
On Gaussian-width gradient complexity and mean-field
behavior of interacting particle systems and random graphs -

Monday 13th November, 2017

Ronen Eldan

Note Taker: Sylvester Eriksson-Bique

Main references: Arxiv paper “Gaussian-width gradient complexity, re-
verse log-Sobolev inequalities and non-linear large deviations”. https://

arxiv.org/pdf/1612.04346.pdf

Eldan and Gross (his Ph.D. student): Arxiv “Exponential random graphs
behave like mixtures of stochastic block models” https://arxiv.org/abs/

1707.01227.

For the remaining references consult the first paper above and the discussion
below.

1 Introductory

Four motivating examples from combinatorics and statistical mechanics. A
priori these may seem disjoint from GFA (geometric functional analysis), but
later the methods from GFA become useful. First, define for a graph g the
number

T (g) = The number of triangles in g.

By G ∼ G(N, p) we denote a random graph with distribution of an Erdös-
Renyi random graph, with edge probability p, and define the event. When
p = 1/2 this is the uniform distribution over all graphs. Consider also the
event for graphs of N vertices, for δ > 0

EN = {T (G) ≥ (1 + δ)E(T (G)))}.

Consider now the four motivating questions.
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1. What is the asymptotics of P(EN) when G ∼ G(N, p)? Large devia-
tions question.

2. Vague question. Conditioned on EN , what doeos the graph G look
like? Does it look like G(N, p′) for larger p′, or is there some symmetry
breaking involved? Phase transitions?

3. Consider the uniform random graph G(N, 1/2), and define a weighted

probability on graphs pβ(g) = Z−1e−
βT (g)
N , where β > 0 and Z is the

partition function, which normalizes p to have unit mass. Structure
of g with distribution pβ? Can one estimate the partition function
Z(β,N)?

4. A ⊂ [n] uniformly random subset of integers. Let

f(A) = the number of k− term arithmetic progressions in A.

Consider the event

En = {f(A) ≥ (1 + δ)E(f(A))}.

Ask the same questions as in 1 and 2 for this distribution.

5. Potts/Ising model. For example, let Hn be a sequence of graphs with
n-vertices and increasing degree as n→∞ (more interactions for large
n). Consider the Ising model on such a graph, where one places a charge
of ±1 at each vertex and neighboring charges are either positively or
negatively correlated. Again, ask asymptotics, large deviations etc.

All of these problems fall in the framework of taking a random point in
Cn = {−1, 1}n (for 1, 2, n =

(
N
2

)
). And we have a function f : Cn → R

and we are examining the weighted measure ν with density dν = Z−1ef dµ,
where µ is the uniform measure on Cn and Z is the partition function. We
wish to understand Z.

Remark: The problem 2 and 1 are not too different. For 2 we consider
f(g) = e−βT (g)/N , and for 1 we have f(g) = 1T (g)>(1+β)E(T (G)).
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2 Methodology and main results: Mean-field

method

Existed in physics literature in an imprecise form, and one way to make it
precise is presented in this talk. Initially presented by Chaterjee and Dembo
(2014). Idea use Gibbs variational principle, which states that the logarithm
of the partition function is given by

log(Z) = log

∫
ef µ = sup

ν

∫
f dν −H(ν||µ),

where

H(ν||µ) =

∫
log

(
dν

dµ

)
dν,

is the relative entropy or Kullback-Leibler divergence.

Initially this idea may seem too simplistic, because the supremum on the
right is actually attained by dν = Z−1efdµ, which is the quantity we wish to
understand. However, the revised idea is that we expect in certain situations
that the sup is approximated by a product measure, or a mixture thereof.
Further, the supremum over such ν can in some cases be explicitly computed,
because product measures on Cn can be described by their center of mass in
[−1, 1]n. This has been done for example for problem 1 and 2 in (Lubetzky
and Zhao 2014, and Bhattacharya et al. 2017).

Chatterjee and Dembo realized this strategy under two assumptions on f , one
consisting of a complexity bound for the discrete gradient ∇f (amounting
to a low covering number in terms of balls of definite size), and an addi-
tional technical condition on the second derivative corresponding to certain
smoothness. This is Theorem 1.1 in Chaterjee, Dembo 2014.

In this talk this result is generalized to larger classes of functions, where con-
vexity is measured using Gaussian width, and no assumption on the second
derivative is necessary (for some of the results).

Remark: Recall, that the discrete gradient is given by
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∂if(x1, . . . , xi, . . . , xn) = f(x1, . . . , 1, . . . , xn)− f(x1, . . . ,−1, . . . xn),

where the co-orindate changing is the i’th one.

To realize this strategy, we would need to find a partition of Cn to sets A such
that f |A would be close to linear. Since the optimizers for linear functions
are product measures, this would give an approximate maximizer in terms
of a mixture of product measures.

Define the Gaussian width of a compact K ⊂ Rn

GW (K) = ER∼N(0,Id) sup
x∈K
〈x,R〉,

where N(0, Id) is the distribution of a standard Gaussian vector in Rn. Also,
recall that the Wasserstein distance

WH(ν, µ) = inf
(X,Y )

E(dH(X, Y )),

where the infimum is taken over all product measures with margials ν, µ, and
the distance is measured in the Hamming metric.

Also, to state the main theorem we need to define tilts of measures. The tilt
τθν is defined as

dτθν = exp(〈x, θ〉) dνZ−1.

Theorem 1 (Theorem 1). If dν = ef dµ, and Lip (f) = O(1) (w.r.t. the
Hamming metric), and GW ({∇f}) = o(n), then there exists a probability
measure m on [−ε, ε]n, where ε = o(1), s.t.

ν =

∫
τθν dm(θ),

and such that ∃Θ ⊂ Rn with m(Θ) = 1 − o(1) and ∀θ ∈ Θ there exists a
product measure ξθ such that

WH(τθν, ξθ) = o(n).

4



These error bounds turn out to be sufficient for the desired Large deviation
estimates. In another paper by the speaker and his student Gross, they have
strengthened the conclusion of the previous theorem in the following way.

Theorem 2. In addition to the above, if one assumes a technical smoothness
assumption for ∇f , we can also say that ∀θ ∈ Θ if

xθ =

∫
x dτθν,

then

xθ ∼ tanh(∇f(xθ)),

which is the mean field equation.

The speaker gave a very high level description of the proof as below.

Low Complexity⇒ Reverse log − Sobolev inequality of ν with respect to µ,

which then can be used with classical techniques from (Fathi Indrei Ledoux,
“Quantitative logarithmic Sobolev inequalities and stability estimates” 2014),
and (Nourdin, Picatti, Ledoux, “Stein’s method, logarithmic Sobolev and
transport inequalities”, ’14), to conclud that the measure is close to a prod-
uct measure or a mixture of product measures.

Other conclusions/discussion: As a result of this and other work, one
observes that the structure of the conditioning on EN has a phase transition
in δ. For small δ, the measure looks like a G(N, p′) for larger p′, but for large
δ there is some symmetry breaking.

5


	Introductory
	Methodology and main results: Mean-field method

