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Rényi divergence

X,Z random elements in a measure space (Ω, µ)

P,Q distributions with densities p = dP
dµ , q = dQ

dµ

0 < α <∞

Definition (Rényi 1961, Tsallis 1998)
The Rényi divergence of P from Q of index α is

Dα(X||Z) = Dα(P ||Q) =
1

α− 1
log

∫ (p
q

)α
q dµ.

The Rényi divergence power or relative Tsallis entropy

Tα(X||Z) = Tα(P ||Q) =
1

α− 1

[ ∫ (p
q

)α
q dµ− 1

]
.

Monotone transformations:

Dα =
1

α− 1
log
(
1 + (α− 1)Tα

)
,

Tα =
1

α− 1

[
e(α−1)Dα − 1

]
.

Equivalence: Dα ∼ Tα (when small)
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Properties

• Independence of the dominating measure µ

• Separation: Dα(P ||Q) ≥ 0, and Dα(P ||Q) = 0 if and only
if P = Q.

• Monotonicity: The functions α → Dα(P ||Q) and α →
Tα(P ||Q) are non-decreasing.

• Contractivity under mappings:

Dα(S(X)||S(Z)) ≤ Dα(X||Z) (α ≥ 1).

• Range 0 < α < 1: All Dα are comparable to each other
and are metrically equivalent to the total variation ‖P −Q‖TV.
Gilardoni’s inequality (2010):

Dα(P ||Q) ≥ α

2
‖P −Q‖2TV.

This extends the Pinsker inequality for the Kullback-Leibler dis-
tance (α = 1).

• Range α ≥ 1: Dα(P ||Q) <∞⇒ P << Q.
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Particular cases

• α = 1/2 (Hellinger distance)

• α = 1 (Kullback-Leibler distance, relative entropy):

D(X||Z) = D(P ||Q) =

∫
p log

p

q
dµ.

• α = 2 (χ2-distance, quadratic Renyi divergence):

D2(X||Z) = log

∫
p2

q
dµ,

χ2(X,Z) = T2(X||Z) =

∫
(p− q)2

q
dµ.

In all cases
1

2
‖P −Q‖2TV ≤ D(X||Z)

≤ D2(X||Z) ≤ χ2(X,Z).

Goodness of fit test (Karl Pearson 1900): If Q is unknown dis-
tribution with k atoms, P = Pn empirical, then

nχ2(Pn, Q)⇒ χ2
k−1 = L(Z2

1 + · · · + Z2
k−1)
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Rényi divergence from Gaussian

Ω = Rd with Lebesgue measure dµ(x) = dx
X random vector with density p(x)
Z ∼ N(0, I) standard normal random vector with density

ϕ(x) =
1

(2π)d/2
e−|x|

2/2, x ∈ Rd.

Rényi divergence–Tsallis distance of index α are given by

Dα(X||Z) =
1

α− 1
log

∫
pα

ϕα−1
dx,

Tα(X||Z) =
1

α− 1

∫
pα

ϕα−1
dx− 1.

Relative entropy (α = 1), EX = 0, cov(X) = I

D(X||Z) = h(Z)− h(X)

in terms of Shannon entropy h(X) = −
∫
p log p dx.

Pearson (α = 2)

χ2(X,Z) =

∫
(p− ϕ)2

ϕ
dx.
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Exponential integrability

Let d = 1, Z ∼ N(0, 1), β = α
α−1.

Note: If D(X||Z) <∞, then EX2 <∞.

Proposition 1. If Tα = Tα(X||Z) <∞ for α > 1, then X has
an absolutely continuous distribution and finite moments of any
order. Moreover,

E ecX2
< ∞ for all c < 1/(2β).

For all t ∈ R,

E etX ≤ Ceβt
2/2 with C =

(
1 + (α− 1)Tα

)1/α
.

It is possible that Tα <∞, while E e
1
2βX

2

=∞.
If p is density of X ,

E etX =

∫ ∞
−∞

p(x) etx dx

=

∫ ∞
−∞

p(x)

ϕ(x)1/β
· etxϕ(x)1/β dx

≤ C
(∫ ∞
−∞

eβtxϕ(x) dx
)1/β

= Ceβt
2/2.

