f : R™ — [0,00) be a centered log-concave function with finite, positive integral.
Then, T = K, 11(f) is a centered convex body in R™ with

aly <Ly <caly,
where c1,co > 0 are absolute constants.

Proof. Note that, f being centered implies f(0) > 0; thus, K,41(f) is well-defined and by Proposition[8.3] (v)
and Theorem @ we know that it is a centered convex body. Wlthout loss of generality we may assume that
[ is log-concave with [ f = 1, otherwise we work with f; = ﬁ using the fact that K, 11(\f) = Kn+1(f)

and Lys = Ly for any A > 0. By Proposition [8.3] we have

1
/T|<x,e>|dx=m/ux,ew(x)dw

Borell’s lemma implies that for every y € R"

1 1/
(o [t e) = gt [l = ot [lwpiiea
1/2

~W</<wy>f()dx> |

which, combined with the fact that T" and f are both centered, implies that there exist absolute constants
c1,c2 > 0 such that as positive definite matrices

c2Cov(17) < (Vol,, (T) £(0)) "2Cov(f) < ¢;Cov(1r).
Therefore
(8.6) [det Cov(17)]*™ ~ (Vol,,(T) £(0))~2[det Cov(f)]*/™.

From the definition of the isotropic constant it follows that

Ly = [det Cov(T)]2% =~ Vol,,(T)~*/™(f(0)Vol,, (T))[det Cov(f)]z

1
Vol,,(T)Y/n
~ (f(0)Vol,(T) "7 Ly,
where we have also used the fact that one has || f ||(1>én ~ f(0)'/". Finally, applying Proposition m with
p =1 we get that

n+1
n

(8.7) e~ < (F(0)Vol,, (T))"F+ < e < 2e.

This completes the proof. O

9 Centroid bodies

Let K be a convex body of volume 1 in R”. For every ¢ > 1 we define the Lg-centroid body Z,(K) of K to
be the symmetric convex body with support function

By () = ey ) zagae) = (/|xy|qu) "
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From Hoélder’s inequality it is clear that if 1 < p < ¢ < oo then
Zp(K) C Zy(K) C Zoo(K) := conv(K U (—K)).

Note that Z,(T(K)) = T(Z,(K)) for every T € SL(n) and any g > 1. Also, a centered convex body K of
volume 1 is isotropic if Z3(K) is a multiple of the Euclidean unit ball.
Analogously, if u is a log-concave probability measure on R”, we define

b = ([ i)

Basic properties

Let K be a convex body of volume 1 in R™. Using the standard Khintchine-type inequalities for seminorms
we see that if 1 < p < ¢ then

(9.1) Z,(K) € Z,(K) € M 7,(K),

p

where ¢; > 0 is an absolute constant. If K has its barycenter at the origin, then
(9.2) Zy(K) D caZo(K)

for every ¢ > n, where c3 > 0 is an absolute constant. This is a consequence of the inequality

)| ( DI'(n) q q
/|x9 do > gt s (B (0) W (<0)},

which holds true for all § € S"~! and ¢ > 1. Then, if ¢ > n we see that
1, 0)llq = max{hx (6), hr(=0)},
and hence Z,(K) D ¢Z(K). In particular,
(9.3) ¢ < Vol (Z, (K))Y™ < Vol (K — K)Y/™ < 4

for some absolute constant ¢ > 0.
We have similar results in the context of log-concave measures. If p is a log-concave probability measure
in R™ with density f then for every 1 < p < g we have

(9.4) Zy(f) € Zy(f) C ©

;qu(f)a

where ¢ > 0 is an absolute constant.
A first basic observation of Paouris is the next asymptotic formula.

Theorem 9.1 (Paouris). Let f be a centered log-concave density on R™. Then,
C1

foyr/m

where c1,co > 0 are absolute constants.

C2

RS

(9.5) < Vol (Za ()Y <

Proof. Using Proposition (vi) we check that, for every ¢ > 1,

VOln(Kn+q(f))1+% /

K7z+q(f)

@opde= [ worar= g [ o i@ e
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for all € S~ !, and hence

1

— 1.1
(9.6) Zq(Kntq(f))Voln(Kniq(f)) ath f(o)l/q = Zq(f).
Now, let 1 < ¢ < n. Using also Corollary [8.7] we see that

1

(97) Zy(Kuial ) € FOZ,(f) € "1

Zq(Knt4(f)) € 2Z4(Kniq())-

On the other hand, using the inclusions in Proposition we write

, 1/q
h., —— (9) = 1,1 / |<‘r79>|qu>
Zq(Kn+Q(f)) VOln(KrH»q(f))E-i_; ( Kn+q(f)

1/q

1
< e RN L UL
VOln(Kn—i-q(f))q " MKn+l(f)

r(n+2)l/n+1

>>>H <r<n+q+1>n1+q

142
T(n 1 2)7 ) ha, @i (@)

2 5 1+1 F( + + 1)% 1+%

n2 _ 2 \aTw n+gq n

G ————— | hymaay©
I‘(n+2)n+1 ! *

for every 0 € S"!. After estimating the constant we get that Z,(Kn14(f)) € c1Z¢(Kn+1(f)), and in the
same way we establish an analogous inverse inclusion. Therefore, for all 1 < g < n we get

(9.8) 1 f(0) " Zy(f) € Zg(Knia () € e2f (00" Zy(f)

where c1,co > 0 are absolute constants.
Now recall that, since f is centered, the body K,y1(f) is also centered. Applying (9.3]) for the body
K, +1(f) we see that

VOln(Zn(m(f)))l/n ~1

and hence, by ,
FO)™ Vol (Z ()™ 2= Vol (Z, (K (/)" ~ 1.

This completes the proof. O

Marginals and projections

Let f : R™ — [0,00) be an integrable function. Let 1 < k < n and F' € G, ;. The marginal 7p(f) : F' —
[0,00) of f with respect to F' is defined by

(9.9) rr(f) (@) = / f(w)dy.

rz+F-L

More generally, for every u € P, we define the marginal of y with respect to a k-dimensional subspace F'
setting

wp(p)(4) = p(Pp' (4))
for every Borel subset A of F'. If ;1 has a log-concave density f,, then the two definitions agree. We can check
that
frpwy =7 (fu)
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almost everywhere. Indeed, for every Borel subset A of F' we have

©O10)  we() () = w(PF ) = [ fuaitaPra)de = [ [ e+ nta@) dyde

from Fubini’s theorem. A change of variables shows that

we) = [ ([ pwa) ao= [ wrtg) i

In the next proposition we collect some basic properties of marginals.

Proposition 9.2. Let f: R™ — [0,00) be an integrable function and let F' € Gy, 1.
1. If f is even then wr(f) is also even.
2. We have
[ me@de= [ fa)do
F R

3. For every measurable function g : F — R we have
| atPea)s@yde = [ gtaymr(r)@)d.
4. For every 6 € Sg,

(9.11) /F<:c,0>7rp(f)(z)d:c = /n<x,0>f(x)das.

In particular, if f is centered then, for every F' € G, we have that wp(f) is also centered.

5. For every p >0 and any 0 € Sp,

| o s@is = [ @orm() @

In particular, if f is isotropic then wp(f) is also isotropic.
6. If f is log-concave then wr(f) is also log-concave.

Similar results are valid for any measure p € Py,.

A second basic observation of Paouris is that any projection of the L4-centroid body of a density f
coincides with the Lg-centroid body of the corresponding marginal of f. The proof is a direct application of
Fubini’s theorem.

Theorem 9.3 (Paouris). Let f : R™ — [0,00) be a density in R™. For every 1 < k < n and any F € G,
and q > 1, we have

(9.12) Pr(Zy(f)) = Zy(wr(f))-

Proof. Given ¢ > 1 and 0 € Sg, we write

[ woyrs@yiz = [ (.01 (1) ()i,
n F
because (x,0) = (Pr(x),0) for every x € R™. Equivalently,

hz,(5)(0) = hz,(zp1)(0),
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¢ € Sp, and the result follows from the observation that hp,(z,(r))(0) = hz, 5 (0) 0 € SF. O

Let f be a centered log-concave density in R”. Then, for every F' € G, i, the function 7 (f) is a centered
log-concave density on F'. Therefore, we may apply Theorem for mp(f) to get

C1 <
mr(f)(0)/k =
Combining this inequality with (9.12)) we have the following.

C2

Vol (Zi(mr (D" < i

Theorem 9.4. Let f be a log-concave density with bar(f) = 0 in R™. Then, for every 1 < k < n and any
F e Gy we have

(9.13) e1 < [rr(f)(0)]* Vol (Pr(Zi(F)))V* < e,

where ¢1,co > 0 are absolute constants.

Marginals and sections

The next proposition gives some very useful expressions for the volume of central sections of an isotropic
convex body.

Proposition 9.5. Let K be an isotropic convex body in R™. We denote by ux the isotropic log-concave
measure with density L"KILL. Then, for every 1 < k <n and F € Gy 1, the body Kyi1(mrp(pk)) is almost
K

isotropic and

Li
9.14 Vol,, (K N FL)VkE ~ “Ken(melix))
(9.14) ol ) Tr ,
Also, for all 1 < q < k,
(9.15) Zg(Kps1(mr(uK))) ~ Vol,, (K N FYHYY*Pr(Z,(K)).

Proof. Fix 1 < k <n and F € G, ;. Let fx be the density of pg. Since fx is isotropic, Proposition
shows that mp(fx) is isotropic. Hence, by Proposition we get that Kiy1(mp(fx)) is almost isotropic
with some absolute constant C' > 0. Using (with ¢ = 2) we get:

Vol (Za(Kgt1(mr(fr 1/k 1k (Vo (Za(mp(fi 1/k
Llw(m(fx)):< k( ifolkk—EB(F)( ))))) ~ 72 (f50)(0) /k( kifolk((Bi) ))))
(o) ) 1/k

where we have used the fact that Zs(wp(f)) = Pr(Z2(f)) for any log-concave function f. Note that, since
K is isotropic, we get

Zy(fr) = L;(1Z2(K) = B} and hence Pr(Z3(fx)) = Br.
Moreover, we have
T /l Fre(w) dy = LicVol i (oK 0 FY) = LiVolu (K 0 F*)
F
Combining the above we conclude that
L e (1)) = L Vol (KN FH)Uk,

The second assertion follows immediately from and the equalities 7p () (0)1/* = L | K N F+*/* and
Zy(mr(px)) = Lyl Pr(Zy(K)). =
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Volume of the centroid bodies
A lower bound for the volume of Lg-centroid bodies follows from the L,-affine isoperimetric inequality of
Lutwak, Yang and Zhang. Using our normalization we can write it in the following form.

Proposition 9.6 (Lutwak-Yang-Zhang). Let K be a convex body of volume 1 in R™. Then,
Vol (Zy(K))Y™ = Vol (Z,(B5))V/™ = ey/a/n

for every 1 < g < n, where ¢ > 0 is an absolute constant.
We will see that a reverse inequality holds true (up to the isotropic constant).

Theorem 9.7 (Paouris). If u is an isotropic log-concave measure on R™, then for every 2 < ¢ < n we have
that

(9.16) Vo, (Z(u)/™ < ev/q/n.

Moreover, if K is a centered convex body of volume 1 in R™, then for every 2 < g < n we have that

(9.17) Vol,, (Z,(K))Y™ < en/q/n Lk,
where ¢ > 0 is an absolute constant.

For the proof we will use Steiner’s formula: recall that for every convex body C in R™ we have

Vol,, (C + tB}) = f: (Z) Wi, (O)tF

k=0
for all ¢ > 0, where Wi (C) = V,,_x(C) = V(C;n — k, BY; k) is the k-th quermassintegral of C. Also,
the Alexandrov-Fenchel inequality implies the log-concavity of the sequence (Wy(C),...,W,(C)), and in
particular we have that

018 (Wacd Y, (i)

Wn, Wn
for all 1 <7 < j < n. We will also use Kubota’s integral formula:
W

(9.19) Wh—m(C) = —/G Vol (Pr(C)) dvym(F), (1 <m<n).

