Rigidity of the 3D hierarchical Coulomb gas

Sourav Chatterjee

Sourav Chatterjee [Rigidity of the 3D hierarchical Coulomb gas](#page-104-0)

重

E N

 \equiv \rightarrow

In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.

 $2Q$

三

- In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.
- In Let $N(A) := |A \cap P|$.

 \rightarrow \pm \rightarrow

- In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.
- ► Let $N(A) := |A \cap P|$.
- Then $\mathbb{E}(N(A)) = \text{Var}(N(A)) = \text{vol}(A)n$.

 \rightarrow \pm \rightarrow

- In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.
- In Let $N(A) := |A \cap P|$.
- \blacktriangleright Then $\mathbb{E}(N(A)) = \text{Var}(N(A)) = \text{vol}(A)n$.
- ► Thus, $N(A)$ has fluctuations of order \sqrt{n} .

- In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.
- ► Let $N(A) := |A \cap P|$.
- \blacktriangleright Then $\mathbb{E}(N(A)) = \text{Var}(N(A)) = \text{vol}(A)n$.
- ► Thus, $N(A)$ has fluctuations of order \sqrt{n} .
- \triangleright Let Q be another point process with *n* particles per unit volume on average.

- In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.
- ► Let $N(A) := |A \cap P|$.
- \blacktriangleright Then $\mathbb{E}(N(A)) = \text{Var}(N(A)) = \text{vol}(A)n$.
- ► Thus, $N(A)$ has fluctuations of order \sqrt{n} .
- \triangleright Let Q be another point process with *n* particles per unit volume on average.
- If $|Q \cap A|$ has fluctuations of order $o(\sqrt{2})$ \overline{n}), it is called rigid. (This is one definition; there are others.)

イ押 トライモ トラモト

∽≏ດ

- In Let P be a Poisson point process of intensity n in \mathbb{R}^d , and let $A \subseteq \mathbb{R}^d$ be a set of nonzero volume.
- ► Let $N(A) := |A \cap P|$.
- \blacktriangleright Then $\mathbb{E}(N(A)) = \text{Var}(N(A)) = \text{vol}(A)n$.
- ► Thus, $N(A)$ has fluctuations of order \sqrt{n} .
- \triangleright Let Q be another point process with *n* particles per unit volume on average.
- If $|Q \cap A|$ has fluctuations of order $o(\sqrt{2})$ \overline{n}), it is called rigid. (This is one definition; there are others.)
- \triangleright Called hyperuniformity in the physics literature.

 $4.50 \times 4.70 \times 4.70 \times$

Examples of rigid point processes

 \blacktriangleright Many examples, intensely studied in recent years.

重

重

Examples of rigid point processes

- \triangleright Many examples, intensely studied in recent years.
- \triangleright Eigenvalues of random matrices, Coulomb gas and other interacting gases, zeros of random analytic functions, determinantal point processes, orthogonal polynomial ensembles, etc.

Examples of rigid point processes

- \triangleright Many examples, intensely studied in recent years.
- \triangleright Eigenvalues of random matrices, Coulomb gas and other interacting gases, zeros of random analytic functions, determinantal point processes, orthogonal polynomial ensembles, etc.
- \blacktriangleright Numerous contributors:
	- \triangleright Eigenvalues and determinantal processes: Borodin, Bourgade, Deift, Diaconis, Erdős, Evans, Forrester, Guionnet, Johansson, Pastur, Rider, Shcherbina, Soshnikov, Tao, Virág, Vu, Yau, ...
	- \triangleright Coulomb gas and other interacting gases: Bauerschmidt, Ben Arous, Bourgade, Chafaï, Leblé, Majumdar, Radin, Serfaty, Yau, Zeitouni, ...
	- \triangleright Zeros of random analytic functions: Ghosh, Lebowitz, Nazarov, Peres, Sodin, Volberg, ...
	- \triangleright Orthogonal polynomial ensembles: Bardenet, Berman, Breuer, Duits, Hardy, Johansson, Lambert, ...
	- \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright + many others (see my preprint on ar[Xiv](#page-9-0) [fo](#page-11-0)ra [s](#page-11-0)[urv](#page-0-0)[ey](#page-104-0)[\).](#page-0-0)

 Ω

 \blacktriangleright Consider a probability density on $(\mathbb{R}^d)^n$ of the form

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

where w is a symmetric function, V is any function with sufficient growth at infinity, β is the "inverse temperature" parameter, and Z is the normalizing constant.

 \blacktriangleright Consider a probability density on $(\mathbb{R}^d)^n$ of the form

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

where w is a symmetric function, V is any function with sufficient growth at infinity, β is the "inverse temperature" parameter, and Z is the normalizing constant.

 \triangleright This is the general form of an interacting gas of *n* particles with pairwise interactions.

 \blacktriangleright Consider a probability density on $(\mathbb{R}^d)^n$ of the form

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

where w is a symmetric function, V is any function with sufficient growth at infinity, β is the "inverse temperature" parameter, and Z is the normalizing constant.

- \triangleright This is the general form of an interacting gas of *n* particles with pairwise interactions.
- ► Coulomb gas: V is arbitrary (usually $V(x) = |x|^2$) and

$$
w(x, y) = \begin{cases} |x - y| & \text{if } d = 1, \\ -\log|x - y| & \text{if } d = 2, \\ |x - y|^{2 - d} & \text{if } d \ge 3. \end{cases}
$$

A + + = + + = +

 \blacktriangleright Consider a probability density on $(\mathbb{R}^d)^n$ of the form

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

where w is a symmetric function, V is any function with sufficient growth at infinity, β is the "inverse temperature" parameter, and Z is the normalizing constant.

