Day 3 Talk 1 Artem Zvavitch "Bezout Inequality for Mixed Volumes" Joint to Sardglou Sopwhor Notation (more on stides) - Discuss only convex sets (bodies) Vn(K) volume of KeR" K+L=2k+l [kek, 1el] Mulkowski sum Vn(ASXiki) is a homog. pol. of algree $= \underbrace{\xi}_{i_1,\dots,i_{r-1}} \quad \bigvee (k_{i_1},\dots,k_{i_r}) \quad \lambda_{i_1},\dots,\lambda_{i_n}$ coeffs no mixed volme De Made volume multi-liner, monotone à ce components - Ques HUD 3 Q1: DCR" convex $V(k, ..., k_r, \underline{D}, ..., \underline{D}, \nabla, t\underline{O}) \leq \pi \nabla(k; \underline{D}, ..., \underline{D})$ V connex bodres K, ... K-. Is D then a simplex? Q2. What is the best constant car $V[K_{1}, ..., K_{r}, D_{r}, ..., D_{r}] V_{n}(D)^{r-1} \leq c_{n,r} \overline{T} V(k_{r}^{r}, D_{r}, D)$ Plan: - How to deire? - Why hereisting? fre for V connex Ki, D. -What is known about Q1, Q27.

'Then

Note: idéa for inequality comes from Algebraic geometry, but provid by simple convex geometry.

Q1 r=2 hardest case mylies others

The Sarolou, Soprinor & A;2'16 If Dis a polytope ~DD = A idea of proof: perturb faces The Saroglou, Soprinor, A.2. 16 D no stict boundary points.

Thm Sopwhar, A.t : it Ki are Zonoids M V(K,...Kr, D^{n-r})V_n(D)^{r1} < r fl V(K; DEn-iJ) inequality is sharp. Thm it Ki are symmetric N(K;...Kr, D^{n-r})V_n(D)^{r1} < cn,r ff V(K; D^{n-r}) Cn,r < n^r r^r! R Is this the best?

Bezout Inequality for Mixed volumes.

Artem Zvavitch Kent State University

(based on joint works with Christos Saroglou and Ivan Soprunov)

"Geometric functional analysis and applications" MSRI, November 13–17, 2017.

• All of the sets we will consider will be convex.

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � �

- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.

문에 비원에 다

∃ <\0<</p>

- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $V_n(K)$ volume of $K \subset \mathbb{R}^n$.

- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $V_n(K)$ volume of $K \subset \mathbb{R}^n$.
- We will often use notion of Minkowski sum: $K + L = \{x + y : x \in K \text{ and } y \in L\}.$

★ 프 ▶ - 프

- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $V_n(K)$ volume of $K \subset \mathbb{R}^n$.
- We will often use notion of Minkowski sum: $K + L = \{x + y : x \in K \text{ and } y \in L\}.$
- We all know that V_n(λK) = λⁿV_n(K) for λ ≥ 0, i.e. volume is a homogeneous measure of degree of homogeneity n. But there is much more!!!

- < ⊒ >

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1K_1+\lambda_2K_2+\cdots+\lambda_rK_r)=\sum_{i_1,i_2,\ldots,i_r=1}^r V(K_{i_1},\ldots,K_{i_n})\lambda_{i_1}\lambda_{i_2}\ldots\lambda_{i_n}.$$

Then $V(K_{i_1},\ldots,K_{i_n})$ is called the mixed volume of K_{i_1},\ldots,K_{i_n} .

< 臣 > < 臣 > □

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$\mathcal{V}_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r \mathcal{V}(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1},\ldots,K_{i_n})$ is called the mixed volume of K_{i_1},\ldots,K_{i_n} .

• $V(K,\ldots,K) = V_n(K)$.

< 臣 > < 臣 > □

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r V(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1}, \ldots, K_{i_n})$ is called the mixed volume of K_{i_1}, \ldots, K_{i_n} .

- $V(K,\ldots,K) = V_n(K)$.
- Mixed volume is symmetric in its arguments.

< 注入 < 注入 :

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1K_1+\lambda_2K_2+\cdots+\lambda_rK_r)=\sum_{i_1,i_2,\ldots,i_r=1}^r V(K_{i_1},\ldots,K_{i_n})\lambda_{i_1}\lambda_{i_2}\ldots\lambda_{i_n}.$$

Then $V(K_{i_1}, \ldots, K_{i_n})$ is called the mixed volume of K_{i_1}, \ldots, K_{i_n} .

- $V(K,\ldots,K) = V_n(K)$.
- Mixed volume is symmetric in its arguments.
- Mixed volume is multilinear $(\lambda, \mu \ge 0)$: $V(\lambda K + \mu L, K_2, ..., K_n) = \lambda V(K, K_2, ..., K_n) + \mu V(L, K_2, ..., K_n).$

E > < E >

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$\mathcal{V}_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r \mathcal{V}(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1},\ldots,K_{i_n})$ is called the mixed volume of K_{i_1},\ldots,K_{i_n} .