6



Improved integrability for convolutions

Case α = 2: If χ2 = χ2(X,Z) <∞, then

E ecX2
< ∞ for all c < 1/4.

For all t ∈ R,

E etX ≤ Cet
2/4 with C = (1 + χ2)1/2.

Proposition 2. If X1, X2 are independent copies of X ,

E e
1
4 (

X1+X2√
2

)2 ≤ 2 (1 + χ2).

For general α > 1 with conjugate β = α
α−1, we need k ≥ α

normalized convolutions to include the critical coefficient c =
1/(2β): If Tα = Tα(X||Z) is finite, then

E e
1
2β Z

2
k ≤ 2k

(
1 + (α− 1)Tα

)k
α .

Moreover, if Tα(Zk||Z)→ 0, then

E e
1
2β Z

2
k → E e

1
2β Z

2

=
√
π (α− 1).

Proof. Use of Plancherel theorem in case α = 2 (Weierstrass
transform for α > 1).
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Exponential series and normal moments

Question: How to connect χ2(X,Z) to the moments of X ?
Exponential orthogonal series (Cramér):

p(x) = ϕ(x)

∞∑
k=0

ck
k!
Hk(x)

converges in L2(R, dx
ϕ(x)) if and only if

∑∞
k=0 c

2
k <∞.

Fourier coefficients (normal moments of X):

ck =

∫ ∞
−∞

Hk(x) p(x) dx = EHk(X) = E (X + iZ)k.

In particular, c0 = 1, c1 = EX , c2 = EX2 − 1.
Taylor series around zero for the characteristic function:

f (t) = E eitX = e−t
2/2

n∑
k=0

ck
k!

(it)k + o(|t|n).

Proposition 3. If χ2(X,Z) <∞, then

χ2(X,Z) =

∞∑
k=1

1

k!

(
EHk(X)

)2
.

Conversely, if X has all moments and the series is convergent,
then χ2(X,Z) <∞. In particular, X has density.
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CLT for strong metrics

X,X1, X2, . . . i.i.d. random variables, EX = 0, EX2 = 1,

Zn =
X1 + · · · + Xn√

n
(n = 1, 2, . . . )

CLT: as n→∞

Fn(x) = P{Zn ≤ x} → Φ(x) =

∫ x

−∞
ϕ(y) dy.

Total variation distance. Prokhorov (1952):

‖Fn − Φ‖TV → 0 ⇐⇒ ‖Fn0 − Φ‖TV < 2,

Fn has an absolutely continuous component for some n = n0
(in particular, if X has density).

Kullback-Leibler distance (relative entropy). Barron (1986):

D(Zn||Z)→ 0 ⇐⇒ D(Zn0||Z) <∞
for some n = n0. In particular, when X has density p such that∫∞
−∞ p(x) log p(x) dx <∞.

Rates, Berry-Esseen bounds, the non-i.i.d. case: Linnik (1959),
Sirazhdinov, Mamatov (1962), Artstein, Ball, Barthe, Naor (2004),
Barron, Johnson (2004), B-C-G (2013-2016), Toscani (2016),
Bally, Caramellino (2016).
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CLT for χ2 distance

Fomin (1982): Suppose that X has a compactly supported,
symmetric, piecewise differentiable density p such that the co-
efficients in

p(x) = ϕ(x)

∞∑
k=1

σk
2kk!

H2k(x)

satisfy supk≥2 σk < 1. Then χ2(Zn, Z) = O(1n) as n→∞.

Example: Uniform distribution on (−
√

3,
√

3).

Theorem 1. χ2(Zn, Z) → 0, if and only if χ2(Zn, Z) < ∞ for
some n = n0, and

E etX < et
2

for all t 6= 0.

Remark. It is possible that E etX < et
2

for all t 6= 0 except
for one t0 > 0. Consider X = aξ + bZ assuming that ξ takes
values q and −p with probabilities p and q such that

p− q
log p− log q

> pq.
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Edgeworth-type expansion

If χ2(Zn, Z)→ 0, then as n→∞

χ2(Zn, Z) =

s−2∑
j=1

cj
nj

+ O
( 1

ns−1

)
for every fixed s = 3, 4, . . . with cj certain polynomials in the
moments αk = EXk, k = 3, . . . , j + 2.