- \triangleright This is the general form of an interacting gas of *n* particles with pairwise interactions.
- ► Coulomb gas: V is arbitrary (usually $V(x) = |x|^2$) and

$$
w(x,y) = \begin{cases} |x - y| & \text{if } d = 1, \\ -\log|x - y| & \text{if } d = 2, \\ |x - y|^{2 - d} & \text{if } d \ge 3. \end{cases}
$$

► Log g[a](#page-13-0)s: $d = 1$ $d = 1$ $d = 1$, $w(x, y) = -\log |x - y|$ a[nd](#page-15-0) $V(x) = x^2$ $V(x) = x^2$ [.](#page-104-0)

 Ω

 \triangleright One key motivation for studying interacting gases comes from random matrix theory.

 λ in the set of the λ

 $2Q$

扂

- \triangleright One key motivation for studying interacting gases comes from random matrix theory.
- \triangleright Eigenvalues of GUE, GOE and unitary random matrices are 1D log gases.

A BANK BA

- \triangleright One key motivation for studying interacting gases comes from random matrix theory.
- \triangleright Eigenvalues of GUE, GOE and unitary random matrices are 1D log gases.
- \triangleright Eigenvalues of Ginibre random matrices are 2D Coulomb gases.

A + + = + + = +

- \triangleright One key motivation for studying interacting gases comes from random matrix theory.
- \triangleright Eigenvalues of GUE, GOE and unitary random matrices are 1D log gases.
- \triangleright Eigenvalues of Ginibre random matrices are 2D Coulomb gases.
- \triangleright The 1D log gas and the 1D and 2D Coulomb gases are known to be rigid (more later).

A + + = + + = +

- \triangleright One key motivation for studying interacting gases comes from random matrix theory.
- \triangleright Eigenvalues of GUE, GOE and unitary random matrices are 1D log gases.
- \triangleright Eigenvalues of Ginibre random matrices are 2D Coulomb gases.
- \triangleright The 1D log gas and the 1D and 2D Coulomb gases are known to be rigid (more later).
- \blacktriangleright However, the most physically relevant interacting gas is the 3D Coulomb gas. No connection with random matrices or determinantal point processes. Very few rigorous mathematical results are known about it. In particular, it is believed to be rigid but there is no rigorous proof.

 $4.50 \times 4.70 \times 4.70 \times$

 \triangleright Rigidity of the 1D log gas follows from the works of many authors, e.g. Costin & Lebowitz (1995), Diaconis & Evans (2001), Wieand (2002), Pastur (2006), Bourgade, Erdős & Yau (2012) and Tao & Vu (2013).

A + + = + + = +

- \triangleright Rigidity of the 1D log gas follows from the works of many authors, e.g. Costin & Lebowitz (1995), Diaconis & Evans (2001), Wieand (2002), Pastur (2006), Bourgade, Erdős & Yau (2012) and Tao & Vu (2013).
- For the 2D Coulomb gas with $V(x) = |x|^2$, various forms of rigidity were established by Borodin & Sinclair (2009), Bourgade, Yau & Yin (2014), Tao & Vu (2015), and Ghosh & Peres (2017).

マーター マーティング

- \triangleright Rigidity of the 1D log gas follows from the works of many authors, e.g. Costin & Lebowitz (1995), Diaconis & Evans (2001), Wieand (2002), Pastur (2006), Bourgade, Erdős & Yau (2012) and Tao & Vu (2013).
- For the 2D Coulomb gas with $V(x) = |x|^2$, various forms of rigidity were established by Borodin & Sinclair (2009), Bourgade, Yau & Yin (2014), Tao & Vu (2015), and Ghosh & Peres (2017).
- \triangleright For the 2D Coulomb gas with general V, rigidity was recently established through contributions from Sandier & Serfaty (2015), Rougerie & Serfaty (2015), Bauerschmidt, Bourgade, Nikula $&$ Yau (2016) and Leblé $&$ Serfaty (2016).

イロメ イ部メ イヨメ イヨメー

 \triangleright Rigidity of the Coulomb gas has not yet been proved in dimensions three and higher.

 $2Q$

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

- \triangleright Rigidity of the Coulomb gas has not yet been proved in dimensions three and higher.
- \triangleright The most promising results available at this time are due to Serfaty and collaborators, who have obtained very precise informations about normalizing constants and large deviations for Coulomb gases in general dimensions.

 \triangleright Consider a 3D Coulomb gas of *n* particles.

 $2Q$

后

三

- \triangleright Consider a 3D Coulomb gas of *n* particles.
- Exect $N(A)$ be the number of particles falling in a region A of nonzero volume.

- \triangleright Consider a 3D Coulomb gas of *n* particles.
- In Let $N(A)$ be the number of particles falling in a region A of nonzero volume.
- \blacktriangleright In 1993, Jancovici, Lebowitz and Manificat made a famous prediction (with a physics justification) that $N(A)$ should have fluctuations of order $n^{1/3}$.

- \triangleright Consider a 3D Coulomb gas of *n* particles.
- In Let $N(A)$ be the number of particles falling in a region A of nonzero volume.
- \blacktriangleright In 1993, Jancovici, Lebowitz and Manificat made a famous prediction (with a physics justification) that $N(A)$ should have fluctuations of order $n^{1/3}$.
- \triangleright This is much larger than similar fluctuations for the 1D log This is much larger than similar muctuations for the 1D log
gas (arising in random matrices), which are of order $\sqrt{\log n}$.

- \triangleright Consider a 3D Coulomb gas of *n* particles.
- In Let $N(A)$ be the number of particles falling in a region A of nonzero volume.
- \blacktriangleright In 1993, Jancovici, Lebowitz and Manificat made a famous prediction (with a physics justification) that $N(A)$ should have fluctuations of order $n^{1/3}$.
- \triangleright This is much larger than similar fluctuations for the 1D log This is much larger than similar muctuations for the 1D log
gas (arising in random matrices), which are of order $\sqrt{\log n}$.
- \triangleright For the 3D Coulomb gas, however, this conjecture is still open.