Wm

Proof of Theorem It is enough to prove (9.16]) for integer values of 1 < ¢ < n — 1. Observe that for
any F' € Gy, q we have
C1
Voly (Pe(Zq (1)) = Voly(Zy(mp () < e < e,
q q a\4q [Frr () (0)] 7/
where we have used Theorem (9.3 Theorem and ([7.2)) respectively, for the isotropic function fr.(,) =
7r(fu). Applying (9.19) we get

Wh—g(Zq(11)) < —=c5.
Now, we apply (9.18) for C' = Z,(u) with j = n and i = ¢; this gives
W9 (Zy()) = Vol (Z () "wl/a=2/m,

n—q
Combining the above, we get

1/n
Wn
w;/q
Since w,i/ S| / VEk, we get || For the second assertion of the theorem we may assume that K is
isotropic (because the volume of Z,(T(K)) is the same for all T € SL(n)). Consider the measure p with

density f, = L’;(lLL. Then, p is isotropic and Z,(u) = L;(l Zy(K). Thus, the result follows immediately
K

from ((9.16). a

Vol (Zy ()" <

Ca.
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10 Paouris’ inequality

We are now ready to prove a very useful inequality of Paouris.

Theorem 10.1 (Paouris). Let v be an isotropic log-concave probability measure in R™. Then,
(10.1) p({z € R™ : |z] = ctv/n}) < exp (—tv/n)

for every t > 1, where ¢ > 0 is an absolute constant.

The proof of Theorem is reduced to the behavior of the moments of the function x — |z|. For every

g 2 1 we define
1/q
10 = ( [ Jelauta))

Theorem [£.8] shows that for all y € R™ and p,q > 1 we have
1C 9 lpg < crdllC9) s
where ¢; > 0 is an absolute constant. Moreover, since |z| is a norm, for every p,q > 1 we have
Ipg(K) < c1q1(K).
In particular, we have
(10.2) Iy () < crgla(p)
for all ¢ > 2. Paouris proved the following.

Theorem 10.2 (Paouris). There exist absolute constants cs,cq > 0 such that if p is an isotropic log-concave
probability measure on R™ then

(10.3) I,(0) < eala(p)

for all g < e3v/n.

Assuming that we have proved Theorem we obtain Theorem as follows: we consider an isotropic
log-concave probability measure p in R™. From Markov’s inequality, for every ¢ > 2 we have

p{lz] > € Lo (u)}) < e,
Then, Borell’s lemma gives

o34 ><s+1>/z

el > 1,005 < (-0 (155

<e ¥
for every s > 1. Choosing q = ¢3+/n, and using ((10.3)), we see that
W({Jz] > ese® I (1)s)) < expl(—csv/s)

for all s > 1. Since pu is isotropic, we have I>(u) = /n. This proves the theorem.
We pass to the proof of Theorem We will actually prove a stronger statement.

Theorem 10.3. Let p be a centered log-concave probability measure on R™. For every q > 1,

(10.4) 1g(p) < C(I2(p) + R(Zy (1)) -
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Note that if p is isotropic then R(Z4(1)) < cg, and hence the right hand side of (10.4) is bounded by
Cy max{Iy(u),q}. Since Ir(1) = /n, for all ¢ < /n we get

Iy(p) < Cymax{lz(pn),q} = Cila(p),

which is exactly the statement of Theorem
We start with the next lemma, which relates the g-moment of the Euclidean norm with respect to p with
the parameters wq and the Lg-centroid bodies of u through the next lemma.

Lemma 10.4. Let p be a log-concave probability measure in R™. For every q > 1 we have
wy(Zy(W) = anay | ——1(1)
“Vag+n

Proof. This is in fact a different way to express Alsker’s computation: for every z € R™ we have

([ o) = on, 2L

w2 = ([ [ e opaueoan)

the lemma follows. 0

where ay, g >~ 1.

where a,, 4 >~ 1. Since

Proof of Theorem [10.3l We start with the formula
(10.5) I4(p) = cnqwq(Zq(1)),
where ¢, ; ~ max{1, \/n/q}. Therefore, we need to show that

wy(Zy (1)) < C min{1, v/q/n} (I2(n) + R(Z4(w))) -

Since wq(Zy(1)) < R(Z4(1)), we clearly have the result when ¢ > n, and hence in the sequel we may assume
that ¢ is an integer and 1 < ¢ < n.
Recall the result of Litvak, Milman and Schechtman (Theorem [2.6)): we have

(10.6) wq(Zy (1)) < exmax{w(Zy(n), Va/nR(Zy(1))}-

Therefore, the theorem will follow if we show that, for all 1 < g < n,

(10.7) w(Zy(1) < OVa/n(Ia(n) + R(Zy (1))
If ¢ > k.(Z4(p)) then we have

(10.8) w(Zy(1)) < ca/a/nR(Zy ()

by the definition of k.(Z,(w)). If ¢ < ki(Z4(1)) then Theorem (Dvoretzky theorem for Z,(u)) shows
that a random F' € G, 4 satisfies

/ P () 2 dp() < es(a/m) I3 ()

34



(this is justified by averaging over all F' € G, and then applying Markov’s inequality) and
(10.9) w(Zg(w)Br C caPr(Zy(1)).

Since Pr(Z4(p)) = Zy(mp(p)) (by Theorem and mp(p) is a ¢g-dimensional centered log-concave proba-
bility measure, from Theorem [9.4] we get

| det Cov(mp(p))|
ik .

(10.10) vrad(Zg(mp(p))) ~ _Va =4

[EXIDIES (1)

Using the the fact that L., = ¢ > 0, we see that

el2drpu(z)) 1/2
101)  vad(Zy(re() < e LI ([1Pe@ dute)) < erv/autaio
mF(®)

Combining (10.9), (10.10)) and (10.11)) we have

(10.12) W(Zy (1)) < es/a/nLa(p).

This completes the proof. O

We end this section with a basic application of the previous results.

Theorem 10.5. Let p be an isotropic log-concave probability measure in R™. If 1 < q¢ < /n, then
(10.13) W(Zy(1)) = V.
For Theorem we write w(Zy (1)) =~ we(Zq(1)) ~ v/q/nl, (1) ~ /g, where the first equality holds
because /n < ¢.(1), the second comes from Lemma and the third follows from Theorem m
11 The isomorphic slicing problem
In this section we describe Klartag’s affirmative answer to the isomorphic slicing problem

Theorem 11.1 (Klartag). Let K be a convex body in R™. For everye € (0,1) we can find a centered convex
body T C R™ and a point x € R™ such that

(11.1) TCK+zC (14T

1+4+¢

and
Lt <

Sl

for some absolute constant C' > 0.

The body T will be of the form K,,1(g) for some function g on the centered translate of K, which is not
much different from 1. More precisely, ¢ will be chosen from a family of functions proportional to e(®4 1.
We start with the next lemma which will allow us to compare the isotropic constant of a function f and of
K, +1(g) when g is the centered translate of f.

Lemma 11.2. Let K be a convex body in R™ and let f : K — (0,00) be a log-concave function such that
sup f(z) < m" ™! inf f(x)

z€K rzeK
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for somem > 1. We write xg = bar(f) and denote the centered translate of f by g, namely g(z) := f(x+xo)
for all x € K — xy. Then the body T := K,41(g) is centered,

Ly=Ly~ Ly
and
1
m
Proof. Tt is easy to check that f seen as a function on all of R™ (where we set f(z) = 0 for z ¢ K) is

log-concave as well, and that xg = bar(f) € K. The facts that T is centered and that Ly ~ Ly, = Ly follow

easily from Proposition so it remains to prove (11.2)). Since K,+1(\g) = Kn41(g) for every A > 0, we
may assume without loss of generality that ¢(0) = 1 K—0 (0) = 1. Then,

- g(z) . o
_9%) 4 _ N
inf { e () Li—ao(x) > 0} zelll(lfwog( ) ylng(f(y) >m

and
1x—ao(2) - 1
inf{0 cg(z) > O} = <sup f(y)) >m~ (D,
9(5’3) yeK
From Lemma [8.2| and Proposition (iv) we obtain

1
EKn-i-l(g) g Kn+1 (1K—3:0) =K — Zo g mKn-{-l(Q)y

and this completes the proof. O

We consider the uniform measure on K, which we denote by u = 1xdz, and a family of measures
{1te teern which will be probability measures with density proportional to el k(x). The properties of
these measures are closely related to the logarithmic Laplace transform of the measure p, which is defined
by

(113) M) =108 (g [ (o))

We summarize some of its basic properties in the next proposition.

Proposition 11.3. If p = px is Lebesgue measure on some convex body K in R™, then
(11.4) (VAL)(R™) = int(K).

If pe is the probability measure in R™ with density proportional to 6<E’z>1K(l’), then

(11.5) bar (ig) = VA, (€)
and
(11.6) (HessA,) (&) = Cov(pe)-

Moreover, the map VA, transports the measure v with density det(HessA,,)(§) to p. Equivalently, for every
continuous non-negative function ¢ : R™ — R,

(11.7) [ o@rde = [ o(9a,(0) det(Hess(a,)(€) d = [ o(TAL©)nte)
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Proof. Let F' = A, that is
1
Flz)=log | ———= [ ™% dy).
) =08 (1.7 [ < )

Observe that F is a C2?-smooth, strictly convex function. Smoothness is clear, as we are integrating a smooth
function on a compact set. The strict convexity follows from Cauchy-Schwarz inequality. Differentiating
under the integral sign we get:

i) yel&y) dy
(11.8) VO = K = [ vietv) = bas(ue).

Since ¢ is supported on the compact, convex set K we obtain that VF(§) = bar(ue) € K for all ¢ € R™. This
shows that VF(R™) C K. In fact, this is what we really need, although one can check that VF(R") = int(K).
To compute the Hessian we differentiate twice to get:

PF(E) [y mimiels do — [ 2" du [ 1,657 da
0¢;0¢; (f &) dz)?

— /xixj dpe(z) _/xi dus(w)/%‘ dpe ()

= Cov(pe)ij

(11.9)

For the last assertion note that since F' is strictly convex, VF' is one-to-one. So, for any continuous function
g : R™ — R, changing variables y = VF(£) we get

(11.10) /v o S0 = / (VF(©) det(HessF)(€) d€ = | g(VF(©)) du(e).

R

This completes the proof of the proposition. O

Proof of Theorem m. Without loss of generality we may assume that K is centered and that Vol,, (K) =
1. We denote again by u = ux the Lebesgue measure restricted on K, and

dv(§) = det(Hess A, )(€) = det Cov (e )dE

as in Proposition m Using (11.7) with ¢ = 1 we get that
v(R") = / 1det(HessAy,) () d€ = / 1dx = Vol,(K) = 1.
n K
Thus, for every € > 0 we may write

Voly(en(K—K)°) min_det Cov(se) gg/ det Cov(jie) dé = v(en(K —K)°) < 1.
§€en(K-K)° en(K—K)°

By the Bourgain-Milman inequality we have Vol,,(en(K—K)°)'/™ ~ ¢. Therefore, there exists &, € en(K—K)°
such that

det C — min  detC < Vol (en(K —K)°) ! ()"
et Cov(pg,) =, min, det Cov(ue) < Volu(en(K—K)*) " ()

From the definition of ug, and of the isotropic constant we have that

5 (€0, \ &
_ [ SUPzek € " A
Lye, = ( T et da ) [det Cov(pg,)] 2"
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Since & € en(K—K)° and K U (—K) C K—K, we know that |[(§o, z)| < en for all x € K, therefore

sup elfo®) L e and sup eléo®) > g=en,
reK zeK

On the other hand, since K is centered, from Jensen’s inequality we have that
/ el€o®) dy > e(Jx(6oa) dz) _ 1
K

Combining the above we get
C2
NG

Finally, we note that the function fe, () = e{$®' 1 (x) (which is proportional to the density of pg,) is
obviously log-concave and satisfies

(11.11) L, <

Heg

sup ffo (.I) < e inf ffo (x)
zesupp(feg) zesupp(feg)

Therefore, applying Lemma we can find a centered convex body T, in R" such that

C2

LTED = Lf&o = L“Eo S %
and 1
2
eTETEO CK- bfo Ce ETEO
where b, is the barycenter of f¢,. Since €2° < 1+ ce when ¢ € (0,1), the result follows. O

12 Klartag’s upper bound for the isotropic constant

Using Theorem and Paouris’ distributional inequality, Klartag was also able to slightly improve Bour-
gain’s upper bound for the isotropic constant.