Case s = 3:

χ2(Zn, Z) =
α2
3

6n
+ O

( 1

n2

)
,

Case α3 = 0, s = 4:

χ2(Zn, Z) =
(α4 − 3)2

24n2
+ O

( 1

n3

)
.
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CLT for Renyi divergence

X,X1, X2, . . . i.i.d. random vectors in Rd, with EX = 0 and
identity covariance.

Denote by α∗ = α
α−1 the conjugate index for α > 1, and by Z

a standard normal random vector in Rd.

Theorem 2. Dα(Zn||Z)→ 0 if and only if Dα(Zn||Z) <∞ for
some n = n0, and

E e〈t,X〉 < eα
∗|t|2/2 for all t ∈ Rd, t 6= 0.

In this case,
Dα(Zn||Z) = O(1/n),

and even Dα(Zn||Z) = O(1/n2), if the distribution of X is
symmetric.

In fact, all distances have similar rates

Dα(Zn||Z) ∼ Tα(Zn||Z) ∼ α

2
χ2(Zn, Z)

once they tend to zero.
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Examples

• Uniform distribution.
Let X ∼ (−

√
3,
√

3). It has Laplace transform

E etX =
sinh(t

√
3)

t
√

3
< et

2/2, t ∈ R (t 6= 0),

with first moments α2 = 1, α3 = 0, α4 = 9
5. Therefore,

χ2(Zn, Z) =
3

50n2
+ O

( 1

n3

)
,

Dα(Zn||Z) =
α

2
χ2(Zn, Z) + O

( 1

n3

)
.

• Log-concave probability distributions on Rd.
Let X have density p(x) = e−V (x) with mean zero, identity
covariance and such that V ′′(x) ≥ c I for some c > 0 (Bakry-
Emery criterion, necessarily c ≤ 1). Then

E etg(X) ≤ et
2/(2c), t ∈ R.

for any g on Rd such that ‖g‖Lip ≤ 1 and E g(X) = 0. Hence

Dα(Zn||Z)→ 0 as n→∞, whenever α <
1

1− c
.

.
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Necessity part in Theorem 2 (preparation)

The characteristic function f (t) = E eitX is entire on C, and
f (iy) = E e−yX .

Lemma 1. If limDα(Zn||Z)
]

= 0, then for all y ∈ R

f (iy) ≤ eβy
2/2

and for any integer k ≥ α/2,

lim
n→∞

∫ ∞
−∞

f
(
iy/
√
kn
)2kn

e−βy
2
dy =

√
π(α− 1).

Proof. By Proposition 1 applied to Zn in place of X ,

f (iy/
√
n)n = E e−yZn ≤ Cn e

βy2/2

with Cn = (1 + (α−1)Tα(Zn||Z))1/α. After change of variable

f (iy) ≤ C1/n
n eβy

2/2 → eβy
2/2.

Since f ( t√
n
)n is the ch.f. of Zn, the integral in Lemma is∫ ∞

−∞

(
E e−yZnk

)2
e−βy

2
dy =

∫ ∞
−∞

E e−
√
2 y Z2nk e−βy

2
dy

=

√
π

β
E e

1
2β Z

2
2nk →

√
π

β
E e

1
2β Z

2

,

by Proposition 2 on last step.
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Necessity part in Theorem 2

If Dα(Zn||Z)→ 0, then, by Lemma 1,

ψ(y) = f (iy) e−βy
2/2 ≤ 1 for all y ∈ R.

Need to show:

ψ(y) < 1 for all y 6= 0.

Fix k ≥ α/2 and δ > 0 (small), and decompose∫ ∞
−∞

f
(
iy/
√
nk
)2nk

e−βy
2
dy = I1 + I2

=

(∫
|y|≤δ

√
nk

+

∫
|y|>δ

√
nk

)
f
(
iy/
√
nk
)2nk

e−βy
2
dy. (1)

Write

g(t) = log f (t) = −1

2
t2 +

∞∑
m=3

amt
m.