A + + = + + = +

- \triangleright Consider a 3D Coulomb gas of *n* particles.
- In Let $N(A)$ be the number of particles falling in a region A of nonzero volume.
- \blacktriangleright In 1993, Jancovici, Lebowitz and Manificat made a famous prediction (with a physics justification) that $N(A)$ should have fluctuations of order $n^{1/3}$.
- \triangleright This is much larger than similar fluctuations for the 1D log This is much larger than similar muctuations for the 1D log
gas (arising in random matrices), which are of order $\sqrt{\log n}$.
- \triangleright For the 3D Coulomb gas, however, this conjecture is still open.
- In a recent preprint, I proved this conjecture (up to logarithmic factors) for a closely related model, known as the 3D hierarchical Coulomb gas. This is the subject of this talk.

 $A \oplus A$ and $A \oplus A$

 \triangleright Recall the general form of the probability density for an interacting gas of n particles:

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

 \sim $\left\{ \begin{array}{c} 1 \end{array} \right.$ $\left\{ \begin{array}{c} 1 \end{array} \right.$

扂

 \triangleright Recall the general form of the probability density for an interacting gas of n particles:

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

 \triangleright We will take $d = 3$, and

$$
V(x) = \begin{cases} 0 & \text{if } x \in [0,1]^3, \\ \infty & \text{if } x \notin [0,1]^3, \end{cases}
$$

so that all particles are confined inside the unit cube.

 \triangleright Recall the general form of the probability density for an interacting gas of n particles:

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

 \triangleright We will take $d = 3$, and

$$
V(x) = \begin{cases} 0 & \text{if } x \in [0,1]^3, \\ \infty & \text{if } x \notin [0,1]^3, \end{cases}
$$

so that all particles are confined inside the unit cube.

Finally, let $w(x, y) = 2^{k(x,y)}$, where $k(x, y)$ is the minimum k such that x and y belong to different dyadic cubes of side-length 2^{-k} .

 \triangleright Recall the general form of the probability density for an interacting gas of n particles:

$$
\frac{1}{Z}\exp\biggl(-\beta\sum_{1\leq i
$$

 \triangleright We will take $d = 3$, and

$$
V(x) = \begin{cases} 0 & \text{if } x \in [0,1]^3, \\ \infty & \text{if } x \notin [0,1]^3, \end{cases}
$$

so that all particles are confined inside the unit cube.

- Finally, let $w(x, y) = 2^{k(x,y)}$, where $k(x, y)$ is the minimum k such that x and y belong to different dyadic cubes of side-length 2^{-k} .
- \blacktriangleright Then $w(x, y)$ "behaves like" the 3D Coulomb potential $|x-y|^{-1}$ when x is close to y, up to c[on](#page-33-0)s[ta](#page-35-0)[n](#page-30-0)[t](#page-31-0) [f](#page-34-0)[a](#page-35-0)[ct](#page-0-0)[ors](#page-104-0)[.](#page-0-0)

 \triangleright The scheme described in the previous slide is a general method for replacing ordinary Euclidean distance by a hierarchical version of itself, originally proposed by Dyson (1953) and used subsequently in thousands of papers.
- \triangleright The scheme described in the previous slide is a general method for replacing ordinary Euclidean distance by a hierarchical version of itself, originally proposed by Dyson (1953) and used subsequently in thousands of papers.
- \triangleright The hierarchical version of the Coulomb gas was introduced in the physics literature by Benfatto, Gallavotti & Nicolò (1986) and subsequently studied by many authors.

Theorem (C., 2017)

Consider the n-particle 3D hierarchical Coulomb gas in the unit cube. Take any $A \subseteq [0, 1]^3$ with a two-dimensional boundary (in the Minkowski sense) and let $N(A)$ be the number of particles falling in A. Then $\mathbb{E}(N(A)) = \text{vol}(A)$ n and

$$
\text{Var}(N(A)) \leq Cn^{2/3} \log n,
$$

where C is a constant that depends only on A and β .

Theorem (C., 2017)

Consider the n-particle 3D hierarchical Coulomb gas in the unit cube. Take any $A \subseteq [0, 1]^3$ with a two-dimensional boundary (in the Minkowski sense) and let $N(A)$ be the number of particles falling in A. Then $\mathbb{E}(N(A)) = \text{vol}(A)n$ and

$$
\text{Var}(N(A)) \leq Cn^{2/3} \log n,
$$

where C is a constant that depends only on A and β .

(There is another similar result in the preprint for the case where A is shrinking with n . Rigidity is proved at all scales.)

Theorem (C., 2017)

Suppose that A is nonempty, connected and open, and ∂A is a smooth, closed, orientable surface. Then there exist $n_0 > 1$, $c_1 > 0$ and $c_2 < 1$, depending only on A and β , such that for any $n > n_0$ and any $-\infty < a \leq b < \infty$ with $b - a \leq c_1 n^{1/3}$,

 $\mathbb{P}(a \leq N(A) \leq b) \leq c_2.$

 \blacktriangleright There is a folklore that "repulsion" between points causes rigidity, as in determinantal processes.

 $2Q$

后

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

- \triangleright There is a folklore that "repulsion" between points causes rigidity, as in determinantal processes.
- \triangleright The reasoning is not clear to me. In fact, I do not know of any example where one gets a proof of rigidity starting with this intuition.

 \rightarrow \equiv \rightarrow

つくい

- \triangleright There is a folklore that "repulsion" between points causes rigidity, as in determinantal processes.
- \triangleright The reasoning is not clear to me. In fact, I do not know of any example where one gets a proof of rigidity starting with this intuition.
- \triangleright A different intuitive explanation is that rigid point processes behave essentially like a perturbed lattice, where each point is a small perturbation of a corresponding deterministic value.

- \triangleright There is a folklore that "repulsion" between points causes rigidity, as in determinantal processes.
- \triangleright The reasoning is not clear to me. In fact, I do not know of any example where one gets a proof of rigidity starting with this intuition.
- \triangleright A different intuitive explanation is that rigid point processes behave essentially like a perturbed lattice, where each point is a small perturbation of a corresponding deterministic value.
- \triangleright This can be partly validated for eigenvalues of Hermitian random matrices, where we can talk about the k^{th} largest eigenvalue and its fluctuations, for $k = 1, 2, \ldots, n$.