- $V(K,\ldots,K) = V_n(K)$.
- Mixed volume is symmetric in its arguments.
- Mixed volume is multilinear $(\lambda, \mu \ge 0)$: $V(\lambda K + \mu L, K_2, ..., K_n) = \lambda V(K, K_2, ..., K_n) + \mu V(L, K_2, ..., K_n).$
- Mixed volume is translation invariant: $V(K + a, K_2, ..., K_n) = V(K, K_2, ..., K_n)$, for $a \in \mathbb{R}^n$.

E > < E >

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$\mathcal{V}_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r \mathcal{V}(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1},\ldots,K_{i_n})$ is called the mixed volume of K_{i_1},\ldots,K_{i_n} .

- $V(K,\ldots,K) = V_n(K)$.
- Mixed volume is symmetric in its arguments.
- Mixed volume is multilinear $(\lambda, \mu \ge 0)$: $V(\lambda K + \mu L, K_2, ..., K_n) = \lambda V(K, K_2, ..., K_n) + \mu V(L, K_2, ..., K_n).$
- Mixed volume is translation invariant: $V(K + a, K_2, ..., K_n) = V(K, K_2, ..., K_n)$, for $a \in \mathbb{R}^n$.
- If $K \subset L$, then $V(K, K_2, K_3, \ldots, K_n) \leq V(L, K_2, K_3, \ldots, K_n)$.

< 三 > < 三 > …

Then $V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r V(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1},\ldots,K_{i_n})$ is called the mixed volume of K_{i_1},\ldots,K_{i_n} .

• Brunn-Minkowski inequality: $V_n(K+L)^{1/n} \ge V_n(K)^{1/n} + V_n(L)^{1/n}$.

< 注 → < 注 → □ 注

Then $V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r V(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1},\ldots,K_{i_n})$ is called the mixed volume of K_{i_1},\ldots,K_{i_n} .

- Brunn-Minkowski inequality: $V_n(K+L)^{1/n} \ge V_n(K)^{1/n} + V_n(L)^{1/n}$.
- Useful notation: $V(K_1, \ldots, K_m, K \ldots, K) = V(K_1, \ldots, K_m, K[n-m]).$

Then $V_n(\lambda_1K_1 + \lambda_2K_2 + \dots + \lambda_rK_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r V(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1},...,K_{i_n})$ is called the mixed volume of $K_{i_1},...,K_{i_n}$.

- Brunn-Minkowski inequality: $V_n(K+L)^{1/n} \ge V_n(K)^{1/n} + V_n(L)^{1/n}$.
- Useful notation: $V(K_1, \ldots, K_m, K \ldots, K) = V(K_1, \ldots, K_m, K[n-m]).$
- Minkowski First inequality: $V(K, L[n-1]) \ge V_n(K)^{1/n} V_n(L)^{(n-1)/n}$.

Then $V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r)$ is a homogeneous polynomial (in $\lambda_1, \dots, \lambda_r$) of degree n and

$$V_n(\lambda_1 K_1 + \lambda_2 K_2 + \dots + \lambda_r K_r) = \sum_{i_1, i_2, \dots, i_r=1}^r V(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_n}.$$

Then $V(K_{i_1}, \ldots, K_{i_n})$ is called the mixed volume of K_{i_1}, \ldots, K_{i_n} .

- Brunn-Minkowski inequality: $V_n(K+L)^{1/n} \ge V_n(K)^{1/n} + V_n(L)^{1/n}$.
- Useful notation: $V(K_1, \ldots, K_m, K \ldots, K) = V(K_1, \ldots, K_m, K[n-m]).$
- Minkowski First inequality: $V(K, L[n-1]) \ge V_n(K)^{1/n} V_n(L)^{(n-1)/n}$.
- Alexandrov–Fenchel inequality: $V(K_1, K_2, K_3, ..., K_n) \ge \sqrt{V(K_1, K_1, K_3, ..., K_n)V(K_2, K_2, K_3, ..., K_n)}$.

• • = • • = •

Question 1

Fix an integer $2 \le r \le n$ and let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

< ∃⇒

Question 1

Fix an integer $2 \le r \le n$ and let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n,r}$ such that

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D[n-1])$$

is true for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n ?

< ∃ >

Question 1

Fix an integer $2 \le r \le n$ and let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n,r}$ such that

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D[n-1])$$

is true for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n ?

Plan

 How one could come up with such inequalities & why they are (may be) interesting?

- ∢ ≣ ▶

Question 1

Fix an integer $2 \le r \le n$ and let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n,r}$ such that

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D[n-1])$$

is true for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n ?

Plan

- How one could come up with such inequalities & why they are (may be) interesting?
- What is known about Question 1.

Question 1

Fix an integer $2 \le r \le n$ and let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,D[n-r])V_n(D)^{r-1}\leq\prod_{i=1}^r V(\mathcal{K}_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n,r}$ such that

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D[n-1])$$

is true for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n ?

Plan

- How one could come up with such inequalities & why they are (may be) interesting?
- What is known about Question 1.
- What is known about Question 2.

Motivation: Bezout's Theorem.