Theorem 12.1 (Klartag). Let K be a convex body in R™. Then
(12.1) Lk < Cv/n,
where C' > 0 is an absolute constant.

Theorem [12.3] will follow from Theorem [[1.1] and the next lemma.

Lemma 12.2. Let K,T be two convex bodies in R™ and t > 1. Suppose that

1
(12.2) - (T+y)§K+xg(1+

1+ L

n

=)@

for some x,y € R™. Then
LK < CtLTv

where ¢ > 0 is an absolute constant.
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Proof. We may assume that t < y/n, otherwise the conclusion of the lemma is trivial since by Proposition

and Proposition we have Lg < ¢y/n < ¢/\/nLy. Note that (12.2)) continues to hold (with possibly
different xz,y € R™) if we translate either K or T or if we apply an invertible linear transformation to both
of them, thus we may assume that T is in isotropic position. Then by Paouris’s inequality we have that

Vol, (T \ Ctv/nLrBy) < exp(—4ty/n)

for some absolute constant C' > 1. We set
K Pk
= ]_ 7) -,
and by ([12.2)) we have K7 C T, and hence
(12.3) Vol,, (K1 \ Cty/nLyBy) < exp(—4ty/n).
By (12.2)) we also see that

t —2n
—) Vol (T) > =27,

(12.4) Vol (K1) = (1 + NG

%)7"\/01”(1() > (1+

which combined with (12.3]) gives

Vol,, (K)

VOln(Kl N (Ct\/ﬁLTBgL)) > 9

Therefore the median of the Euclidean norm on K, with respect to the uniform measure on K, is not
larger than Cty/nLy. Since K7 is convex, and hence the uniform measure on K; is a log-concave probability
measure, using Theorem we obtain

1 1/2
12. — 2 < C'ty/nL
(12.5) (Voln(Kl) /K 2 dx) C'tvnlr,

for some absolute constant C’ > 0. Recall that by Theorem

1/2

1

VnLg = \/nLg, = min / x|? dx SeGL, y,
* * Vol (ST 2 Jsiaeoy ™ |

where K is the centered translate of K, that is,

KO = K1 — bar(Kl) = K1 xdx.

1
Vol (K,) /K

It is also not hard to check that

|bar(K1)[?

3o

1 1
72/ |$|2d9€=72/ 2 do — ————
Vol,,(Ko)'*tn Jk, Vol,, (K1) ™= Jk, Vol,, (K1)

1
S S
Voln(Kl)l—‘r; K1

and thus "
1 C'tynLy
Wl < | —————— | |2]?dz) < —YT <C"t/nL
\/‘ K (Voln(Kl)H_?" /Kl | ‘ ) VOln(K1)1/" T
by (12.4) and (12.5)). This proves the lemma. O
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Proof of Theorem Let K be a convex body in R". According to Theorem [I1.1] given ¢ € (0,1) we
can find a centered convex body T = T such that

Lt <

Sl

and

TCK+zC(1+e)T
(1+e) — < )

for some x = x. € R™. If we choose ¢ = ﬁ, Lemma shows that

C
Lk <cLr < “E= C'V/n,

which was the assertion of the theorem. O

13 Negative moments and small ball probability estimates

A parameter which was originally central in the work of Paouris is g.(u), which is defined for every centered
log-concave probability measure p in R™, as follows:

g+ (p) = max{q > 2 : k.(Z,(n)) = q}.
We shall need a lower bound for g.(u).

Proposition 13.1. There exists an absolute constant ¢ > 0 with the following property: if u is a centered
log-concave probability measure in R™ then

ax(p) = eVk(Z2(p)).

Proof. We set ¢, := g.(u). From Theorem[2.6](i), Lemma Hélder’s inequality and the simple observation
Ir(p) = w2(Z2(n)) we get

qx qx
(13.1) w(Zy, (1) = 1wy, (Zy, (1)) = c1an.q, 1/ mlq* (1) = cran.q, Iy ()

n + g«
s
=cian —_— VA .
Clng\[ oo Vnwa(Z())
In other words,

(13.2) w(Zg. (1) 2 c2v/qsw(Z2(p)).

Since R(Z,, (1)) < Cqi R(Z2()), using the definition of ¢, and Theorem [2.5 we write

w(Z,, (u))>2 2 o B W Zo() _ ka(Za(p)
R(Zy.(n)) ~ |

=cs5
This shows that g.(u) > ¢+v/k«(Z2(u)) for some absolute constant ¢ > 0. O

(13.3) 2qx 2 ku(Zq. (1)) 2 csn ( 022 R2(Zs(p)) s

Note that if p is isotropic then k.(Z2(u)) = n. Therefore, in the isotropic case we have:

Corollary 13.2. There exists an absolute constant ¢ > 0 with the following property: for every isotropic
log-concave probability measure p in R™,
¢ (1) = ev/n.
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If p is a centered log-concave probability measure in R”, we extend the definition of I,(u), allowing
negative values of ¢, in the obvious way: for every q € (—n,00), ¢ # 0, we define

L= ([ |x|%zu<x>)1/q.

The main result of this section is the next theorem.

Theorem 13.3 (Paouris). Let u be a centered log-concave probability measure in R™. For every integer
1 < k < qo(pt) we have

I () = T ().

In particular, this theorem shows that for every k < ¢.(u) we have I (u) < Clz(u), where C > 0 is an
absolute constant. This was precisely the assertion of Theorem [10.2]
The proof of Theorem is based on two identities:

(i) If f is a centered log-concave density on R™ and 1 < k < n is a positive integer, then
“1/k
(1.9 14(8) = en ( / wF<f><o>dun,k<F>> ,
G,k
where

NWy,

- (<—k>w)/ -

Proof. Let 1 < k < n. Then, we have
[ wrn @) = [
Gk G

-,

7 (£)(0) dum i (E) = /G /E F(y) dy v i (E)

n,n—=k n,n—=k

(n — k)wn_ / / ke F(r0) dr dog(0) dvn n_1(E)
Sg JO

n,n—=k

= (n= Rwns nwn/ / "R £ (r0) dr do(6)
NWn sn—1Jo

L Bk [ g g 0 Dt

Bt [ o (e do = Uk ),
It follows that vk

(n — k)wn—k 1/k
Iw(f)= 7r (f)(0) dvm i (F)
nwn Gn,k
ke 1/k

Check that ¢y, = ((:)#_k) ~ \/n. O

(if) If C is a symmetric convex body in R™ and 1 < k < n is a positive integer, then

(13.5) wk(C):\/E< /G Volk(PF(C))—ldyn,k(F)> N

Proof. Using the Blaschke-Santalé and the Bourgain-Milman inequality, we write

1/k 1/k
wi= ([ wege®) C- </G L. ||e\|’z;c)o do(O)dvn(F )>
/k

1’ 1/k
([ e L vesh
N </C;n,k \fohc(Bé)an’k(F)> - </Gn,k VOlk(kF’F(C))an,k(F)> )

and the result follows. O
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Now, consider a centered log-concave density f in R”, an integer 1 < k < n and some F € G,, ;. From

Theorem [0.4] we have )

Vol (Pr(Zk(f)))

Combining the two identities we get:

1k =~ WF(f)(O)l/k-

Theorem 13.4. Let f be a centered log-concave density in R™. For every integer 1 < k < n we have

1
k

w_k(Ze(f)) = VE ( /G w(f)(@dun,k(F))

n,k

and

n
(13.6) Lk(f) = [ L w-k(Zk(f))-
Proof of Theorem Recall that, for every 1 < k <n
(13.7) (1)) = v/ T ().
On the other hand, from (13.6) we see that

w_(Zi(p) = Vk/nI_k(p).
We set ko = [¢«], ¢« = ¢«(t). Then,

(13.8) ki(Zio (1)) = ki(Zg, (1)) = c1g = ciko.
From Theorem 2.10] we have
(13.9) 0 Zaa (1)) ~ i (Zao (1))

for every 1 < k < c2ku(Zy, (1)), and (13.8) shows that (13.9) holds for every k < c3q.(p). Setting ky =
lesqs(p)] = ko, and using the fact that Zy, (1) ~ Zk, (1), we get

(13.10) Wty (Ziy (1)) = Wiy (Zk, (1))
It is now clear that I_j, (1) ~ Iy, (1) and since k1 ~ g.(u) we see that g — I,(p) is “constant” in the range
1< |q| < egu(p). =

A useful consequence of Theorem [13.3]is the next small ball probability estimate:

Theorem 13.5. Let p be an isotropic log-concave probability measure on R™. Then, for every 0 < € < gg
we have

(13.11) p({z € R™ : |z] < ev/n}) < V™,
where gg, ¢ > 0 are absolute constants.

Proof. Let 1 < k < g«(u). We write

n({z € R : || < eh(i)}) < u({a < o] < creln(m)})

<
< (cre)k < 2,

for every 0 < e < ¢;2 and k < caq.(p). Since g, (1) > c3v/n, the result follows with ¢ = ¢ ¢ = cac3/2. O
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14 Reduction to the negative moments

In this section we describe the work of Dafnis and Paouris: they proved that a positive answer to the
hyperplane conjecture is equivalent to some very strong small probability estimates for the Euclidean norm
on isotropic convex bodies. Recall that, for —n < p < oo, p # 0,

)= ([ |xpdx)1/p

and, given any ¢ > 1, consider the parameter
(14.1) 4 o(K,C) = max{p > 1: L(K) < CI_y(K)}.

The results in this section imply that the hyperplane conjecture is equivalent to the following statement:

There exist absolute constants C,£ > 0 such that, for every isotropic convex body K in R"”,

q—C(K7 f) > Cn.

We already know that there exists a parameter ¢, := ¢.(K) (related to the L,-centroid bodies of K) with
the following properties:

L gu(K) > ey,
2. q_¢(K,&) > g«(K) for some absolute constant & > 1, and hence, I2(K) < §ol_,, (K).
What is not clear is the behavior of I_,(K) when p lies in the interval [g., n].

The main idea of Dafnis and Paouris is to start with an “extremal” isotropic convex body K in R™ with
maximal isotropic constant Lx =~ L, which is at the same time in a-regular M-position. Their starting
point, which has a rather technical proof, is the following precise statement.

Theorem 14.1 (Dafnis-Paouris). There exist absolute constants k,7 > 1 and § > 0 such that, for every
a € [1,2), we can find an isotropic convex body K, in R™ with the following properties:

(1) LKQ 2 5Ln;
(ii) for every t > 7(2 —a)=3/2
KN

: a 3) S o 5aa-
(14.2) log N(K,,t\/nBY) e o)t

Then, they try taking advantage of the fact that small ball probability estimates are closely related to
estimates for covering numbers. The key lemma is the following.
Lemma 14.2. Let K be a centered convex body of volume 1 in R™. Assume that, for some s > 0,
(14.3) rs :=log N(K, sBy) < n.

Then,
I, (K) < 3es.