ALC: N

- \triangleright There is a folklore that "repulsion" between points causes rigidity, as in determinantal processes.
- \triangleright The reasoning is not clear to me. In fact, I do not know of any example where one gets a proof of rigidity starting with this intuition.
- \triangleright A different intuitive explanation is that rigid point processes behave essentially like a perturbed lattice, where each point is a small perturbation of a corresponding deterministic value.
- \triangleright This can be partly validated for eigenvalues of Hermitian random matrices, where we can talk about the k^{th} largest eigenvalue and its fluctuations, for $k = 1, 2, \ldots, n$.
- \blacktriangleright However, it is not clear how to make use of this intuition to construct proofs in higher dimensions.

 $4.50 \times 4.70 \times 4.70 \times$

- \triangleright There is a folklore that "repulsion" between points causes rigidity, as in determinantal processes.
- \triangleright The reasoning is not clear to me. In fact, I do not know of any example where one gets a proof of rigidity starting with this intuition.
- \triangleright A different intuitive explanation is that rigid point processes behave essentially like a perturbed lattice, where each point is a small perturbation of a corresponding deterministic value.
- \triangleright This can be partly validated for eigenvalues of Hermitian random matrices, where we can talk about the k^{th} largest eigenvalue and its fluctuations, for $k = 1, 2, \ldots, n$.
- \blacktriangleright However, it is not clear how to make use of this intuition to construct proofs in higher dimensions.
- \blacktriangleright I will now give a different intuition, using a toy example involving balls and boxes. The proof for the 3D hierarchical Coulomb gas is a generalization of this [to](#page-44-0)y [p](#page-46-0)[r](#page-39-0)[o](#page-40-0)[o](#page-45-0)[f.](#page-46-0)

Suppose that we have two boxes, and $2n$ balls are to be dropped at random into these two boxes.

- 4 周 8 34 周 8

A.

 $2Q$

扂

- Suppose that we have two boxes, and $2n$ balls are to be dropped at random into these two boxes.
- \triangleright Two balls falling into the same box contribute a quantity a to the potential energy, and two balls falling in different boxes contribute a quantity b to the potential energy.

Allen Allen

つくい

- Suppose that we have two boxes, and $2n$ balls are to be dropped at random into these two boxes.
- \triangleright Two balls falling into the same box contribute a quantity a to the potential energy, and two balls falling in different boxes contribute a quantity b to the potential energy.
- In Thus, if n_1 and n_2 are the numbers of balls falling in boxes 1 and 2, then the total potential energy is

$$
H(n_1, n_2) := {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

A + + = + + = +

- Suppose that we have two boxes, and $2n$ balls are to be dropped at random into these two boxes.
- \triangleright Two balls falling into the same box contribute a quantity a to the potential energy, and two balls falling in different boxes contribute a quantity b to the potential energy.
- In Thus, if n_1 and n_2 are the numbers of balls falling in boxes 1 and 2, then the total potential energy is

$$
H(n_1, n_2) := {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

A configuration with n_1 balls in box 1 and n_2 balls in box 2 is assigned a probability proportional to $e^{-\beta H(n_1,n_2)}$, where β is the inverse temperature parameter, as usual.

 $A \cap \overline{A} \cap A = A \cap A = A$

In Let N_1 and N_2 be the numbers of balls in boxes 1 and 2 in a random configuration drawn from this model. Note that $N_1 + N_2 = 2n$.

K 御 ▶ K 君 ▶ K 君 ▶

 $2Q$

目

- In Let N_1 and N_2 be the numbers of balls in boxes 1 and 2 in a random configuration drawn from this model. Note that $N_1 + N_2 = 2n$.
- \triangleright Question: What is the order of fluctuations of N_1 ?

A + + = + + = +

- In Let N_1 and N_2 be the numbers of balls in boxes 1 and 2 in a random configuration drawn from this model. Note that $N_1 + N_2 = 2n$.
- \triangleright Question: What is the order of fluctuations of N_1 ?
- If $a = b$, then the balls are distributed uniformly at random between the two boxes. In this case, N_1 has fluctuations of $\frac{1}{\text{order } \sqrt{n}}$.

桐 トラ ミュ エト

- In Let N_1 and N_2 be the numbers of balls in boxes 1 and 2 in a random configuration drawn from this model. Note that $N_1 + N_2 = 2n$.
- \triangleright Question: What is the order of fluctuations of N_1 ?
- If $a = b$, then the balls are distributed uniformly at random between the two boxes. In this case, N_1 has fluctuations of $\frac{1}{\text{order } \sqrt{n}}$.
- \blacktriangleright What if $a > b$?

A + + = + + = +

- In Let N_1 and N_2 be the numbers of balls in boxes 1 and 2 in a random configuration drawn from this model. Note that $N_1 + N_2 = 2n$.
- \triangleright Question: What is the order of fluctuations of N_1 ?
- If $a = b$, then the balls are distributed uniformly at random between the two boxes. In this case, N_1 has fluctuations of $\frac{1}{\text{order } \sqrt{n}}$.
- \blacktriangleright What if $a > b$?
- Answer: If $a > b$, then N_1 has fluctuations of order 1 as $n \to \infty$.

桐 トラ ミュ エト

- In Let N_1 and N_2 be the numbers of balls in boxes 1 and 2 in a random configuration drawn from this model. Note that $N_1 + N_2 = 2n$.
- \triangleright Question: What is the order of fluctuations of N_1 ?
- If $a = b$, then the balls are distributed uniformly at random between the two boxes. In this case, N_1 has fluctuations of $\frac{1}{\text{order } \sqrt{n}}$.
- \blacktriangleright What if $a > b$?
- Answer: If $a > b$, then N_1 has fluctuations of order 1 as $n \to \infty$.
- \blacktriangleright Let me now explain how to see this.

桐 トラ ミュ エト

For each n_1 , n_2 such that $n_1 + n_2 = 2n$, let

$$
Z(n_1,n_2):=Q(n_1,n_2)e^{-\beta H(n_1,n_2)},
$$

where $Q(n_1, n_2)$ is the number of configurations that have n_1 balls in box 1 and n_2 balls in box 2.