Let $X_1, \ldots X_n \subset \mathbb{C}^n$ be hypersrfaces defined by polynomials F_1, \ldots, F_n : $X_i = \{x \in \mathbb{C}^n \mid F_i(x) = 0\}.$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � �

Motivation: Bezout's Theorem.

Let $X_1, \ldots X_n \subset \mathbb{C}^n$ be hypersrfaces defined by polynomials F_1, \ldots, F_n : $X_i = \{ x \in \mathbb{C}^n \mid F_i(x) = 0 \}.$

Assume that F_1, \ldots, F_n are polynomials with no common factors. Then

$$\#(X_1\cap\cdots\cap X_n)\leq\prod_{i=1}^n\deg F_i.$$

< E > < E > _ E =

Motivation: Bezout's Theorem.

Let $X_1, \ldots X_n \subset \mathbb{C}^n$ be hypersrfaces defined by polynomials F_1, \ldots, F_n :

$$X_i = \{x \in \mathbb{C}^n \mid F_i(x) = 0\}.$$

Assume that F_1, \ldots, F_n are polynomials with no common factors. Then

$$\#(X_1\cap\cdots\cap X_n)\leq\prod_{i=1}^n\deg F_i.$$

Childish Example: Two quadratic polynomials.

$$F_1(x,y) = \frac{x^2}{9} + \frac{y^2}{60} - 1$$
 and $F_2 = \frac{x^2}{50} + \frac{y^2}{2} - 2$.

Then deg $F_1 = \deg F_2 = 2$ and X_1 , X_2 are ellipses which intersect in exactly 4 points.

NP(F) = convex hull of exponent vectors of a polynomial F.

ヨト くヨトー

э

NP(F) = convex hull of exponent vectors of a polynomial F.

NP(F) = convex hull of exponent vectors of a polynomial F.

Interesting case - affine function F(x,y) = 3x - 15y + 71

NP(F) = convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_1, \ldots, F_n be polynomials with fixed Newton Polytopes $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$\#\{x \in (\mathbb{C} \setminus 0)^n \mid F_1(x) = \cdots = F_n(x) = 0\} = n! V(P_1, \dots, P_n).$$

▲ 글 ▶ . ▲ 글 ▶ ...

э

NP(F) = convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_1, \ldots, F_n be polynomials with fixed Newton Polytopes $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$\#\{x \in (\mathbb{C} \setminus 0)^n \mid F_1(x) = \cdots = F_n(x) = 0\} = n! V(P_1, \dots, P_n).$$

Note that we can compute the deg F_i via the number of intersections of $X_i = \{x \in (\mathbb{C} \setminus 0)^n \mid F_i(x) = 0\}$, with a generic line.

NP(F) = convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_1, \ldots, F_n be polynomials with fixed Newton Polytopes $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$\#\{x \in (\mathbb{C} \setminus 0)^n \mid F_1(x) = \cdots = F_n(x) = 0\} = n! V(P_1, \dots, P_n).$$

Note that we can compute the deg F_i via the number of intersections of $X_i = \{x \in (\mathbb{C} \setminus 0)^n \mid F_i(x) = 0\}$, with a generic line. But we can "create" a generic line via intersection of n-1 generic affine hyperplanes:

$$\mathsf{deg}(F_i) = \#\{x \in (\mathbb{C} \setminus 0)^n \mid F_i(x) = 0 \text{ and } \ell_1(x) = \cdots = \ell_{n-1}(x) = 0\},$$

where $\ell_i(x)$ is a generic affine function.

< 三 > < 三 > …

NP(F) = convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_1, \ldots, F_n be polynomials with fixed Newton Polytopes $P_1, \ldots, P_n \subset \mathbb{R}^n$ and generic coefficients. Then

$$\#\{x \in (\mathbb{C} \setminus 0)^n \mid F_1(x) = \cdots = F_n(x) = 0\} = n! V(P_1, \dots, P_n).$$

Note that we can compute the deg F_i via the number of intersections of $X_i = \{x \in (\mathbb{C} \setminus 0)^n \mid F_i(x) = 0\}$, with a generic line. But we can "create" a generic line via intersection of n-1 generic affine hyperplanes:

$$\mathsf{deg}(F_i) = \#\{x \in (\mathbb{C} \setminus 0)^n \mid F_i(x) = 0 \text{ and } \ell_1(x) = \cdots = \ell_{n-1}(x) = 0\},$$

where $\ell_i(x)$ is a generic affine function. But the Newton Polytope of $\ell_i(x)$ is the standard simplex $\Delta = \text{conv}\{0, e_1, \dots, e_n\}$. And *BKK* theorem gives us

$$\deg(F_i) = n! V(P_i, \Delta[n-1]).$$

э

GLUE IT ALL TOGETHER!