Proof. Let zp € R™ be such that Vol,, (K N (—zp + sBY)) = Vol,,(K N (z + sBY)) for every z € R™. It follows
that

(14.4) Vol,,((K + z9) NsBy) - N(K, sBj) > Vol,,(K) = 1.
Let ¢ = rs. Then, using Markov’s inequality, the definition of I_ (K + 2) and (14.3), we get

- n — — —Ts 1
Vol (K +20) 37 Ly (K + 20)Bf) €370 < 70 = ¢ < .
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From (|14.4) we obtain
Vol,, (K + 20) N 37y (K + 20) BY) < Vol,, (K + z9) N sBY),

and this implies
37 (K + 20) < s.

Since K is centered, we get that I_j (K +2) > 1I_;(K) for any 1 < k < n and z € R". To see this, we write

—1/k
I_ (K +2)=cng (/ Vol,,_ k(K + 2) N FL) dvmk(F)>
G,k

“1/k
> fuk (/ Vol (K N FL) dunyk(F)> 1w
e Gn,k e

This proves the lemma. O

We can now prove the main theorem.

Theorem 14.3 (Dafnis-Paouris). Assume that q_.(K,¢) = fn for some ¢ > 1, some 8 € (0,1) and every
isotropic convex body K in R™. Then,

(14.5) L, < \C/% IOgQ(%),

where C' > 0 is an absolute constant.

Proof. Set o := 2 —log(e/B)~! and with this o apply Theorem to find an isotropic convex body K,
which satisfies its conclusion: for some absolute constants x,7 > 1 and § > 0 it holds that Lg_ > §L,, and

RN

log N(Kmt\/ﬁBg) < m

for all ¢t > Tlog3/2<%>.

We may clearly assume that 72 < ex as well. We choose

ty = (6"6)”“%105 (%)

then t& = ex(2—a)~2%(y/B)~ and, since T < v/er < (ex)Y®, we have that t; > 7(2—a)~3/2 = 71og®?(e/3).

Therefore,
KN 1

< 7(\/5)04” < Bn7

—log N(K,,t;v/nBl) < — 0«
1 0g ( 1\/5 2) (2—0[)20‘15(11 e

and hence by Lemma [14.2] we obtain that
I, (Kq) < 3etiv/n.
On the other hand, since 1 < fn and since ¢_.(K4, () = fn, we have that
VL, = L(Ka) < ¢y, (Kay).

It follows that

2
Lic, < 3ects = 3ec(en)'/* T log? (5) < 228108 ().

Since Lk, > dL,, the result follows. O
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Remark 14.4. Since q_.(K,&) > ¢.(K) = ¢y/n for some absolute constants §y > 1 and ¢ > 0, we may
apply Theorem with ¢ = & and 8 = ¢//n to get

(14.6) L, < f’/%{‘/ﬁlogzc\gﬁ) < C1/n(logn)?,

where C7 > 0 is an absolute constant.

In the opposite direction, one can show that if the hyperplane conjecture is correct then there are absolute
constants o,& > 0 such that, for every isotropic convex body K in R™, one has ¢_.(K,£) > on. This is an
immediate consequence of the next theorem.

Theorem 14.5 (Dafnis-Paouris). There exists an absolute constant C > 0 such that, for every n and for

every isotropic convexr body K in R"™,
_(K,CL,) >2n—1.

Proof. We start with the formula
—1/s
(14.7) I_((K)~+/n </ Vol,,_ (K NF*) dyn,s(F)> )
Gn,s
Recall from Proposition [0.5] that
Vol,,_ (K N FL)Ys ~ M ) |

Lk
for every F' € G, .. Thus, we get

Li S
[ J(K) ~ Jn (/G < Ks+£(KﬂF(f))) dl/n,s(F)>
Ly— s L.\*®
s+1(mr(f)) s
— 2 ) dy,s(F) < .
/G( Lk ) () (LK>

because it is known that L, < c3L,, for all integers s < n — 1. Since Io(K) = y/nLk, we get

—1/s

Now,

Therefore,

q-o(K,8) :=max{p > 1: I1(K) < cy ' L,]_,(K)} >n— 1.

This is the claim of the theorem. O

15 A variant of Bourgain’s argument and one more reduction

Let K be a centered convex body of volume 1 in R™. We consider the parameter

L(K,Z)(K / {2z, (x)d

Generally, if K is a centered convex body of volume 1 in R”, then for every symmetric convex body C' in
R™ and for every g € (—n, ), ¢ # 0, we define

o= ([ i dx)l/q
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The notation I (K, Z7(K)) is then justified by the fact that [[(-, 2)| L, (x) is the norm induced on R™ by the
polar body Z; (K) of the L,-centroid body of K.

The purpose of this section is to describe a work of Giannopoulos, Paouris and Vritsiou which reduces
the hyperplane conjecture to the study of the parameter I,(K, Z7(K)) when K belongs to the following
subclass of isotropic convex bodies. We start with a definition which formalizes Theorem [I4.1] from the
previous section.

Definition 15.1. Let x,7 > 0. We say that an isotropic convex body K in R" is (k, 7)-regular if

kn?log'n

log N(K, tB}) < == for all t > 7v/nlog®?n.

Applying Theorem with o = 2 — (logn)~!, we see that there are absolute constants x,7 > 1 and
d > 0 such that, for every n € N, there exist (k, 7)-regular isotropic convex bodies with maximal isotropic
constant. More precisely, we start with the next fact.

Theorem 15.2. For everyn € N we can find an isotropic convex body K in R™ with the following properties:
(i) Lk = 6Ly,
(i) log N(K,tB}) < kn2log*n/t? for all t > 7/nlog*?n,
where k = 72 > 1 and § > 0 are absolute constants.
The main result of this section is the next reduction of the slicing problem.

Theorem 15.3 (Giannopoulos-Paouris-Vritsiou). There exists an absolute constant p € (0,1) with the
following property. Given k > 7% > 1, for every n = no(7) and every (k,T)-regular isotropic convex body K
in R™ we have: if

(15.1) 2<q<p*nand (K, Z,(K)) < pnL%,

IL(K,Z2 (K
L%( < C’ﬁ\/ﬁlog‘ln max{l,l(qg))},
q VanLiy

then

where C' > 0 is an absolute constant.
Observe that, for every isotropic convex body K in R", we have that
L(K, Z3(K)) < VL% < pnL

if n is sufficiently large. From Theorem we know that, for some absolute constants x > 72 > 1 and
d > 0, there exists a (k, 7)-regular isotropic convex body K in R"™ with Lg > §L,,. Therefore, Theoremm
gives

(15.2) L% < Cyy/nloghn,

which already leads to the bound L, < Cs \4/ﬁlog2 n for L,.
However, the behavior of I (K, Z7(K)) may allow us to use much larger values of ¢. For every isotropic
convex body K in R™ one can prove some simple general estimates:

(i) For every 2 < ¢ < n,
o1 max {v/iL%, ai, R(Zy(K) L} < L(K, Z(K)) < caqv/nL%.
(i) If 2 < ¢ < y/n, then

¢y max {\/nL¥, /qnLk } < (K, Z;(K)) < caqv/nLi.
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Any improvement of the exponent of g in the upper bound I1(K, ZJ(K)) < cqv/nL3% would lead to an
estimate L, < Cn® with o < 1. It seems plausible that one could even have I; (K, Z2(K)) < ey/qnLi, at
least when ¢ is small, say 2 < ¢ < y/n. Some evidence is given by the following facts:

iii) If K is an unconditional isotropic convex body in R™, then
1% y s

c1v/qn < L1(K, Z](K)) < ca\/qnlogn

forall 2 < g < n.

(iv) If K is an isotropic convex body in R™ then, for every 2 < ¢ < /n, there exists a set A; C O(n) with
v(Ag) = 1—e % such that I, (K, Z2(U(K))) < cs\/qn L for all U € A,.

For the proof of Theorem we need two auxiliary results. The first one provides an estimate for the
Lg-norm of the maximum of IV linear functionals on K.

Lemma 15.4. Let K be a convex body of volume 1 in R™, and consider any points 21, z2,...,zy € R™. If
g > 1 and p > max{logN, q}, then

1/q
(15.3) (/ max _|(z, z;)|? dx> < By max hyz (x)(z),
K

1<i<N 1<i<N

where B, > 0 is an absolute constant.

Proof. Let p > max{logN, ¢} and § € S"~!. Markov’s inequality shows that
Vol ({o € K : [(2,0)) > €*hz, (1) (0)}) < e,

Since x — |(z, )| is a seminorm, from Borell’s lemma we get that

t+1
—3p 2
Vol (o € K [(0,0)) > Stz 00)) < (1 - ) (1505 ) <o
—e
for every t > 1. We set S := e3 Jax, hz,(k)(z:). Then, for every ¢ > 1 we have that

N
: ) = e’ )}) < Ne P,
Vol,,({z € K 121%)5\/ l{z,z;)| = St}) < Z e K:|(x,z)| >e tth(K)(zz)}) Ne

It follows that

1<i<KN

_ - q—1 >
/ 1I<nlf£§\[| x, zi)|tdr = q/o s Vol,,({z € K : max [(x,z;)]| = s})ds
< ST+ q/ 577 'Vol,({z € K : max, [(z,2z;)| = s})ds
s

N

=94 (1 +q/ootq*1V01 ({z € K: max |(z,2)| > St})dt)

1<i<N
1+qN/ 9~ 1eptdt>

<o
oot e
o (it

< (35)1,
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where we have also used the fact that, for every p > ¢ > 1,
oo
/ 1 letdt < e Ppi.
P

This finishes the proof (with 3, = 3e3). O

The second lemma concerns the Lg-centroid bodies of subsets of K.

Lemma 15.5. Let K be a convex body of volume 1 in R™ and let 1 < q,r < n. There exists an absolute
constant By > 0 such that if A is a convex subset of K with Vol, (A) > 1 — e P29, then

(15.4) Zy(K) C2Z,(A)

for all 1 < p < q. For the opposite inclusion, if Vol,(A) = 27% then
(15.5) Zy(A) C2Z,(K)
forallr <p < n.

Proof. Let §# € S"~1. Note that

e ® = ( [ <x,e>|de)1/p=W (f |<x,0>|pdx>1/p.

We first prove ((15.5)): since A C K and assuming that Vol,(A) > 27%, we have

1/p 1/p L r
a0 = ([ 1wora) > ([ wora) > ([ wara) > 5, w0

for all » < p < m. On the other hand, assuming that Vol,(A4) > 1 — e=P2a and using the fact that
[1{-,0)]l2p < |l{-,0)]||, for some absolute constant ¢ > 0, we have

Jwora= [ (wopas [ e opa
< Vol (4)' 5 /Z|<:B79>|pdx+Voln(K\A)1/2 (/K |<w,9>|2pdx) 2

< L (2, 0)[Pda + ¢~ Paa/2cP / (2, 0)Pda
A K

< / (. 0)Pdz + 2 / \(z,0)Pdx
Y 2 Jk

for every 1 < p < q, if B, > 0 is chosen large enough. This proves (15.4). O

Proof of Theorem Let x > 72 > 1 and consider a (k,7)-regular isotropic convex body K in R".
Assume that the conditions (15.1)) are also satisfied. We define a convex body W in R”, setting

W = {:L’ e K: th(K)(x) g Cljl(Ka Z;(K))}’

where C; = €22 and By > 0 is the constant which was defined in Lemma m From Markov’s inequality
we have that Vol, (W) > 1 — e~2%2 and also trivially that Vol,(W) > £ > 27%/2 (as long as B, > 1). Then
we set

K1 = W
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Applying both cases of Lemma to the set W with p = 2, we see that
1
§Z2(K1) C Z5(K) C 2Z5(Ky).