 $2Q$

in a month of the second the second

For each n_1 , n_2 such that $n_1 + n_2 = 2n$, let

$$
Z(n_1,n_2):=Q(n_1,n_2)e^{-\beta H(n_1,n_2)},
$$

where $Q(n_1, n_2)$ is the number of configurations that have n_1 balls in box 1 and n_2 balls in box 2.

 \blacktriangleright Explicitly,

$$
Q(n_1, n_2) = \frac{(2n)!}{n_1! n_2!}.
$$

A + + = + + = +

For each n_1 , n_2 such that $n_1 + n_2 = 2n$, let

$$
Z(n_1,n_2):=Q(n_1,n_2)e^{-\beta H(n_1,n_2)},
$$

where $Q(n_1, n_2)$ is the number of configurations that have n_1 balls in box 1 and n_2 balls in box 2.

 \blacktriangleright Explicitly,

$$
Q(n_1, n_2) = \frac{(2n)!}{n_1! n_2!}.
$$

 \triangleright Then note that the normalizing constant for the toy model is

$$
Z = \sum_{n_1,n_2 \,:\, n_1+n_2=2n} Z(n_1,n_2).
$$

A + + = + + = +

For each n_1 , n_2 such that $n_1 + n_2 = 2n$, let

$$
Z(n_1,n_2):=Q(n_1,n_2)e^{-\beta H(n_1,n_2)},
$$

where $Q(n_1, n_2)$ is the number of configurations that have n_1 balls in box 1 and n_2 balls in box 2.

 \blacktriangleright Explicitly,

$$
Q(n_1, n_2) = \frac{(2n)!}{n_1! n_2!}.
$$

 \triangleright Then note that the normalizing constant for the toy model is

$$
Z = \sum_{n_1,n_2 \,:\, n_1+n_2=2n} Z(n_1,n_2).
$$

 \blacktriangleright Moreover, for any n_1, n_2 such that $n_1 + n_2 = 2n$,

$$
\mathbb{P}(N_1=n_1, N_2=n_2)=\frac{Z(n_1, n_2)}{Z}.
$$

 Ω

 \blacktriangleright Recall:

$$
H(n_1, n_2) = {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

 \leftarrow m.

 \rightarrow \equiv \rightarrow

A.

→ 重 →

 \equiv

 299

 \blacktriangleright Recall:

$$
H(n_1, n_2) = {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

 \blacktriangleright A simple calculation gives

$$
H(n+k,n-k)=H(n,n)+k^2(a-b).
$$

 \leftarrow \Box

× \equiv \rightarrow λ = λ

重

 \blacktriangleright Recall:

$$
H(n_1, n_2) = {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

 \triangleright A simple calculation gives

$$
H(n+k,n-k)=H(n,n)+k^2(a-b).
$$

► Also, recall that $Z(n_1, n_2) = Q(n_1, n_2) e^{-\beta H(n_1, n_2)}$, where

$$
Q(n_1, n_2) = \frac{(2n)!}{n_1! n_2!}.
$$

 λ = λ

重

 \blacktriangleright Recall:

$$
H(n_1, n_2) = {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

 \triangleright A simple calculation gives

$$
H(n+k,n-k)=H(n,n)+k^2(a-b).
$$

► Also, recall that $Z(n_1, n_2) = Q(n_1, n_2) e^{-\beta H(n_1, n_2)}$, where

$$
Q(n_1, n_2) = \frac{(2n)!}{n_1! n_2!}.
$$

 \triangleright Not hard to see that

$$
\frac{Q(n+k,n-k)}{Q(n,n)}\sim e^{-k^2/2n}.
$$

A BANK BA

重

 \blacktriangleright Recall:

$$
H(n_1, n_2) = {n_1 \choose 2}a + {n_2 \choose 2}a + n_1n_2b.
$$

 \triangleright A simple calculation gives

$$
H(n+k,n-k)=H(n,n)+k^2(a-b).
$$

► Also, recall that $Z(n_1, n_2) = Q(n_1, n_2) e^{-\beta H(n_1, n_2)}$, where

$$
Q(n_1, n_2) = \frac{(2n)!}{n_1! n_2!}.
$$

 \triangleright Not hard to see that

$$
\frac{Q(n+k,n-k)}{Q(n,n)}\sim e^{-k^2/2n}.
$$

Thus, if $k \ll \sqrt{2}$ \overline{n} , then

$$
\frac{Z(n+k,n-k)}{Z(n,n)}\sim e^{-\beta k^2(a-b)+o(1)}.
$$

 $2Q$

唾

This gives, for $k \ll \sqrt{2}$ n,

$$
\mathbb{P}(N_1 = n + k, N_2 = n - k)
$$

\n
$$
\leq \frac{\mathbb{P}(N_1 = n + k, N_2 = n - k)}{\mathbb{P}(N_1 = N_2 = n)}
$$

\n
$$
= \frac{Z(n + k, n - k)}{Z(n, n)} \sim e^{-\beta k^2(a - b) + o(1)}.
$$

 \leftarrow m.

A. **ALCOHOL:** (大震) () 重

This gives, for $k \ll \sqrt{2}$ n,

$$
\mathbb{P}(N_1 = n + k, N_2 = n - k)
$$
\n
$$
\leq \frac{\mathbb{P}(N_1 = n + k, N_2 = n - k)}{\mathbb{P}(N_1 = N_2 = n)}
$$
\n
$$
= \frac{Z(n + k, n - k)}{Z(n, n)} \sim e^{-\beta k^2(a - b) + o(1)}.
$$

► The case $k \geq \sqrt{2}$ \overline{n} is simpler and may be dealt with separately. This proves $O(1)$ fluctuations for N_1 around its expected value n.