Bezout:

Bernstein-Kushnirenko-Khovanskii: Degree Formula: $\begin{array}{l} \#(X_1 \cap \dots \cap X_n) \leq \prod_{i=1}^n \deg F_i, \\ \#(X_1 \cap \dots \cap X_n) = n! V(P_1, \dots, P_n), \\ \deg(F_i) = n! V(P_i, \Delta[n-1]). \end{array}$

A E > A E >
Bezout:

Bernstein-Kushnirenko-Khovanskii: Degree Formula: $\begin{array}{l} \#(X_1 \cap \dots \cap X_n) \leq \prod_{i=1}^n \deg F_i, \\ \#(X_1 \cap \dots \cap X_n) = n! V(P_1, \dots, P_n), \\ \deg(F_i) = n! V(P_i, \Delta[n-1]). \end{array}$

You get

$$n!V(P_1,\ldots,P_n) \leq \prod_{i=1}^n n!V(P_i,\Delta[n-1]).$$

< 三 > < 三 > …

э

Bezout:

Bernstein-Kushnirenko-Khovanskii: Degree Formula: $\begin{array}{l} \#(X_1 \cap \dots \cap X_n) \leq \prod_{i=1}^n \deg F_i, \\ \#(X_1 \cap \dots \cap X_n) = n! V(P_1, \dots, P_n), \\ \deg(F_i) = n! V(P_i, \Delta[n-1]). \end{array}$

You get

$$n!V(P_1,\ldots,P_n) \leq \prod_{i=1}^n n!V(P_i,\Delta[n-1]).$$

But $V_n(\Delta) = 1/n!$ so

$$V(P_1,\ldots,P_n)V_n(\Delta)^{n-1} \leq \prod_{i=1}^n V(P_i,\Delta[n-1]).$$

< 臣 > < 臣 > □

э

Bezout:

Bernstein-Kushnirenko-Khovanskii: Degree Formula: $\begin{array}{l} \#(X_1 \cap \dots \cap X_n) \leq \prod_{i=1}^n \deg F_i, \\ \#(X_1 \cap \dots \cap X_n) = n! V(P_1, \dots, P_n), \\ \deg(F_i) = n! V(P_i, \Delta[n-1]). \end{array}$

You get

$$n!V(P_1,\ldots,P_n) \leq \prod_{i=1}^n n!V(P_i,\Delta[n-1]).$$

But $V_n(\Delta) = 1/n!$ so

$$V(P_1,\ldots,P_n)V_n(\Delta)^{n-1} \leq \prod_{i=1}^n V(P_i,\Delta[n-1]).$$

Moreover you may assume that some (say n-r) polytopes are Δ (i.e. some of the original polynomials were generic affine functions) to get

E > < E >

Bezout:

Bernstein-Kushnirenko-Khovanskii: Degree Formula: $\begin{array}{l} \#(X_1 \cap \dots \cap X_n) \leq \prod_{i=1}^n \deg F_i, \\ \#(X_1 \cap \dots \cap X_n) = n! V(P_1, \dots, P_n), \\ \deg(F_i) = n! V(P_i, \Delta[n-1]). \end{array}$

You get

$$n!V(P_1,\ldots,P_n)\leq \prod_{i=1}^n n!V(P_i,\Delta[n-1]).$$

But $V_n(\Delta) = 1/n!$ so

$$V(P_1,\ldots,P_n)V_n(\Delta)^{n-1} \leq \prod_{i=1}^n V(P_i,\Delta[n-1]).$$

Moreover you may assume that some (say n-r) polytopes are Δ (i.e. some of the original polynomials were generic affine functions) to get

I. Soprunov & A.Z.; 2016

Fix integer $2 \leq r \leq n$ and let Δ any *n*-dimensional simplex, then

$$V(K_1,\ldots,K_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(K_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Bezout's inequality for Mixed Volume.

I. Soprunov & A.Z.; 2016

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

医下 不正下

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i .

- ∢ ≣ ▶

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i . Reminder: Mixed volume is linear and translation invariant. Rescale & translate K_1, \ldots, K_r such that each K_i is inscribed in Δ .

< ∃ →

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i . Reminder: Mixed volume is linear and translation invariant. Rescale & translate K_1, \ldots, K_r such that each K_i is inscribed in Δ . Note that in this case K_i must touch all facets of Δ

< ∃ >

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i . Reminder: Mixed volume is linear and translation invariant. Rescale & translate K_1, \ldots, K_r such that each K_i is inscribed in Δ . Note that in this case K_i must touch all facets of Δ and thus

$$h_{K_i}(\nu) = h_{\Delta}(\nu),$$

where ν is a normal to a facet of Δ and $h_L(\nu) = \sup\{x \cdot \nu : x \in L\}$.

≣ ► < ≣ ►

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i . Reminder: Mixed volume is linear and translation invariant. Rescale & translate K_1, \ldots, K_r such that each K_i is inscribed in Δ . Note that in this case K_i must touch all facets of Δ and thus

$$h_{K_i}(\nu) = h_{\Delta}(\nu),$$

where ν is a normal to a facet of Δ and $h_L(\nu) = \sup\{x \cdot \nu : x \in L\}$. Then

•
$$V(K_i, \Delta[n-1]) = \frac{1}{n} \sum_{\nu} h_{K_i}(\nu) V_{n-1}(\Delta^{\nu}) = \frac{1}{n} \sum_{\nu} h_{\Delta}(\nu) V_{n-1}(\Delta^{\nu}) = V_n(\Delta),$$

where Δ^{ν} is the facet of Δ corresponding to normal vector ν .