This implies that
1

1
. 7/ <z,9>2dx</ <x,0>2dz<4/ (z,0)%dr = AL3,
4 4 K K1 K

for every 6 € S"~!, and hence,

L2
z Z/ z,e;) da::/ |z|?dx < 4nL3;.
K K

We also have
K, = Vol,(W)™ "W C 2W C 2K,

thus for every x € K7 we have ©/2 € W and, using (15.5) of Lemma m (with p = q) we write
(156) th(Kl)(m) < 2hzq(K)(iC) = 4th(K)(x/2) < 401]1(K, Z;(K))
Finally,

16Kn? log4 n

log N(K1,tBY) <log N(2K1,tBY) <log N(4K,tBY) < e ,

for all t > 47\/nlog®? n. We write

nL3 < 4/ |lz|?dr < 4 max |{(z, z}| dz.
K, K1 z€ K,

Observe now that for every ¢ > 47+/nlog®?n we can find z1, . . ., zy, € K1, with |N;| < exp(16xn2 log* n/t2),
Ny
such that K7 C | (z; + tBY). It follows that

i=1

< = .
max (@ 5) < ma |(@2)] + max |(@u)] = max |(e,2)] + tal,

and hence

(15.7) nL?% < / max_ [(x zl>|dx+4t/ |z] dx < / max |(x, z;)|dz + 8t\/nLk.
K1

1<K N 1<i< N

Recall also that by Borell’s lemma we can find absolute constants £, 82 > 0 so that
(15.8) Z,(K) C p1gZ:1(K) and Z,(K) C ﬁQ%Zp(K)
for all 1 < p < g. We choose

log* n,

L(K,Z2(K 3/2
—64C2/<;max{1, 1 a ))}n

VanLi Vi
where Cy = 160, 313, with 3, the constant from Lemma With this choice of tg, we have

(15.9) 2> 64C’2n\/§nlog4n >
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and

L(K, Z,(K))

nlog*n.
qL

(15.10) t2 > 6404k

From ([15.9) it is clear that

n log4 n

t§ = 64Cak > 167’2nlog3 n,

provided that n > ng(, p), so the above argument, leading up to (15.7)), holds with ¢ = t,. We also set pgy :=

%. Observe that py > ¢: since ¢ is such that I, (K, Zg(K)) < pnL3., we have max {1, %} <

pv/n/q, and hence
2] 4
t% < 6402pr.
But then, if we choose p < 1/(4C5), we have

16Kn2 log4n S 16f$n2q10g4n . q
2 ~ 64Cskpn2login  4Cap

Po = =q

as claimed. Therefore, using Lemma with ¢’ = 1, we can write

d h ; — h i).
/Kl 1<I§1§J>§to|<x,zz>| r< By 1<I?<axt0 Zp (K1) (21) < 5151 . 1<I?<aNt0 2,0k (%)

Combining the above with (15.7)), (15.6) and the definition of Cy, we get

(15.11) nL% < Cg—[l(KZO( )) + 8tov/nL.

Also, from ([15.10) and the definition of py, we have

16Cok 11 (K, Z2(K))

qt}

1
02%011(1(, 72(K)) = n’log'n < {nlk.

Therefore, (15.11)) gives
TLLK Cstov/nL.

II(K7Z;(K))} n. o4
Vanlk

as claimed. O

This shows that )
t

L%( < 0422 = Ckmax {1,
n

16 Volume of the centroid bodies and the isotropic constant

Klartag and E. Milman further exploited the logarithmic Laplace transform to obtain additional information
on the L4-centroid bodies of an isotropic log-concave probability measure y in R™ and an alternative proof
of the bound L, = O(y/n). Recall that the logarithmic Laplace transform of a Borel probability measure

on R" is defined by
2,0 =tog ([ lauo)).

It is easily checked that A, is convex and A, (0) = 0. If bar(y) = 0 then Jensen’s inequality shows that

M) =tog ([ elau@) > [ (€.)dnte) =0

for all &; therefore, A, is a non-negative function. Further properties of A, in the log-concave case are
described in the next proposition.
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Proposition 16.1. Let p be an n-dimensional log-concave probability measure. The set A(p) = {A,, < oo}
is open and A, is C* and strictly convex on A(w). Moreover, for everyt >0 and o > 1,

1
(16.1) E{A” <ath C{A, <t} C{A, < at}.
Definition 16.2. For every p > 0 we define

Ap(p) = {Au <p} N (={Au <p}).

The level sets Ap(p) of A, can be expressed in terms of the Lg-centroid bodies of y; it is not hard to
check the following.

Proposition 16.3. Let u be a log-concave probability measure with bar(u) = 0. For every p > 1,
Ap(p) ~ pZp(p)°.

Lemma 16.4. Let p be a log-concave probability measure with bar(u) = 0. For every q,r > 0,
1 o
VA, (00 <)) € (g, <)

Proof. Let « € ${A,, < ¢}. Then, A,(2z) < ¢. For every z € {A,, < r} we may write

z

(V). 2 ) < (@) + (Thu(a), 2 ) <Ay (5 2) <

Au22) £ ML) _ gt
2 o2
using the fact that A,(z) > 0 and the convexity of A,. Since
(VAu(2),2) <q+r
for every z € {A, < r} we see that VA, (z) € (¢+r){A, < 7r}°. O

Corollary 16.5. Let p be a log-concave probability measure with bar(u) = 0. For every p > 0,

v (3000 ) € 200,

Proof. We apply Lemma [16.4 with ¢ = r = p. We have
1 1 o o
VA, (QAP(N)> C VA, (Q{Au < p}) C 2p{A, <p}° C2pAp(n)°,

because {A, < p} D Ay(p) implies that {A, < p}° C Ap(p)°. O

Definition 16.6. For every p > 0 we define

1/n
1

v, = 7/ det Hess (A,)(x) dx .

' (VOln(éAp(#)) 1A, () )

Proposition 16.7. For every p > 0,

1
Vol,, (A 1/"<c\/5.
o ( P(/’L)) n \/E

o1



Proof. Using Corollary and the change of variables = VA, (y), we write
1
Vo (2, (0°) > Vol, (V8 (54,00) ) = [ detttess (4,
%AP(“‘)

1 n

In other words,

Vol, (A (1)) /" > %V01n<Ap<u>>l/".

From the Blaschke-Santalé inequality we have

1
ln A o\1/n < E —_—
Vol,, (A (11)°) n Vol (A (1)) /7

and hence,
C?p 1
Vol, (A 2 22—
ol () < S o
where C? = 4c. O
Let p be a log-concave probability measure on R™ with density p. For every £ € A(u) = {A, < oo} we

set
1

pela) = -pla)els,
Zg
where Z¢ > 0 is chosen so that ps becomes a probability density. Next, we set

1
be = Z / xp(x)els da

and we define a probability measure je with density

1 .
—p(z + bg)e@y»b-i-b{)_
Zg

Lemma 16.8. We have
be = VA,(§) and Cov(ue) = Hess (A,)(£).

Proof. Both equalities follow from simple calculations: just observe that since the log-concave density
0 . . . . .
p(x)el€*) decays exponentially for every €0 € A(u), we can differentiate twice under the integral sign. O

Theorem 16.9 (Klartag-E. Milman). Let o be a log-concave probability measure on R™ with bar(u) = 0.
For every 1 <p < n,

Vol (Z, (1))t ~ Pt det Cov(u .ol
P n 3

56%/\?(#)

Proof of the lower bound. We combine Propositions and We have

1/n < p 1
Vol,, (Ap(p)) '™ < C\/; T,

Ap(p) =~ pZy(1)°.

and
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Therefore, by the reverse Santald inequality,

Vol (Z,, ()™ > “ > c2p SO :;\/5 7
ol (Zp (1)) Vol (Z,(1)°)1/™ = Vol (A, (1) 17" B\ pV P TV

_CB; et Hess
: 3VC%<\®M(§AAu»uéAﬁﬂyitH <Auxew%>

203\/3 inf  [det Hess (Au)(ﬁ)]ﬁ
n

E€5 8, (1)

p . L
=c3¢/= inf [det Cov(uge)]2".
3\/;£€é/\p(ﬂ)[ ¢ ]

For the proof of the upper bound we need the following.

Proposition 16.10. Let p be a log-concave probability measure on R™ with bar(u) = 0. For every £ €
305 (1)
2 Ap\H);

(16.2) Zp(pe) = Zp(p)-

Proof. From Proposition , it is enough to show that, for every £ € %Ap(u),

Ap(pe) ~ Ap(p).
We first observe that
(163) A,ug (Z) = A,u(z + 5) - A,u(g) - <Za VA#(E»

To see this, first note that
log Z¢ = log | _pla)el®)do = 8,(¢)
Rn

and
(2,b¢) = (2, VAL(S))-

Then, write

1 Z,1 1
Ay (2) = log (/ Ze<z’y>ps(y)dy) = log (/ ef ’”e“”*b“p(yws)dy) —log Z¢

= log (/n e~ (Bl elmutbe) oEuthe) p(y 4 bg)dy) — Au(€)
= —(2,b¢) +log (/R eFHEuthel ply + bg)dy) —Au(8)
= —(2,bg) + Mpu(z + &) — Au(§).
Claim. Let D,p > 0. If A,(2y) < Dp and z € Ap(p), then
Au(z/2+y) = Muly) — (2/2, VAL(y)) < (D + 1)p.
Proof of the Claim. We apply Lemmawith g = Dp and r = p. We have A,(2y) < Dp and A,(—z) < p.

Therefore,
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Then,

Au(z/2+y) = Muly) = (2/2, VAL(Y) < Au(2/2 +y) + w
< M@+ 8,2y (D+Dp

= 2 2

< (D +1)p.

We can now continue the proof of Proposition [16.10

(i) Assume that z € A,(u). Note that A, (2¢) < p because £ € 1A, (k). The claim (with D =1 and y = &)
combined with ([16.3)) shows that

Ape(2/2) = Mpu(2/2 4+ &) = Au(€) — (2/2, VAL(E)) < 2p.

From Proposition it follows that A, (2/4) < p. By symmetry, the same argument applies to —z, and
hence z € 4A,(pe). In other words,

Ap(h) 40, (pe):
(ii) Assume that z € A,(ue). From we know that
Ape(=26) = A (=€) = Au(&) + 2(6, VAL(E))-
Note that

Ap(=26) +A,0) _p+0 p
Au(=) <=5 5 < 5 T35

and similarly A,(§) < §. From Lemma we have

)

3p

(€ VA < .

Since A, (€) > 0 we conclude that
A (—26) < %p.
Since (p¢)—¢ = p, we may apply the argument from (i), using that A, (—2¢) < Dp for D = 2. We write
Au(2/2) = Mug(2/2 = €) = e (=€) + (~2/2, VA, (<€),

Using the facts that A, (2/2 — &) < (A (2) + Ao (—26)) < 2, A (=€) > 0 and (—2/2, VA, (—€)) < 2
(by a last application of Lemma for the pair —z, —¢) we see that A,(z/2) < 9p/2, which shows that
A, (2/9) < p. Using the same argument for —z we finally conclude that

Ap(pe) € 9AL (1),

and the result follows. O

We will also use the known upper bound for Vol,, (Z,(u))"/":

Fact 16.11. Let v be a log-concave probability measure on R™ with bar(v) = 0. For every 2 < p < n,

Vol (Z,(v))Y™ < C\/pVol, (Za(v)) /™.

Proof of the upper bound. Since
[det Cov(pe)]27 ~ v/nVol, (Za ()™,
applying Fact [16.11] we get

inf voln(zp(ug))l/"gc\/F inf  [det Cov(pe)]?w.

I D) N ¢eA,(p)
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From Proposition [16.10| we know that Z,(u¢) ~ Z,(u) for all £ € $A,(u). It follows that
Vol,,(Z, 1/n < C\/E inf [det Cov 2
(Zy(1) b nf et Covlg)
This completes the proof of Theorem [16.9 O

An immediate consequence of Theorem [16.9]is the following.