Since
∑∞

m=3 |amtm| ≤ c|t|3 for |t| ≤ r, r > 0 small, so,

f
(
iy/
√
nk
)2nk

= exp{y2+θy3/
√
n}, y ∈

[
−r
√
nk, r

√
nk
]
,

where |θ| ≤ c. Assuming δ ≤ min{r, (β − 1)/(2c
√
k)},

I1 =

∫
|y|≤δ

√
nk

e−(β−1) y
2+θy3/

√
n dy.
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Here θy3/
√
n may be removed at the expense of O( 1√

n
). Hence

I1 =

∫
|y|≤δ

√
nk

e−(β−1) y
2
dy+O

( 1√
n

)
=
√
π(α− 1)+O

( 1√
n

)
.

Applying this in (1), we have I2 → 0, or equivalently∫
|u|>δ

ψ(u)2nk du =

∫
|u|>δ

(
f (iu) e−βu

2/2
)2nk

du = o
( 1√

n

)
for any sufficiently small δ > 0 and hence for any δ > 0.

Assume ψ(u0) = 1 for some u0 > 0, which implies ψ′(u0) = 0.
Hence the power series representation at this point

ψ(u)− 1 = cl(u− u0)l +

∞∑
j=l+1

cj(u− u0)j

starts with cl 6= 0 for some l ≥ 2. Since ψ(u) ≤ 1 for all
u ∈ R, necessarily l = 2m and cl < 0. Hence,

ψ(u) ≥ 1− b1(u− u0)2m ≥ e−b0(u−u0)
2m
.

for |u−u0| ≤ r0 < u0 with some constants b1, b0 > 0. Choosing
δ = u0 − r0, this neighborhood is contained in (δ,∞), and∫
|u|>δ

ψ(u)2nk du ≥
∫
|u−u0|<δ

exp
{
− 2nk · c0(u− u0)2m

}
du

= 2

∫ δ

0

exp
{
− 2nk · c0x2m

}
dx ≥ c

n1/(2m)
.
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Pointwise upper bounds on densities

The following observation holds without assuming that X has
mean zero and variance one. Let f be the characteristic function
of X , and define

ψ(u) = f (iu) e−βu
2/2 = E e−uX e−βu2/2, u ∈ R,

where β = α
α−1.

Question: If Tα(X||Z) <∞, can we bound the density p(x) of
X pointwise? Answer: No. However, assume Tα(Zn0||Z) <∞.

Lemma 2. For any n ≥ nβ = max(β, 2)n0, the normalized
sum Zn has a continuous bounded density pn satisfying

pn(x) ≤ Aα

√
n√

2πn0
e−x

2/(2β)ψ
(
− x

β
√
n

)n−nβ
, x ∈ R.

In particular, there exist x0 > 0 and δ ∈ (0, 1) such that, for all
n large enough,

pn(x) ≤ δne−x
2/(2β)ψ

(
− x

β
√
n

)n/2
, |x| ≥ x0

√
n.

Proof. Use contour integration.

17



Proof of Lemma 2

Let α = 2, n0 = 1, so that fn integrable for n ≥ 2 and

pn(x) = eyx
1

2π

∫ ∞
−∞

e−itxf ((t + iy)/
√
n)n dt

for any fixed y > 0. Let x < 0. Using |f (t + iy)| ≤ f (iy) and
changing variable,

pn(x) ≤ eyxf
( iy√

n

)n−2√n
2π

∫ ∞
−∞

∣∣∣f(t +
iy√
n

)∣∣∣2 dt.
The function t→ f (t+ iy/

√
n) = E eitX−yX/

√
n is the Fourier

transform of e−yu/
√
n p(u) and

e−2yu/
√
n p(u)2 =

(
e−2yu/

√
nϕ(u)

) p(u)2

ϕ(u)
≤ 1√

2π
e
2y2

n
p(u)2

ϕ(u)
.

By Plancherel,

1

2π

∫ ∞
−∞

∣∣∣f(t +
iy√
n

)∣∣∣2 dt ≤ 1√
2π

e2y
2/n (1 + χ2).

Hence

pn(x) ≤
√

n

2π
(1 + χ2) eyx+2y2/n f (iy/

√
n)n−2

=

√
n

2π
(1 + χ2) eyx+y

2
ψ(y/

√
n)n−2.