医下颌 医下颌

Fix an integer $2 \leq r \leq n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i . Reminder: Mixed volume is linear and translation invariant. Rescale & translate K_1, \ldots, K_r such that each K_i is inscribed in Δ . Note that in this case K_i must touch all facets of Δ and thus

$$h_{K_i}(\nu) = h_{\Delta}(\nu),$$

where ν is a normal to a facet of Δ and $h_L(\nu) = \sup\{x \cdot \nu : x \in L\}$. Then

• $V(K_i, \Delta[n-1]) = \frac{1}{n} \sum_{\nu} h_{K_i}(\nu) V_{n-1}(\Delta^{\nu}) = \frac{1}{n} \sum_{\nu} h_{\Delta}(\nu) V_{n-1}(\Delta^{\nu}) = V_n(\Delta),$

where Δ^{ν} is the facet of Δ corresponding to normal vector ν .

• So we are left with $V(K_1, \ldots, K_r, \Delta[n-r])V_n(\Delta)^{r-1} \leq V_n(\Delta)^r$.

▲ 臣 ▶ → ● 臣 ▶ ……

Fix an integer $2 \le r \le n$ and let Δ an *n*-dimensional simplex, then

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,\Delta[n-r])V_n(\Delta)^{r-1} \leq \prod_{i=1}^r V(\mathcal{K}_i,\Delta[n-1]),$$

for all convex bodies K_1, \ldots, K_r in \mathbb{R}^n .

Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_i . Reminder: Mixed volume is linear and translation invariant. Rescale & translate K_1, \ldots, K_r such that each K_i is inscribed in Δ . Note that in this case K_i must touch all facets of Δ and thus

$$h_{K_i}(\nu) = h_{\Delta}(\nu),$$

where ν is a normal to a facet of Δ and $h_L(\nu) = \sup\{x \cdot \nu : x \in L\}$. Then

• $V(K_i, \Delta[n-1]) = \frac{1}{n} \sum_{\nu} h_{K_i}(\nu) V_{n-1}(\Delta^{\nu}) = \frac{1}{n} \sum_{\nu} h_{\Delta}(\nu) V_{n-1}(\Delta^{\nu}) = V_n(\Delta),$

where Δ^{ν} is the facet of Δ corresponding to normal vector $\nu.$

- So we are left with $V(K_1, \ldots, K_r, \Delta[n-r])V_n(\Delta)^{r-1} \leq V_n(\Delta)^r$.
- $V(K_1, \ldots, K_r, \Delta[n-r]) \leq V_n(\Delta)$ by monotonicity.

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

- < ⊒ >

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

< ∃ >

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

• (I. Soprunov & A.Z., 2016): Assume, *D* is indecomposable, i.e. if $D = D_1 + D_2$ then $D_1 \sim D_2$. Then $D = \Delta$.

→ < Ξ →

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

- (I. Soprunov & A.Z., 2016): Assume, D is indecomposable, i.e. if D = D₁ + D₂ then D₁ ~ D₂. Then D = Δ.
 Idea of a proof: Assume decomposable, plug in D = D₁ + D₂, compare with Alexandrov-Fenchel inequality.
- Note that the above gives us that the answer is affirmative in \mathbb{R}^2 !

三下 人王下

$$V(K_1,\ldots,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

- (I. Soprunov & A.Z., 2016): Assume, D is indecomposable, i.e. if D = D₁ + D₂ then D₁ ~ D₂. Then D = Δ.
 Idea of a proof: Assume decomposable, plug in D = D₁ + D₂, compare with Alexandrov-Fenchel inequality.
- Note that the above gives us that the answer is affirmative in ℝ²! But, this is not enough to make a decision in ℝⁿ, n ≥ 3. It is well know that there "a lot" of indecomposable bodies in ℝ³.

A E > A E >

$$V(K_1,\ldots,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

- (I. Soprunov & A.Z., 2016): Assume, D is indecomposable, i.e. if D = D₁ + D₂ then D₁ ~ D₂. Then D = Δ.
 Idea of a proof: Assume decomposable, plug in D = D₁ + D₂, compare with Alexandrov-Fenchel inequality.
- Note that the above gives us that the answer is affirmative in ℝ²! But, this is not enough to make a decision in ℝⁿ, n ≥ 3. It is well know that there "a lot" of indecomposable bodies in ℝ³.
- There are indecomposable bodies for which the inequality is not true: $D = B_1^3$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

$$V(K_1,\ldots,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

• (C. Saroglou, I. Soprunov & A.Z., 2016): If D is a **polytope** then $D = \Delta$.

토 🖌 🛪 토 🛌

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

• (C. Saroglou, I. Soprunov & A.Z., 2016): If D is a **polytope** then $D = \Delta$. **Idea of a proof:** Select a facet of D and move it a bit to create a test body K_1 , get a counterexample.