Theorem 16.12 (Klartag-E. Milman). Let u be a log-concave probability on R™ with bar(u) = 0. For every
I<p<qgsmn,
Vol (Zy ()™ CVoln(Zq(#))l/”

VP - Vi

where ¢ > 0 is an absolute constant.

Proof. Since A,(1) C Ag(p), we have

inf [det Cov(u 2 > inf [det Cov(u 2,
geéAP(#)[ (e)] £€%Aq(#)[ ()]

Then, we apply the formula of Theorem [16.9 a

Remark 16.13. Another consequence of Theorem is that if g € A, (p) is such that

[det Cov(ugm)]i ~ inf [det Cov(,ux)]i,
IG%AP(#)

then, using (16.2)) as well, we get that

Vol (Zp(fiay )™ = \/g [det Cov(,umo)]ﬁ_

Naturally, the aim is to show a similar equivalence for the corresponding quantities of the measure p instead
of those of z,. To accomplish this, we need to be able to prove that

1 1 1
(16.4) inf [det Cov(p,)]2" > —[det Cov(u)]2=
IE%AP(#) 0

for as small a constant v > 1 and for as large an interval of p € [1, n| as possible. Observe that if we establish
(116.4) for some p and v > 1, then we have by Theorem that

Vol (Zy()! " > £/ fdet Covl)

v
and hence, by the definition of L, and by Theorem we can conclude that

1 det Cov(y)] 2z [det Cov(y)]2a n

16.5 L,= Unidet Cov(u)] < ¢ [ <d <d'y =,

where ¢ > 0, ¢’ and ¢” are absolute constants (independent of the measure p, the dimension n, or p and 7).

Klartag and E. Milman defined a hereditary parameter qﬁH () for isotropic measures p, and gave a lower
bound of the correct order for the volume radius of Z,(u) for every p up to that parameter. We shall work
with a different parameter, introduced afterwards by Vritsiou.
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Definition 16.14. Let p be an isotropic log-concave measure in R™. For any v > 1, we define
(16.6) ry(p,y) =max{l <k <n-1:3F € Gy such that L., <~}

In other words, r4(,) is the largest dimension < n — 1 in which we can find at least one marginal of u
that has isotropic constant bounded above by ~; as a convention, when pu is an 1-dimensional measure, we
set 74(p,y) = 1 for every 7. Next, we define a “hereditary” variant of r4(u,~) which controls the behavior
of all marginals of p1 with respect to ry(-,7): set

H s . ’rﬁ(ﬂ'E//fa’Y)
(16.7) e (1, 7y) = nlr’if Eelrclv‘ik —

A modification of the method of Klartag and E. Milman establishes the lower bound Vol,,(Z,(u))*/™ >

ey~ ty/p/n for all p < ry(p, 7). Also, both g4(n) and ¢.(u) are dominated by 74(u, v0) for some absolute
constant g > 1. Thus, the next theorem extends the result of Klartag and E. Milman.

Theorem 16.15 (Klartag-E. Milman, Vritsiou). Let u be an isotropic log-concave measure in R™ and let
~ = 1. Then, for every p € [1,rf(u,7)], we have that

7 1/”20\/5
ARG

In Remark [16.13 we explained that what we have to show is that

where ¢ > 0 is an absolute constant.

C/

[det Cov (y,)] 7 > >

for every € 1A,(p). The reason for introducing the hereditary parameter rf (1,7) is that in order to
compare det Cov(pu,) with det Cov(p) we need to compare the corresponding eigenvalues of each covariance
matrix, taken in increasing order, one pair at a time; this requires that we have control over ry(mgp, ) of
several marginals of y of different dimensions.

In what follows, we denote the eigenvalues of Cov(ug) by Af < A3 < --- < AZ, and we write Ej, for the

n’

k-dimensional subspace which is spanned by eigenvectors corresponding to the first k eigenvalues of Cov ().

Lemma 16.16. For every two integers 1 < s < k < n we have that

(16.8) VM = sup Vol (Zs(nppus))?,
FeGE,,s

where ¢; > 0 is an absolute constant.

Proof. Note that

(16.9) 3 = g [ (0 () = s [ (2202 dmena(o).

This is because, for every subspace F' of Ej and every § € Sp C Sg,, we have that

[0 dree) = [ 02 dato) = [ (2007 s, ),

while A7 is the largest eigenvalue of Cov(mg, its).
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On the other hand, since p, is a centered, log-concave probability measure, which means that so are its
s-dimensional marginals 7gu,, we get from Theorem that

1 _[det Cov(mppiy)]?

(16.10) Vol,, (Zs(mppig))t® ~ - =
I fr e 15 e,

Since L, > c for any isotropic measure v, for some absolute constant ¢ > 0, it follows that

Vol,, (Zs(nppe))t® < ¢[det Cov(mp )] 217 <d Imax \// (2,0)? drp g (2)

for every F' € G, s, which combined with (16.9) gives us 0

To bound the right-hand side of by an expression that involves det Cov(u), we have to compare
the volume of Zy(mppu,) to that of Zs(mppu) (we are able to do that because of Proposition [16.10]). Recall
that for some fixed = € %Ap(/i) and every integer k < n, we denote by Fj the k-dimensional subspace which
is spanned by eigenvectors corresponding to the first k eigenvalues of Cov(u, ). For convenience, we also set
s§ = ry(mg, 1, 7y). The right choice of s is prompted by the following lemma.

Lemma 16.17. We have

sup  Volyg (Zug (mpp)) /%% > 2 [det Cov(p)] 7 = 2,
FEGp, o v v
where co > 0 is an absolute constant.
Proof. As in (16.10]), we can write
_1
) _ co[det Cov(mpp)]**

Volgz (Zsz (WFM))I/Sk > /s
e o157 Laru

for some absolute constant ¢y > 0 and for every F € G B2+ Since p is isotropic, we have

[det Cov(mpun)] /) = [det Cov ()] /") = 1.

Moreover, by the definition of sf = ry(wg, 1, 7), there is at least one sj-dimensional subspace of Ej, say
Fy, such that the marginal 7g, (7g, 1) = 7p, p has isotropic constant bounded above by 7. Combining all of
these, we get

sup  Volgs (Zss (mpu))Y/ % > Volgr (Zsz (T )5k > e
FEGE, o7 v

as required. O

In order to compare Zsy (mpps) and Zse (mpp) for every F' € G, 57, we have two cases to consider:
(i) If p < sf = ry(mE,p,7), then by Proposition [16.10| (and the fact that z € 1A, (x) C §Asg( )) we have

that Zsr (1) ~ Zsz (1), and therefore for every F' € G, 57,
Zs (Tppa) = Pp(Zss (0e)) ~ Pr(Zs: () = Zsg (wpp)

as well.

(ii) If s§ < p, then we can write

X xT x

S S S
Zsz (TR pa) 2 CO;kZp('/TF/Jm) 2 C/O;kZp(ﬂ_Fﬂ') 2 Céﬁzsi (TP
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for some absolute constants cg, ¢; > 0. We also recall that since

TMWEwa

H . . n
Tﬁ(MaV)"nJ%f inf L g‘ETMWEk“77%

EcGy i

it holds that si/p = ry(me, 1, v)/p = k/n.

To summarize the above, we see that in any case and for every F' € G, sz,

. ST k
(16.11) Zsz (mppe) 2 co mm{l, ;k}Zsz (rpp) 2 cgﬁZsi(ﬂ'pu),

where ¢/ > 0 is a small enough absolute constant. We now have everything we need to bound Vol,,(Z, (12))'/™
from below.

Proof of Theorem [16.15| m Combining Lemmas |1 and [16.17] m with (| m, we see that for every p €
(1,7 A (u,7)] and for every x € $A,(p),

[det Cov(p,)]"/? = H VAR > H _ < n!

oyt n
If we take n-th roots, the theorem then follows from Theorem [16.9 O

We will now show that rf is equivalent to a hereditary variant of the parameter g_.(u, d) of Dafnis and
Paouris. Recall that for every § > 1 and every isotropic log-concave measure p, we write

@el0) = max{l < p <=1 L) > 07 Da() = 671,
Now, set

. . - 8)]
H §) = f f \_q C(ﬂ—E:uﬂ )
q=(p,0) :=nin A —

Then, the following theorem comparing Tﬁ and ¢, holds.

Theorem 16.18. There exist absolute constants C1,Co > 0 such that for every isotropic measure y on R™
and every v > 1,

(16.12) i (1, 7y) < @2 (1, C1y) < rff (1, Coy).
Note that by Theorem [16.15| and Remark [16.13| we get:

Theorem 16.19. Let pu be an isotropic log-concave measure in R™. Then,

n n
(16.13) L,<Cy |—<Cy |———o
' g () o, (1 G)

for every v = Co/Cy.

Since ¢, (11, &) = ey/n for an absolute constant &y, from Theorem [16.19{ we get (at least) once again the
bound L, < C/n.
For the proof of Theorem [16.18 we need the following consequence of Theorem [16.15

Lemma 16.20. There exists a positive absolute constant C1 such that, for every n-dimensional isotropic
measure p and every vy > 1,

i (1,7) < a-c(p, C17)].
In other words, for every p < [rﬁ (1,7)] we have that
1

Iyl > GTali) = GV
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Proof. Set p, := rf(ﬂ,w) and observe that

/
Vol (Zp.1 ()™ > Vol (Z,. ()" > S/ 122l

By Holder’s and Santald’s inequalities, this gives us that

Vol (Zpp ()™ ¢
W_1p1 (Z1p,1 (1) 2 won(Z1p,1 (1) > Cﬂ/n >~

[p'y] .

Since rﬁH (1,7) < 74(p,7) < n—1 by definition, we have [p,] <n—1, and thus we can use (13.6) to conclude
that

Ly, () 2 Cw\f

for some absolute constant C7 > 0. This completes the proof. a

Proof of Theorem [16.18, For the left-hand side inequality of (16.12)) we apply Lemma |16.20| for every
marginal mgu of u; we get that

i (mpp,7) < lg-c(tBp, C17)].

In addition, we observe that

f(/%fy) = ninf inf M <n inf inf TH(T"F/%'Y) _n

H
= = Ty \TE
k FEGn i k s<dimE FeGp., s dimE * (mop7),

which means that for every integer &, for every subspace £ € G, 1,

Lq*C(TrE/J’v Cl’Y)J )

>3

n
ry () < 7 ri' (i) <

or equivalently that rf(p, v) < ¢%. (11, C17).
For the other inequality of (16.12)) we recall the formula

—1/k
I p(p) ~ (/ fTrEH )dynk( )) %12(,“):%17 n,

namely if & < [g—.(u, C17)], then there must exist at least one E € G, such that fr,,.(0) < (C(7)* for
some absolute constant Cf (depending only on C7). Since wgpu is isotropic, we have

Lrpu = ||f7rEMH<1>ék X e(fm;u( ))l/k < Cyy.

WV

This means that
r4(1, C2v) 2 [g—c(p: C17)],

and the same will hold for every marginal 7pu of p. The inequality now follows from the definitions of
ri! (1, C2v) and ¢, (p, C1v). o

17 E. Milman’s bound for the mean width

In this section we describe E. Milman’s almost sharp estimate for the mean width of an isotropic convex
body in R™. In fact, the next theorem gives sharp bounds for the mean width w(Z,(K)) of the L,-centroid
bodies Z,(K) of K.
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Theorem 17.1 (E. Milman). Let K be an isotropic convex body in R™. Then,
(17.1) w(K) < Cyv/n(logn)*Ly,
and for every q = 1 we have

(17.2) w(Zy(K)) <Clog(1+q)max{qbg\(r1n—i_q),\/§} Lk,

where C' > 0 is an absolute constant.

The starting point of E. Milman is the idea to use Dudley-type estimates. Recall that the covering
number N(K,T) of K by T is the least number of translates of T" whose union covers K. For every k > 1
we set

(17.3) ex(K,T) :=inf{s > 0: N(K,sT) < 2*}.