 Ω

This gives, for $k \ll \sqrt{2}$ n,

$$
\mathbb{P}(N_1 = n + k, N_2 = n - k)
$$
\n
$$
\leq \frac{\mathbb{P}(N_1 = n + k, N_2 = n - k)}{\mathbb{P}(N_1 = N_2 = n)}
$$
\n
$$
= \frac{Z(n + k, n - k)}{Z(n, n)} \sim e^{-\beta k^2(a - b) + o(1)}
$$

- ► The case $k \geq \sqrt{2}$ \overline{n} is simpler and may be dealt with separately. This proves $O(1)$ fluctuations for N_1 around its expected value n.
- \triangleright The above argument generalizes to any finite number of boxes, as long as the matrix of potentials is strictly positive definite.

.

∽≏ດ

 \blacktriangleright The toy model suggests the following general heuristic for rigidity of interacting gases:

 \leftarrow \Box

 \sim $\left\{ \begin{array}{c} 1 \end{array} \right.$ 重

∢ 重 ≯

- \triangleright The toy model suggests the following general heuristic for rigidity of interacting gases:
	- \triangleright Suppose that the potential is positive definite, and consider an energy minimizing configuration.

 $2Q$

ALCOHOL:

- 4 E F

- \triangleright The toy model suggests the following general heuristic for rigidity of interacting gases:
	- \triangleright Suppose that the potential is positive definite, and consider an energy minimizing configuration.
	- \triangleright Shifting a few points around increases the energy, but the increase is not adequately compensated by the variation in the entropy (combinatorial) term.

AD - 4 E - 4 E -

- \triangleright The toy model suggests the following general heuristic for rigidity of interacting gases:
	- \triangleright Suppose that the potential is positive definite, and consider an energy minimizing configuration.
	- \triangleright Shifting a few points around increases the energy, but the increase is not adequately compensated by the variation in the entropy (combinatorial) term.
	- \blacktriangleright Thus, it is unlikely that the system deviates far from the energy minimizing state.

マーロー マニューマニュー
A general heuristic

- \triangleright The toy model suggests the following general heuristic for rigidity of interacting gases:
	- \triangleright Suppose that the potential is positive definite, and consider an energy minimizing configuration.
	- \triangleright Shifting a few points around increases the energy, but the increase is not adequately compensated by the variation in the entropy (combinatorial) term.
	- \blacktriangleright Thus, it is unlikely that the system deviates far from the energy minimizing state.
- \triangleright This looks similar to the usual energy-entropy argument of statistical mechanics, but there is an important difference.

マーター マーティング

A general heuristic

- \triangleright The toy model suggests the following general heuristic for rigidity of interacting gases:
	- \triangleright Suppose that the potential is positive definite, and consider an energy minimizing configuration.
	- \triangleright Shifting a few points around increases the energy, but the increase is not adequately compensated by the variation in the entropy (combinatorial) term.
	- \blacktriangleright Thus, it is unlikely that the system deviates far from the energy minimizing state.
- \triangleright This looks similar to the usual energy-entropy argument of statistical mechanics, but there is an important difference.
- \blacktriangleright Here, we inspect the changes in energy and entropy due to small changes in the ground state. The calculations become more delicate.

イロト イ押 トイモト イモト

A general heuristic

- \triangleright The toy model suggests the following general heuristic for rigidity of interacting gases:
	- \triangleright Suppose that the potential is positive definite, and consider an energy minimizing configuration.
	- \triangleright Shifting a few points around increases the energy, but the increase is not adequately compensated by the variation in the entropy (combinatorial) term.
	- \blacktriangleright Thus, it is unlikely that the system deviates far from the energy minimizing state.
- \triangleright This looks similar to the usual energy-entropy argument of statistical mechanics, but there is an important difference.
- \blacktriangleright Here, we inspect the changes in energy and entropy due to small changes in the ground state. The calculations become more delicate.
- In some sense, this is a combination of energy-entropy competition and the cavity method.

イロト イ押ト イチト イチト

In Let $Z(n)$ be the partition function of the *n*-particle 3D hierarchical Coulomb gas.

 \sim

in a month of the second the second

- Eet $Z(n)$ be the partition function of the *n*-particle 3D hierarchical Coulomb gas.
- \triangleright Using the previous heuristic, the question can be boiled down to understanding the ratio $Z(n+1)/Z(n)$. (This is reminiscent of the cavity method of spin glasses.)

- Eet $Z(n)$ be the partition function of the *n*-particle 3D hierarchical Coulomb gas.
- \triangleright Using the previous heuristic, the question can be boiled down to understanding the ratio $Z(n+1)/Z(n)$. (This is reminiscent of the cavity method of spin glasses.)
- \triangleright On the one hand.

$$
\frac{Z(n+1)}{Z(n)} = \mathbb{E} \exp\bigg(-\beta \sum_{i=1}^n w(U, X_i)\bigg),
$$

where (X_1, \ldots, X_n) is a realization of the *n*-particle system, and $U \sim Unif[0,1]^d$.

- Eet $Z(n)$ be the partition function of the *n*-particle 3D hierarchical Coulomb gas.
- \triangleright Using the previous heuristic, the question can be boiled down to understanding the ratio $Z(n+1)/Z(n)$. (This is reminiscent of the cavity method of spin glasses.)
- \triangleright On the one hand.

$$
\frac{Z(n+1)}{Z(n)} = \mathbb{E} \exp\bigg(-\beta \sum_{i=1}^n w(U, X_i)\bigg),
$$

where (X_1, \ldots, X_n) is a realization of the *n*-particle system, and $U \sim Unif[0,1]^d$.

► Jensen's inequality gives $Z(n+1)/Z(n) \geq e^{-\beta \alpha n}$, where $\alpha = \iint w(x,y) dxdy$, since each X_i is uniformly distributed.

マーター マーティング

Estimating $Z(n+1)/Z(n)$

 \triangleright On the other hand,

$$
\frac{Z(n)}{Z(n+1)} = \mathbb{E} \exp \bigg(\beta \sum_{i=1}^n w(X_{n+1}, X_i) \bigg),
$$

where (X_1, \ldots, X_{n+1}) is a realization of the $(n+1)$ -particle system.