医下颌 医下颌

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

(C. Saroglou, I. Soprunov & A.Z., 2016): If D is a polytope then D = Δ.
 Idea of a proof: Select a facet of D and move it a bit to create a test body K₁, get a counterexample. Note that "only" simplex would not change if you move a facet. More precisely it should be a cone, but we can move "any" facet, so the cone must be a simplex.

医下 不良下

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

- (C. Saroglou, I. Soprunov & A.Z., 2016): If D is a polytope then D = Δ.
 Idea of a proof: Select a facet of D and move it a bit to create a test body K₁, get a counterexample. Note that "only" simplex would not change if you move a facet. More precisely it should be a cone, but we can move "any" facet, so the cone must be a simplex.
- (C. Saroglou, I. Soprunov & A.Z., 2016): *D* has **no strict points**, i.e. points **not** lying on a boundary segment.

A E > A E >

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is "harder" if you have less K_i to test the inequality).

- (C. Saroglou, I. Soprunov & A.Z., 2016): If D is a polytope then D = Δ.
 Idea of a proof: Select a facet of D and move it a bit to create a test body K₁, get a counterexample. Note that "only" simplex would not change if you move a facet. More precisely it should be a cone, but we can move "any" facet, so the cone must be a simplex.
- (C. Saroglou, I. Soprunov & A.Z., 2016): *D* has no strict points, i.e. points not lying on a boundary segment.
 Idea of a proof: An approach is similar which was used in approach to Mahler conjecture and points with positive curvature by, A. Stancu / S. Reisner, C. Schuett and E. Werner: play with a little cap around such a point.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,D[n-r])V_n(D)^{r-1}\leq\prod_{i=1}^r V(\mathcal{K}_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov & A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$V(K_1,...,K_{n-1},D)V_n(D)^{n-2} \leq \prod_{i=1}^{n-1} V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_{n-1} \subset \mathbb{R}^n$. Then D is an *n*-simplex!

- ∢ ≣ ▶

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,D[n-r])V_n(D)^{r-1}\leq\prod_{i=1}^r V(\mathcal{K}_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov & A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$V(K_1,...,K_{n-1},D)V_n(D)^{n-2} \leq \prod_{i=1}^{n-1} V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_{n-1} \subset \mathbb{R}^n$. Then D is an *n*-simplex!

• The above gives an affirmative answer to Question 1 in the case r = n - 1 (we still need to push it to r = 2).

医下颌 医下口

$$V(K_1,...,K_r,D[n-r])V_n(D)^{r-1} \leq \prod_{i=1}^r V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov & A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$V(K_1,...,K_{n-1},D)V_n(D)^{n-2} \leq \prod_{i=1}^{n-1} V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_{n-1} \subset \mathbb{R}^n$. Then D is an *n*-simplex!

- The above gives an affirmative answer to Question 1 in the case r = n 1 (we still need to push it to r = 2).
- In particular, this gives a complete solution in \mathbb{R}^3 .

E > < E >

$$V(\mathcal{K}_1,\ldots,\mathcal{K}_r,D[n-r])V_n(D)^{r-1}\leq\prod_{i=1}^r V(\mathcal{K}_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_r \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov & A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$V(K_1,...,K_{n-1},D)V_n(D)^{n-2} \leq \prod_{i=1}^{n-1} V(K_i,D[n-1]),$$

for all convex bodies $K_1, \ldots, K_{n-1} \subset \mathbb{R}^n$. Then D is an *n*-simplex!

- The above gives an affirmative answer to Question 1 in the case r = n-1 (we still need to push it to r = 2).
- In particular, this gives a complete solution in \mathbb{R}^3 .

The idea of the proof is based on new way to perturb a convex body and a very careful study of the boundary structure of a body D.

Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

注入 米 注入 …

э

Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then *D* must be *n*-simplex?

Let $K_1 = [0, \xi]$ and $K_2 = [0, \nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$.

医下 米医下 一

Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Let $K_1 = [0, \xi]$ and $K_2 = [0, \nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$. Then,

$$V(K_1, D[n-1]) = \frac{1}{n}V_{n-1}(D|\xi^{\perp}) \text{ and } V(K_2, D[n-1]) = \frac{1}{n}V_{n-1}(D|\nu^{\perp}),$$

where $D|\xi^{\perp}$ denotes the orthogonal projection of D onto the hyperplane orthogonal to ξ .

* E > * E > E

Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Let $K_1 = [0,\xi]$ and $K_2 = [0,\nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$. Then,

$$V(K_1, D[n-1]) = \frac{1}{n}V_{n-1}(D|\xi^{\perp}) \text{ and } V(K_2, D[n-1]) = \frac{1}{n}V_{n-1}(D|\nu^{\perp}),$$

where $D|\xi^{\perp}$ denotes the orthogonal projection of D onto the hyperplane orthogonal to ξ . In addition, assume $\xi \cdot \nu = 0$. Then, similarly, for the orthogonal projection we can compute the volume of $D|(\xi,\nu)^{\perp}$:

$$V_{n-2}(D|(\xi,\nu)^{\perp}) = n(n-1)V(K_1,K_2,D[n-2]).$$

< 三 > < 三 > …

Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

Let $K_1 = [0,\xi]$ and $K_2 = [0,\nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$. Then,