In particular, the k-th entropy number of K is ex(K) := er(K, BY). Dudley’s bound for the mean width
takes the following form: if K is a symmetric convex body in R™, then

1
(17.4) Viw(K) < e ) —=er(K, By),

where ¢; > 0 is an absolute constant. If K is an isotropic convex body in R™ then one can check in an
“elementary” way that

3/2L
(17.5) log N (K, sB}) < Oy =K
s
for every s > 0. Therefore,
(17.6) ex(K, BY) = inf{s > 0: N(K,sB}) < 2} < Cg\/ﬁLK%
Combining this estimate with (17.4]) we get
(17.7) w(K)<Cy Y. Loy
. <03) —&—=+ Lk,
= VEE

which finally gives the bound w(K) < Cn®/*Ly.
E. Milman uses a stronger version of Dudley’s bound, which had been proved by V. Milman and Pisier.
For every k > 1 they introduced the parameter

(17.8) v (K) = sup{vrad(Pp(K)) : F € Gp, 1}

Note that, for every F' € Gy, i,
(17.9)
Vol (Pr(K)) < N(Pp(K), ex Pr(By))Vol(ex, Br) < N(K, ex(K)By)erVoly,(Br) < (2e1,)"Volg(Br),

and hence,
(17.10) v (K) < 2e,(K).

From ([17.10) it is clear that the next theorem gives an estimate which is stronger than (17.4)).
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Theorem 17.2 (V. Milman-Pisier). For every symmetric convex body K in R™ one has
(17.11) Viw(K) < e zn: L Rady (K)o (K),
= vk

where Rady, (K) := sup{Rad(Xp, (k) : F € Gn i}, and Rad(Y') < c3log(d(Y, Edlm(y))—i-l) is the Rademacher
constant of Y.

A direct consequence of Theorem is the inequality
(17.12) )< Z —vk

where < denotes that ((17.12) holds true up to a fixed power of logn. We shall apply (17.12)) for an isotropic
convex body K in R™. In this case we know that

(17.13) Zn(K)~Z(K) D K,

and hence, in order to prove (17.1)), it suffices to obtain an upper bound fror w(Z,(K)), and more generally
for w(Zy(K)), 1 < ¢ < n. From (17.12) we have

(17.14) )< Z —vk K)).

It is necessary to estimate the parameter vy (Z,(K)); we consider any F' € G, and try to give an upper
bound for

1/k
(17.15) vrad(Pp(Z,(K))) = (VOlk(PF(Zq(K))))

VOlk (Bg)

At this point we use the fact that if p is an isotropic log-concave probability measure in R™ then for every
F € Gp; we have Pp(Z4(p)) = Zg(mr(p)). Since mp(p) is an isotropic log-concave probability measure on
I we may use the next estimates:

Lemma 17.3. If v is an isotropic log-concave probability measure in R then

(17.16) vrad(Z,(v)) < can/g g < k,
and
(17.17) vrad(Z,(v)) < es(q/k)Wk q> k.
Proof. We have already seen (17.16). Since vrad(Zy(v)) < cavk and Z,(v) C ctZy(v) for all ¢ > k, we
easily get (17.17)). O
Proof of Theorem Applying Lemma for v = 7p(uK), we get
(17.18) o(Zy(K)) < cﬁ\/z max(y/q, Vk) Lk
It follows that
- - n 1 n 7 q
(17.19) V2 (K)) S 1 32 n(aa(K) = 3 (\/; 1)
1 "1

~q) T +vaY_ — ~qlogq+ /gvn < Vny/qlogg.

k=1 k=q \/a
This concludes the proof of (17.2]) and of the theorem. O
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18 Sub-Gaussian directions

We have seen that every § € S"~! is a v-direction for any convex body K in R" with an absolute constant
C. An open question, asked by V. Milman, is if there exists an absolute constant C' > 0 such that every
K has at least one sub-Gaussian direction (t3-direction) with constant C'. It was first proved by Klartag in
that for every centered convex body K of volume 1 in R™ there exists § € S"~! such that

(18.1) Vol,({z € K : [(z,0)] > ct||(-,8)]|2}) < e Tostiinr®

for all t > 1, where a = 3 (equivalently, [|(-,0)[.,,x) < C(logn)*([(-,0)[]2). The best known estimate
is due to Giannopoulos, Paouris and Valettas who showed that the body Wy(K) with support function
y = 19|z, (k) has volume

Vol (¥5(K)) ) Y
18.2 — < cy/logn.
e (Vi) = evie
From (18.2)) it follows immediately that there exists at least one sub-Gaussian direction for K with constant
b < Cy/logn.

Using Theorem [I7.1] Brazitikos and Hioni proved that if K is isotropic then logarithmic bounds for
I, 0>”Lw2(K) hold true with probability polynomially close to 1: For any a > 1 one has

1 0)lz.,, (x0) < Cllogn)*/? max { \/logn, Va } L

for all § in a subset ©, of S"~1 with ¢(0,) =1 —n"%, where C > 0 is an absolute constant.

Here, we consider the question if one can have an estimate of this type for all directions 6 of a subspace
F € G, 1, of dimension k increasing to infinity with n. We say that F' € G,, j is a sub-Gaussian subspace for
K with constant b > 0 if

(18.3) 1 O Ly, () < O O) 2

for all § € Sp := S"" 1N F. We will show that if K is isotropic then a random subspace of dimension (logn)*
is sub-Gaussian with constant b ~ (logn)2.

Theorem 18.1. Let K be an isotropic conver body in R"™. If k ~ (logn)* then there exists a subset I of
G,k with vy 1, (') 21— n—008m)* such that

(18.4) 1,0l (x) < Clogn)* L
for all F €T and all 0 € Sp, where C > 0 is an absolute constant.
We need the next fact on the diameter of k-dimensional projections of symmetric convex bodies.

Proposition 18.2. Let D be a symmetric convex body in R™ c2md let 1 <k <nanda > 1. Then there
exists a subset Ty, C G, i with measure vy (Tp ) = 1 — e 2 k such that the orthogonal projection of D
onto any subspace F' € I'y, j, satisfies

(18.5) R(Pr(D)) € csamax{w(D), R(D)\/k/n},
where ¢ > 0,c3 > 1 are absolute constants.

Combining Proposition with Theorem and the fact that R(Z,(K)) < cqLk, we get:
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Lemma 18.3. Let K be an isotropic convex body in R™. Given 1 < q¢ < n define ko(q) by the equation
(18.6) ko(q) = log?(1 + ¢) max{log*(1 + q),n/q}.
Then, for every 1 <k < ko(q), a random F € G, 1 satisfies

(18.7) R(Pr(Zy(K))) < cralog(1 + ) max { qlog\(} +q) f}

with probability greater than 1 — e‘cm%‘)(q), where c1,co > 0 are absolute constants.

Proof. Since R(Z,(K)) < cqLi we see that

(18.8)
R(Z4(K))/ko(q) cq Vn qlog(1l+q)
< —=log(1 4 ¢) max { log(1 + q), Li = clog(1l + ¢) max
Vi v Vi v Yyt
From Theorem we have an upper bound of the same order for w(Z,(K)). Then, we apply Proposition
for Z,(K). O

Remark 18.4. Note that if 1 < s < k then the conclusion of Proposition [18.2|continues to hold for a random
F € Gy, s with the same probability on G,, s; this is an immediate consequence of Fubini’s theorem and of
the fact that R(Py (D)) < R(Pr(D)) for every s-dimensional subspace H of a k-dimensional subspace F of
R™.

Proof of Theorem We define ¢¢ by the equation
(18.9) q010g”(1 + go) = n.
Note that gy ~ n/(logn)? and log(1 + qo) ~ logn. For every 2 < ¢ < qo we have qlog®(1 + ¢) < n, therefore

nlog2(1 +4q) < clnlog2(1 + qo)

(18.10) ko(q) = p > ”

for some absolute constant ¢; > 0, because ¢ — log? (1+ q)/q is decreasing for ¢ > 4. It follows that

(18.11) ko(q) = c1log*(1+ qo) = ca(logn)?

for all 2 < g < qo.
Now, we fix a > 1 and define

(18.12) ko = ¢1log*(1 + qo).

Using Lemma and Remark for every ¢ < go we can find aset I'y C Gy, g, With vy, 1, (T'g) > 1—ece’ko
such that

log(1 +
(18.13) R(Pp(Z,(K))) < csarlog(1 + ¢) max { 1 g(f ) \f} Li < cson/glog(1 + q)Lx
for all F € G, g, I T := N82900 Py, then
[1og; n] ] .
(18.14) Voko (ko \T) < v ko( ke \ ﬂ FQS) cllogmye o < 1
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if @ ~ 1 is chosen large enough. Then for every F' € T, for all § € Sp and for every 1 < s < |log,y go] we
have

hza: (1)(0) _ Ppp (2,0 (1)) (6)
vz vz

Taking into account the fact that if 2° < ¢ < 25! then

(18.15)

< esalog(l +2°) L < caa(logn)Li.

hz,x)(y) 3 bz, (k) () 7\/§hzzs+1(1<)(y)

(18.16) N 9s/2 = o(s+1)/2

we see that

h
(18.17) M < csaflogn) Lk

Va

for every F €T, for all § € Sp and for every 2 < ¢ < qp.
Next, observe that if gy < g < n then we may write

hz,x) () < c6q Mz, () (Y) e /T Nz, ) () < cov/n Nz, (1) ()

(815 Vi Sw Vi v vm S Ve v
= cglog(1 + qo)hzq‘j;io)(y) < c7(log n)hz‘“’\;;i; (y),

and hence

(18.19) hz,0l) cra(logn)? Ly

Va

for every F' € T, for all 8 € Sp and for every ¢p < ¢ < n.
Recall that W (K) is the convex body with support function hy, ) (y) = [[{-,9)[L,, (x)- One also has

hzq K)(y) hzq ) (Y)
(18.20) P, (k) (y) =~ sup 22 sup 22K

=2 V4 2<q<n V4
because hyz_ (k) (y) = hz, k)(y) for all ¢ = n. Then, (18.17) and (18.19) and the fact that o ~ 1 show that

(18.21) 1,0l z,, () < C(logn)® L

for every F' € T" and for all § € Sp, where C > 0 is an absolute constant. O

19 Notes and References

1. The hyperplane conjecture appears for the first time in the work of Bourgain [I3] on high-dimensional maximal
functions associated with arbitrary convex bodies. The conjecture was stated in this form in the article of V. Milman
and Pajor [50] and in the PhD Thesis of K. Ball [§].

Bourgain’s article [I3] concerned high-dimensional maximal functions associated with arbitrary convex bodies.
He was interested in bounds for the L,-norm of the maximal function

MKf(x):sup{m/m If(w+y)|dy|t>0}

of f € Li,.(R™), where K is a centrally symmetric convex body in R™. Let C,(K) denote the best constant such that
|Mx fllp < Cp(K)||fllp is satisfied. Bourgain showed that there exists an absolute constant C' > 0 (independent of n
and K) such that

MK ||Ly@®n)—1,@n) < C-
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Earlier, Stein had proved in [65] that if K = B3 is the Euclidean unit ball then C},(B%) is bounded independently
of the dimension for all p > 1. By the definition of Mk it is clear that in order to obtain a uniform bound on
||[Mx||2—2 one can start with a suitable position T'(K) (where T' € GL,) of K. Bourgain used the isotropic position;
the property that played an important role in his argument was that when K is isotropic then LKVolnfl(KOGJ‘) ~1
for all § € S™~1L. Bourgain mentioned the fact that Lk > ¢ and asked whether a reverse inequality holds true.