 $4.171 +$

メ御き メミメ メミメー

重

Estimating $Z(n+1)/Z(n)$

 \triangleright On the other hand,

$$
\frac{Z(n)}{Z(n+1)} = \mathbb{E} \exp \bigg(\beta \sum_{i=1}^n w(X_{n+1}, X_i) \bigg),
$$

where (X_1, \ldots, X_{n+1}) is a realization of the $(n+1)$ -particle system.

 \blacktriangleright Again, Jensen's inequality gives

$$
\frac{Z(n)}{Z(n+1)} \geq \exp\bigg(\beta \sum_{i=1}^n \mathbb{E}(w(X_{n+1}, X_i))\bigg).
$$

 $4.171 +$

メ御き メミメ メミメー

重

Estimating $Z(n+1)/Z(n)$

 \triangleright On the other hand.

$$
\frac{Z(n)}{Z(n+1)} = \mathbb{E} \exp \bigg(\beta \sum_{i=1}^n w(X_{n+1}, X_i) \bigg),
$$

where (X_1, \ldots, X_{n+1}) is a realization of the $(n+1)$ -particle system.

 \blacktriangleright Again, Jensen's inequality gives

$$
\frac{Z(n)}{Z(n+1)} \geq \exp\bigg(\beta \sum_{i=1}^n \mathbb{E}(w(X_{n+1}, X_i))\bigg).
$$

But by the symmetry between X_1, \ldots, X_{n+1} , this equals

$$
\exp\left(\frac{\beta n}{\binom{n+1}{2}}\sum_{1\leq i
=
$$
\exp\left(\frac{\beta n}{\binom{n+1}{2}}\mathbb{E}(H_{n+1}(X_1,\ldots,X_{n+1}))\right).
$$
$$

Estimating $Z(n+1)/Z(n)$, contd.

 \blacktriangleright Thus,

$$
\frac{Z(n)}{Z(n+1)} \geq \exp\bigg(\frac{\beta n}{\binom{n+1}{2}}L_{n+1}\bigg),
$$

where L_{n+1} is the minimum possible energy of the $(n + 1)$ -particle system.

 $4.17 \times$

メ御き メミメ メミメー

重

Estimating $Z(n+1)/Z(n)$, contd.

 \blacktriangleright Thus.

$$
\frac{Z(n)}{Z(n+1)} \geq \exp\bigg(\frac{\beta n}{\binom{n+1}{2}}L_{n+1}\bigg),
$$

where L_{n+1} is the minimum possible energy of the $(n + 1)$ -particle system.

 \triangleright We will now show that

$$
L_{n+1}\geq \binom{n+1}{2}\alpha- C n^{4/3},
$$

where C is a universal constant and $\alpha = \iint w(x,y)dxdy,$ as before.

桐 トラ ミュ エト

 $2Q$

重

Estimating $Z(n+1)/Z(n)$, contd.

 \blacktriangleright Thus.

$$
\frac{Z(n)}{Z(n+1)} \geq \exp\bigg(\frac{\beta n}{\binom{n+1}{2}}L_{n+1}\bigg),
$$

where L_{n+1} is the minimum possible energy of the $(n + 1)$ -particle system.

 \triangleright We will now show that

$$
L_{n+1}\geq {n+1\choose 2}\alpha-Cn^{4/3},
$$

where C is a universal constant and $\alpha = \iint w(x,y)dxdy,$ as before.

Combined with the lower bound on $Z(n+1)/Z(n)$ **, this shows** that

$$
e^{-\beta\alpha n}\leq \frac{Z(n+1)}{Z(n)}\leq e^{-\beta\alpha n+Cn^{1/3}}.
$$

 \triangleright Suppose that we have a configuration where each of the 8 sub-cubes of $[0,1]^3$ receive $n/8$ particles.

A BANK BA

 $2Q$

扂

- \triangleright Suppose that we have a configuration where each of the 8 sub-cubes of $[0,1]^3$ receive $n/8$ particles.
- In These estimates for $Z(n+1)/Z(n)$ show that moving k particles from one box to another increases the energy of the configuration by Ck^2 while increasing the entropy by at most $Ckn^{1/3}$.

- \triangleright Suppose that we have a configuration where each of the 8 sub-cubes of $[0,1]^3$ receive $n/8$ particles.
- \blacktriangleright These estimates for $Z(n+1)/Z(n)$ show that moving k particles from one box to another increases the energy of the configuration by Ck^2 while increasing the entropy by at most $Ckn^{1/3}$.
- \blacktriangleright This shows that the chance of having more than $n/8 + O(n^{1/3})$ particles in any box is small.

A + + = + + = +

- \triangleright Suppose that we have a configuration where each of the 8 sub-cubes of $[0,1]^3$ receive $n/8$ particles.
- \blacktriangleright These estimates for $Z(n+1)/Z(n)$ show that moving k particles from one box to another increases the energy of the configuration by Ck^2 while increasing the entropy by at most $Ckn^{1/3}$.
- \triangleright This shows that the chance of having more than $n/8 + O(n^{1/3})$ particles in any box is small.
- \triangleright A multi-scale generalization of this argument leads to the proof.

 $4.50 \times 4.70 \times 4.70 \times$

 \triangleright We wish to show that

$$
L_n \geq {n \choose 2} \alpha - C n^{4/3}
$$

and $\alpha = \iint w(x, y) dxdy$.

 $\epsilon = 1$

 \sim

重

 \triangleright We wish to show that

$$
L_n \geq {n \choose 2} \alpha - C n^{4/3}
$$

and $\alpha = \iint w(x, y) dxdy$.

► Let \mathcal{D}_j be the set of dyadic cubes of side-length 2^{-j}.

 \triangleright We wish to show that

$$
L_n \geq {n \choose 2} \alpha - C n^{4/3}
$$

and $\alpha = \iint w(x, y) dxdy$.

- ► Let \mathcal{D}_j be the set of dyadic cubes of side-length 2^{-j}.
- \blacktriangleright Take any configuration (x_1, \ldots, x_n) .