$$V(K_1, D[n-1]) = \frac{1}{n}V_{n-1}(D|\xi^{\perp}) \text{ and } V(K_2, D[n-1]) = \frac{1}{n}V_{n-1}(D|\nu^{\perp}),$$

where $D|\xi^{\perp}$ denotes the orthogonal projection of D onto the hyperplane orthogonal to ξ . In addition, assume $\xi \cdot \nu = 0$. Then, similarly, for the orthogonal projection we can compute the volume of $D|(\xi, \nu)^{\perp}$:

$$V_{n-2}(D|(\xi,\nu)^{\perp}) = n(n-1)V(K_1,K_2,D[n-2]).$$

Substituting the above calculations in inequality in Question 1, we get

$$\frac{n}{n-1}V_{n-2}(D|(\xi,\nu)^{\perp})V_n(D) \leq V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Question 1 (r = 2): Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

In special case of K_1 and K_2 are orthogonal unit segments we get

프 🖌 🔺 프 🕨

Question 1 (r = 2): Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

In special case of K_1 and K_2 are orthogonal unit segments we get

$$\frac{n}{n-1}V_{n-2}(D|(\xi,\nu)^{\perp})V_n(D) \leq V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Giannopoulos, Hartzoulaki & Paouris; 2002.

For any convex body D

$$\frac{n}{n-1}V_n(D)V_{n-2}(D|(\xi,\nu)^{\perp}) \leq 2V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

≣ ► < ≣ ►

Question 1 (r = 2): Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

In special case of K_1 and K_2 are orthogonal unit segments we get

$$\frac{n}{n-1}V_{n-2}(D|(\xi,\nu)^{\perp})V_n(D) \leq V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Giannopoulos, Hartzoulaki & Paouris; 2002.

For any convex body D

$$\frac{n}{n-1}V_n(D)V_{n-2}(D|(\xi,\nu)^{\perp}) \leq 2V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Zonotope - Minkowski sum of segments & Zonoid - limit of zonotopes.

三 ト イ 三 ト

Question 1 (r = 2): Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

In special case of K_1 and K_2 are orthogonal unit segments we get

$$\frac{n}{n-1}V_{n-2}(D|(\xi,\nu)^{\perp})V_n(D) \leq V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Giannopoulos, Hartzoulaki & Paouris; 2002.

For any convex body D

$$\frac{n}{n-1}V_n(D)V_{n-2}(D|(\xi,\nu)^{\perp}) \leq 2V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Zonotope - Minkowski sum of segments & **Zonoid** - limit of zonotopes. Reminder: Mixed volume is multilinear!

< 注) < 注)
Moving towards Question 2 & connections to projections

Question 1 (r = 2): Let $D \subset \mathbb{R}^n$ be a convex body which satisfies

$$V(K_1, K_2, D[n-2])V_n(D) \le V(K_1, D[n-1]) \cdot V(K_2, D[n-1])$$

for all convex bodies $K_1, K_2 \subset \mathbb{R}^n$. Is it true that then D must be n-simplex?

In special case of K_1 and K_2 are orthogonal unit segments we get

$$\frac{n}{n-1}V_{n-2}(D|(\xi,\nu)^{\perp})V_n(D) \leq V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Giannopoulos, Hartzoulaki & Paouris; 2002.

For any convex body D

$$\frac{n}{n-1}V_n(D)V_{n-2}(D|(\xi,\nu)^{\perp}) \leq 2V_{n-1}(D|\xi^{\perp})V_{n-1}(D|\nu^{\perp}).$$

Zonotope - Minkowski sum of segments & **Zonoid** - limit of zonotopes. Reminder: Mixed volume is multilinear!

Assume Z_1 , Z_2 are zonoids, then

$$V(Z_1, Z_2, D[n-2])V_n(D) \le 2V(Z_1, D[n-1]) \cdot V(Z_2, D[n-1])$$

for any convex, symmetric body D.

Suppose D is a convex body in \mathbb{R}^n and $Z_1, \ldots Z_r$ are zonoids then

$$V(Z_1,...,Z_r,D^{n-r})V_n(D)^{r-1} \leq \frac{r^r}{r!}\prod_{i=1}^r V(Z_i,D^{n-1}),$$

and the inequality is sharp.

E ► < E ►

э

Suppose D is a convex body in \mathbb{R}^n and $Z_1, \ldots Z_r$ are zonoids then

$$V(Z_1,...,Z_r,D^{n-r})V_n(D)^{r-1} \leq \frac{r^r}{r!}\prod_{i=1}^r V(Z_i,D^{n-1}),$$

and the inequality is sharp.