The result for ||Mkl|2—2 was generalized to all p > 3/2 by Bourgain [14] and, independently, by Carbery [22].
Afterwards, Miiller [52] obtained dimension free maximal bounds for all p > 1, which however depend on Lx and on
the maximal volume of hyperplane projections of K. In the case of the cube, Bourgain [I7] showed that for every
p > 1 there exists a constant C}, > 0 such that C,(Bg,) < C), for all n.

2. The bodies K,(p) were introduced by K. Ball (see [8] and [9]) who established their convexity. One should also
mention Busemann’s paper [20], where the case of a density which is the indicator of a convex body (and, say, p = 1)
is proved. Ball [0] showed that if x is an even isotropic log-concave measure then the body 7' = Kpy2(p) is an
isotropic symmetric convex body with L, ~ Lr. The observation that one can reduce the study of the behavior of
the isotropic constants of all log-concave measures to the class of centrally symmetric convex bodies is due to Klartag
[38].

3. Bourgain’s bound Lx = O(+{/nlogn) appeared in [I5]. We present a modification of his argument, which is due
to Dar [24]. Bourgain showed in [16] that if K is a symmetric convex body and K is a 12-body with constant b then
one can improve this estimate to Lx < cblog(1l + b). It was later proved by Klartag and E. Milman [42] that in this
case one has Lx < cb.

4. There are several results confirming the hyperplane conjecture for important classes of convex bodies. To be more
precise, let us say that a class C of symmetric convex bodies satisfies the hyperplane conjecture uniformly if there
exists a positive constant C' such that Lx < C for all K € C.

The fact that the isotropic constants of unconditional convex bodies are bounded by an absolute constant is due
to Bourgain, see [50]; a different proof using the Loomis-Whitney inequality is given by Schmuckenschlager in [63].
One more proof, leading to the bound Lx < 1/v/2, can be found in the article [TI] of Bobkov and Nazarov. A more
general result, with a different proof, can be found in Milman and Pajor [50]. Uniform bounds are known for the
isotropic constants of some other classes of convex bodies: convex bodies whose polar bodies contain large affine
cubes (see again [50]), the unit balls of 2-convex spaces with a given constant « (see Klartag and E. Milman [41]),
bodies with small diameter (in particular, the class of zonoids) etc.

Uniform boundedness of the isotropic constants of the unit balls of the Schatten classes was established by Koénig,
Meyer and Pajor in [44]. One of the main ingredients of the proof is a formula of Saint-Raymond from [59]. Before
the work of Konig, Meyer and Pajor, Dar had obtained the estimate Lp(sp) < C/logn in [25] (see [24] for the case
p=1).

Upper bounds for the isotropic constant of polytopes, which depend on the number of their vertices or facets,
follow from results of Ball [I0], Junge [36] and [37] and E. Milman [48]. A more geometric approach, that covers the
case of not necessarily symmetric polytopes too, was given of Alonso-Gutiérrez in [7].

5. Lg-centroid bodies were introduced by Lutwak and Zhang [46] who used a different normalization. If K is a convex
body in R"™ then, for every 1 < g < 0o, the body I'q(K) was defined in [46] through its support function

1 1/‘1
hr, =) (y) = (m/}{ |<$7y>\qd$) )

where
Wntq

WolnWq—1
In other words, Z,(K) = c}L{;”Fq (K) if Vol,(K) = 1. The normalization of I';(K) is chosen so that I';(B3) = By for

every ¢q. Lutwak, Yang and Zhang [47] have established the following L, affine isoperimetric inequality (see Campi
and Gronchi [2]] for an alternative proof): For every g > 1,

Cn,q =

VOln(FQ(K)) 2 1,

with equality if and only if K is a centered ellipsoid of volume 1.

Alesker’s theorem is from [6]; it is the starting point of the work of Paouris. His study of the Lq-centroid bodies
from an asymptotic point of view started with [563] and [54], where the parameter g.(u) is introduced. The deviation
inequality was proved in [55] and the extension to negative moments in [56].

In the particular case of unconditional isotropic convex bodies, the inequality of Paouris had been previously
proved by Bobkov and Nazarov (see [11] and [I2]). The origin of the work of Bobkov and Nazarov is in the work of
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Schechtman, Zinn and Schmuckenschldger on the volume of the intersection of two Lp-balls (see [60], [61], [62] and
[64]). Before Paouris’ theorem, Guédon and Paouris had studied in [34] the case of the unit balls of the Schatten
classes.

6. Klartag’s solution to the isomorphic slicing problem and his O(+/n) bound for the isotropic constant are from
[39]. A second proof of the same estimate was given by Klartag and E. Milman in [42].
Klartag and E. Milman in [42] defined the “hereditary” variant

H R . g+ (mep)
(19.1) qv (n) == nu%f Eelgik 3

of q.(p) and then, for every ¢ < ¢f(u), they showed that Vol,(Z,(u))™ > e3+/q/n where ¢z > 0 is an absolute
constant. An immediate consequence of this inequality and of the fact that ¢ (1) > c\/n is an alternative proof of
the bound L, = O({/n) for the isotropic constant. Vritsiou [66] introduced a new parameter 74(u, A) that dominates
¢ (1) and modified the argument of Klartag and E. Milman to show that the lower bound Vol,(Z,(u))"/" >
cA™'\/p/n continues to hold for all p < ry(u, A).

Giannopoulos, Paouris and Vritsiou observed in [32] that one can use Klartag’s approach in order to give a purely
convex geometric proof of the reverse Santal6 inequality is due to

7. Bourgain, Klartag and V. Milman proved in [I8] a reduction of the hyperplane conjecture to the case of convex
bodies whose volume ratio is bounded by some absolute constant. The same fact follows from Klartag’s approach in
[38].

Dafnis and Paouris introduced in [23] the parameter q—.(p,¢) := max{p > 1 : Io(u) < ¢(I-p(n)}; among other
things they proved that a positive answer to the hyperplane conjecture is equivalent to the existence of two absolute
constants C, £ > 0 such that g—.(K, &) > Cn for every isotropic convex body K in R".

Giannopoulos, Paouris and Vritsiou proposed in [3I] a reduction of the hyperplane conjecture to the study of
the parameter I (K, Zg(K)) = [, [|(:,2)||qdz in the sense that it immediately recovers a bound that is slightly worse
than Bourgain’s and Klartag’s bounds and opens the possibility for improvements: an upper bound of the form
(K, Z3(K)) < Ciq°/nLik for some g > 2 and § < s < 1 and for all isotropic convex bodies K in R" leads to the

estimate

Csnlogn
q 155 *
8. A question, originally posed by V. Milman in the framework of convex bodies, asks if there exists an absolute
constant C' > 0 such that every centered convex body K of volume 1 has at least one 12 direction with constant
C. Klartag, using again properties of the logarithmic Laplace transform, proved in [40] that for every log-concave
probability measure p on R™ there exists § € S"~! such that

L. <

+2

n({a: [(2,0) > et (-, 0)||2}) < e Tostrn™,

for all 1 < ¢ < y/nlog®n, where a = 3 (see also [28| for a first improvement). The best known estimate, is due to
Giannopoulos, Paouris and Valettas who proved in [29] and [30] that one can always have o = 1/2.

The main idea in all these works is to define the symmetric convex set W2 (1) whose support function is hy, ) (8) =
[[{-,0)]l4, and to estimate its volume. A logarithmic in the dimension bound on the volume radius of Wo(u) was
first obtained by Klartag in [40] and then by Giannopoulos, Pajor and Paouris in [28]. The best known estimate
vrad(Wa(p)) < cy/logn is proved in [29]. The main tool in the proof of this result is estimates for the covering
numbers N(Z,(K), sBy).

9. The question to obtain an upper bound for the mean width of an isotropic convex body

w(K) = /Sni1 hi(z)do(z),

that is, the Li-norm of the support function of K with respect to the Haar measure on the sphere, was open for
a number of years. The upper bound w(K) < en®*Lx appeared in the Ph.D. Thesis of Hartzoulaki [35]. Other
approaches leading to the same bound can be found in Pivovarov [58] and in Giannopoulos Paouris and Valettas [30].
E. Milman showed in [49] that if K is an isotropic convex body in R™ then, for all ¢ > 1 one has

w(Z(K)) < Clog(1 + @y max { LD, )1
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where C' > 0 is an absolute constant. In particular,
w(K) < Cy/n(logn)’ L.

The dependence on n is optimal up to the logarithmic term.

An interesting related question is to determine the distribution of the function 6 — ||{, 8)||, on the unit sphere;
that is, to understand whether most of the directions have i2-norm that is, say, logarithmic in the dimension. For
a discussion and partial results see [30]. As a consequence of E. Milman’s theorem, Brazitikos and Hioni showed in
[I9] that the answer is affirmative. More precisely, they showed that for any a > 1 one has

¢ Oz, () < C(logn)*? max{\/logn, \/(;} Lk

for all @ in a subset © of S™™! with ¢(©) > 1 —n~*, where C > 0 is an absolute constant. Theorem is from [26].
The dual problem to estimate as the respective Li-norm of the Minkowski functional of K,

M) = [ el do(a),

when K is a centrally symmetric isotropic convex body, had not been studied until recently; partial non-trivial results
can be found in [33]. The currently best known estimate estimate M (K) < %
E. Milman (see [27]).

10. There are several other challenging conjectures and important results about isotropic log-concave measures. The
first one is the central limit problem, that asks if the 1-dimensional marginals of high-dimensional isotropic log-concave
measures are approximately Gaussian with high probability. It is generally known through results of Sudakov that,
if pu is an isotropic probability measure in R™ that satisfies the thin shell condition,

||
— >e| <e¢
u(\/ﬁ

for some € € (0,1), then, for all directions 6 in a subset A of S™™! with o(A) > 1 — exp(—c14/n), one has

is due to Giannopoulos and

|l ({z: (z,0) <t}) —P(t)| < c2(e+n~ %) for all t € R,

where ®(t) is the standard Gaussian distribution function and c1, c2, & > 0 are absolute constants. Thus, the central
limit problem is reduced to the question whether every isotropic log-concave measure p in R™ satisfies such a thin
shell condition with ¢ = &, tending to 0 as n tends to infinity. An affirmative answer to the problem was given
by Klartag who obtained power-type estimates verifying the thin-shell condition; he showed that if p is an isotropic
log-concave measure in R™ then

g _1)"< £

n ne
with some o ~ 1/5, and, as a consequence, that the density fy of z — (x,6) with respect to p satisfies

o 1
[ -l <o
and
sup 120 _ 1‘ <L
e<ns | V(1) ne

for all # in a subset A of S™~* with measure o(A) > 1—c1 exp(—c2y/n), where v is the density of a standard Gaussian
random variable, and ci1, c2, k are absolute constants. Although some sharper estimates were obtained afterwards,
the following quantitative conjecture remains open:

There exists an absolute constant C' > 0 such that, for any n > 1 and any isotropic log-concave measure
win R™ one has

7= [ (el = Vi) duto) < C*

Another conjecture concerns the Cheeger constant Is, of an isotropic log-concave measure p: this is defined as the
best constant k > 0 such that
p(A) = rmin{p(A), 1 - p(A)}
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for every Borel subset A of R™, where ™t (A) is the Minkowski content of A. The Kannan-Lovdsz-Simonovits conjecture
asks if there exists an absolute constant ¢ > 0 such that

Isy, := inf{Is, : p is isotropic log-concave measure on R"} > c.

Another way to formulate this conjecture is to ask for a Poincaré inequality to be satisfied by every isotropic log-
concave measure g in R™ with a constant ¢ > 0 that is independent of the measure or the dimension n; more precisely,
the KLS-conjecture is equivalent to asking if there exists an absolute constant ¢ > 0 such that

o[ SFaus [ VePdu
R™ R™

for every isotropic log-concave measure g in R™ and for every smooth function ¢ with fR" @du = 0. For a detailed
discussion of this area we refer to the book [2].
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