 \triangleright We wish to show that

$$
L_n \geq {n \choose 2} \alpha - C n^{4/3}
$$

and $\alpha = \iint w(x, y) dxdy$.

- ► Let \mathcal{D}_j be the set of dyadic cubes of side-length 2^{-j}.
- \blacktriangleright Take any configuration (x_1, \ldots, x_n) .
- For each dyadic cube D, let n_D be the number of points falling in D.

 Ω

 \triangleright We wish to show that

$$
L_n \geq {n \choose 2} \alpha - C n^{4/3}
$$

and $\alpha = \iint w(x, y) dxdy$.

- ► Let \mathcal{D}_j be the set of dyadic cubes of side-length 2^{-j}.
- \blacktriangleright Take any configuration (x_1, \ldots, x_n) .
- For each dyadic cube D, let n_D be the number of points falling in D.
- \blacktriangleright The energy of the 3D hierarchical Coulomb gas can be written as a multi-scale χ^2 statistic:

$$
H_n(x_1,\ldots,x_n)=\sum_{j=1}^{\infty}\sum_{D\in\mathcal{D}_j}2^j\binom{n_D}{2}+2\binom{n}{2}.
$$

 \blacktriangleright Thus, for any k ,

$$
H_n(x_1,\ldots,x_n) \geq \sum_{j=1}^k \sum_{D \in \mathcal{D}_j} 2^j {n_D \choose 2} + 2 {n \choose 2}
$$

=
$$
\sum_{j=1}^k \sum_{D \in \mathcal{D}_j} 2^{j-1} n_D^2 - \sum_{j=1}^k 2^{j-1} n + 2 {n \choose 2}.
$$

 $4.171 +$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B}$

 299

 \blacktriangleright Thus, for any k ,

$$
H_n(x_1,\ldots,x_n) \geq \sum_{j=1}^k \sum_{D \in \mathcal{D}_j} 2^j {n_D \choose 2} + 2 {n \choose 2}
$$

=
$$
\sum_{j=1}^k \sum_{D \in \mathcal{D}_j} 2^{j-1} n_D^2 - \sum_{j=1}^k 2^{j-1} n + 2 {n \choose 2}.
$$

 \triangleright By the Cauchy–Schwarz inequality,

$$
\sum_{D\in\mathcal{D}_j}n_D^2\geq \frac{n^2}{8^j}.
$$

 $2Q$

EXECUTE 扂

 \blacktriangleright Thus, for any k ,

$$
H_n(x_1,\ldots,x_n) \geq \sum_{j=1}^k \sum_{D \in \mathcal{D}_j} 2^j {n_D \choose 2} + 2 {n \choose 2}
$$

=
$$
\sum_{j=1}^k \sum_{D \in \mathcal{D}_j} 2^{j-1} n_D^2 - \sum_{j=1}^k 2^{j-1} n + 2 {n \choose 2}.
$$

 \triangleright By the Cauchy–Schwarz inequality,

$$
\sum_{D\in\mathcal{D}_j}n_D^2\geq \frac{n^2}{8^j}.
$$

 \blacktriangleright Thus,

$$
H_n(x_1,\ldots,x_n)\geq \frac{n^2}{2}\sum_{j=1}^k 4^{-j}-2^kn+2\binom{n}{2}.
$$

\blacktriangleright This gives

$$
H_n(x_1,\ldots,x_n)\geq \frac{7}{3}\binom{n}{2}-\frac{n^2}{6}4^{-k}-2^kn.
$$

- A simple calculation gives $\alpha = \frac{7}{3}$.
- ▶ Choosing *k* such that $n^{1/3} \le 2^k \le 2n^{1/3}$ gives the desired lower bound.

 $2Q$

- 4 E F

 \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.

A BANK BA

 $2Q$

目

- \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.
- \blacktriangleright Many examples, widely studied in recent years.

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

- \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.
- \blacktriangleright Many examples, widely studied in recent years.
- \triangleright Most of the available results are for 1D and 2D processes.

- \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.
- \blacktriangleright Many examples, widely studied in recent years.
- \triangleright Most of the available results are for 1D and 2D processes.
- \triangleright This talk was about a rigidity result for a three-dimensional interacting gas, known as the 3D hierarchical Coulomb gas. It is a close cousin of the 3D Coulomb gas.

- \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.
- \blacktriangleright Many examples, widely studied in recent years.
- \triangleright Most of the available results are for 1D and 2D processes.
- \triangleright This talk was about a rigidity result for a three-dimensional interacting gas, known as the 3D hierarchical Coulomb gas. It is a close cousin of the 3D Coulomb gas.
- \triangleright The main result gives matching upper and lower bounds on the order of fluctuations (up to a logarithmic factor).

ィタト ィラト ィラト

- \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.
- \blacktriangleright Many examples, widely studied in recent years.
- \triangleright Most of the available results are for 1D and 2D processes.
- \triangleright This talk was about a rigidity result for a three-dimensional interacting gas, known as the 3D hierarchical Coulomb gas. It is a close cousin of the 3D Coulomb gas.
- \triangleright The main result gives matching upper and lower bounds on the order of fluctuations (up to a logarithmic factor).
- \triangleright Proof technique is based on a general approach that combines energy-entropy competition and the cavity method.

 $A \cap B$ is a $B \cap A \cap B$ is

- \triangleright A point process is called rigid if the number of points falling in a given set has much smaller fluctuations that the corresponding number for a Poisson point process of the same intensity.
- \blacktriangleright Many examples, widely studied in recent years.
- \triangleright Most of the available results are for 1D and 2D processes.
- \triangleright This talk was about a rigidity result for a three-dimensional interacting gas, known as the 3D hierarchical Coulomb gas. It is a close cousin of the 3D Coulomb gas.
- \triangleright The main result gives matching upper and lower bounds on the order of fluctuations (up to a logarithmic factor).
- \triangleright Proof technique is based on a general approach that combines energy-entropy competition and the cavity method.
- \triangleright The corresponding result for the 3D Coulomb gas, predicted by Jancovici, Lebowitz and Manificat in 1993, remains an open problem. メラト メミト メミト