Choose y = −x/2.
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Sufficiency part in Theorem 2

Let X,X1, X2, . . . be i.i.d., EX = 0, EX2 = 1, with ch.f.
f (t) = E eitX . As before, put

ψ(u) = f (iu) e−βu
2/2, β =

α

α− 1
, Z ∼ N(0, 1).

Assuming that ψ(u) < 1 for all u 6= 0, we need to show that

Zn =
X1 + · · · + Xn√

n

satisfy Tα(Zn||Z)→ 0 as long as Tα(Zn0||Z) <∞ for some n0.
By Lemma 2, Zn have densities pn which are continuous and
bounded whenever n ≥ nβ.

Using Edgeworth expansions, the integrals

I0 =

∫
|x|≤Mn

pn(x)α

ϕ(x)α−1
dx with Mn =

√
2(s− 1) log n

admit an asymptotic expansion in powers of 1/n up to 1/ns−1.
So, it remains to bound the integral of pαn/ϕ

α−1 over |x| > Mn

by a polynomially small quantity. In fact, for any large enough
s ≥ 3 and some constant κ > 0,∫

|x|>Mn

pn(x)α

ϕ(x)α−1
dx = O

( 1

nκs

)
, n→∞.
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For definiteness, let x < −Mn, and define

I1 =

∫ −x0√n
−∞

pn(x)α

ϕ(x)α−1
dx, I2 =

∫ −x1√n
−x0
√
n

pn(x)α

ϕ(x)α−1
dx,

I3 =

∫ −Mn

−x1
√
n

pn(x)α

ϕ(x)α−1
dx

with parameters 0 < x1 < x0 and assuming that Mn < x1
√
n

(otherwise, I3 = 0).
By Lemma 2, for all large n, with some δ ∈ (0, 1), x0 > 0,

I1 ≤ (2π)
α−1
2 δαn

∫ −x0√n
−∞

ψ
(
− x

β
√
n

)αn/2
dx

≤ (2π)
α−1
2 δαnβ

√
n

∫ ∞
−∞

ψ(u)m du, m ≤ αn

2
,

where on the last step we used ψ ≤ 1. The last integral is
convergent whenever m = kn0, k ≥ α. Hence

I1 ≤ Cδn1 (n ≥ n1)

with some constants C > 0, x0 > 0 and δ < δ1 < 1, depending
on the density p only.

By assumption, δ2 = max−x0≤u≤−x1 ψ(u) < 1, and Lemma 2
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yields

I2 ≤ Aαn
α/2

∫ −x1√n
−x0
√
n

ψ
(
− x

β
√
n

)n−nβ
dx

= Aα
α β n

(α+1)/2

∫ −x1/2
−x0/2

ψ(u)n−nβ du

≤ Aα
α β n

(α+1)/2 (x0 − x1) δ
n−nβ
2

which again decays exponentially fast like I1.
Near zero, h(u) = log f (iu) ∼ 1

2 u
2, hence |h(u)| ≤ 1+β

4 |u|
2

in some disc |u| ≤ r, when r is sufficiently small, implying

|f (iu)| ≤ e(1+β)|u|
2/4. Hence

ψ(u) ≤ e−
1
4 (β−1) |u|

2
, |u| ≤ r,

and

ψ
(
− x

β
√
n

)n−nβ
≤ ψ

(
− x

β
√
n

)n/2
≤ exp

{
− β − 1

4

x2

2β2

}
= e−x

2/(8αβ)

for all n ≥ 2nβ and −βr
√
n < x < 0. Therefore, By Lemma

2, in this interval

pn(x)α

ϕ(x)α−1
≤ Aα

α n
α/2 e−x

2/(8β),
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which results with x1 = βr in the bound

I3 ≤ Aα
α n

α/2

∫ −Mn

−x1
√
n

e−x
2/(8β) dx

≤
√

2πβ Aα
α n

α/2 e−M
2
n/(8β) =

√
2πβ Aα

α n
−(s−14β −

α
2 ).

Collecting these bounds, we obtain that I1+I2+I3 = o(n−s/8β)
for a sufficiently large s.
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