Idea of the proof: Use ideas of Giannopoulos, Hartzoulaki; 2002 & Paouris / Fradelizi, Giannopoulos & Meyer; 2003: apply the Berwald's Lemma to prove that if $D \subset \mathbb{R}^n$ is a convex body, then

$$\left(\frac{n}{r}\right)^r \binom{n}{r}^{-1} V_{n-r}(D|(e_1,e_2,\ldots,e_r)^{\perp}) V_n(D)^{r-1} \leq \prod_{i=1}^r V_{n-1}(D|e_i^{\perp}).$$

< ∃ →

Suppose D is a convex body in \mathbb{R}^n and $Z_1, \ldots Z_r$ are zonoids then

$$V(Z_1,...,Z_r,D^{n-r})V_n(D)^{r-1} \leq \frac{r^r}{r!}\prod_{i=1}^r V(Z_i,D^{n-1}),$$

and the inequality is sharp.

Idea of the proof: Use ideas of Giannopoulos, Hartzoulaki; 2002 & Paouris / Fradelizi, Giannopoulos & Meyer; 2003: apply the Berwald's Lemma to prove that if $D \subset \mathbb{R}^n$ is a convex body, then

$$\left(\frac{n}{r}\right)^r \binom{n}{r}^{-1} V_{n-r}(D|(e_1,e_2,\ldots,e_r)^{\perp}) V_n(D)^{r-1} \leq \prod_{i=1}^r V_{n-1}(D|e_i^{\perp}).$$

Next use multi-linearity and other properties of mixed volume to bring it back to zonoids.

医下 不正下

Suppose *D* is a convex body in \mathbb{R}^n and $Z_1, \ldots Z_r$ are zonoids then

$$V(Z_1,...,Z_r,D^{n-r})V_n(D)^{r-1} \leq \frac{r^r}{r!}\prod_{i=1}^r V(Z_i,D^{n-1}),$$

and the inequality is sharp.

Direct application of F. John theorem gives:

< ∃⇒

Suppose D is a convex body in \mathbb{R}^n and $Z_1, \ldots Z_r$ are zonoids then

$$V(Z_1,...,Z_r,D^{n-r})V_n(D)^{r-1} \leq \frac{r^r}{r!}\prod_{i=1}^r V(Z_i,D^{n-1}),$$

and the inequality is sharp.

Direct application of F. John theorem gives:

I. Soprunov & A.Z.; 2016

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

▲ 臣 ▶ → モ 臣 ▶ □

Question 2: General Case.

I. Soprunov & A.Z.; 2016

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

There were a number of works on this inequality after ... and before our work!

< ∃⇒

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

There were a number of works on this inequality after ...and before our work! **Reminder:** We proved before that for symmetric, convex sets $K_1, K_2 \subset \mathbb{R}^2$ (note - K_1, K_2 are zonoids) we have

$$V(K_1, K_2)V_2(D) \leq 2V(K_1, D) \cdot V(K_2, D).$$

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

There were a number of works on this inequality after ...and before our work! **Reminder:** We proved before that for symmetric, convex sets $K_1, K_2 \subset \mathbb{R}^2$ (note - K_1, K_2 are zonoids) we have

$$V(K_1, K_2)V_2(D) \leq 2V(K_1, D) \cdot V(K_2, D).$$

I. Soprunov, A.Z.; 2016 / S. Artstein-Avidan, D. Florentin & Y. Ostrover; 2014 Assume K_1, K_2, D are convex bodies in \mathbb{R}^2 (i.e. **Not necessary symmetric!**) then

 $V(K_1, K_2)V_2(D) \leq 2V(K_1, D) \cdot V(K_2, D).$

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

• $c_{n,r} \geq \frac{r^r}{r!}$, (case of zonoids).

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

- $c_{n,r} \geq \frac{r^r}{r!}$, (case of zonoids).
- S. Artstein-Avidan, D. Florentin & Y. Ostrover (2014): c_{2,2} = 2.

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \le n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

- $c_{n,r} \geq \frac{r^r}{r!}$, (case of zonoids).
- S. Artstein-Avidan, D. Florentin & Y. Ostrover (2014): c_{2,2} = 2.
- S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): c_{n,2} = 2.

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

- $c_{n,r} \geq \frac{r^r}{r!}$, (case of zonoids).
- S. Artstein-Avidan, D. Florentin & Y. Ostrover (2014): c_{2,2} = 2.
- S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): c_{n,2} = 2.
- S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): $c_{n,r} \leq 2^{2^{r-1}-1}$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

There exists a constant $c_{n,r} \leq n^r r^r / r!$ such that

$$V(K_1,...,K_r,D^{n-r})V_n(D)^{r-1} \le c_{n,r}\prod_{i=1}^r V(K_i,D^{n-1})$$

holds for all convex bodies K_1, \ldots, K_r and D in \mathbb{R}^n . Moreover $c_{n,r} \leq n^{r/2} r^r / r!$ when K_1, \ldots, K_r are symmetric with respect to the origin.

- $c_{n,r} \geq \frac{r^r}{r!}$, (case of zonoids).
- S. Artstein-Avidan, D. Florentin & Y. Ostrover (2014): $c_{2,2} = 2$.
- S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): c_{n,2} = 2.
- S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): $c_{n,r} \leq 2^{2^{r-1}-1}$.
- Jian Xiao (2017+): $c_{n,r} \le n^{r-1}$.

< 国 > (4 国 >))