Day 4 Talk 2 Velan Nelson Optimality of the Ushron-Lindenstauss Llemma Coint - W | | Xasper Green Larsen (Aarlus) states dohnsort-Lind $I_{S}^{\dagger}4$ -lemmen. For $e^{-\frac{x^2}{2}}$ $x^2/2$ $x^3/2$ $x^2/2$ $x^3/2$ $x^2/2$ $x^3/2$ $m = 0$ (ϵ^{-2} l agn) with distortion l+ ϵ , i.e. $\forall x,y \in X$ $(1-\epsilon)(|x-y||_2^2 + |(\sqrt{6}x) + f(y)|_2^2 \leq (1+\epsilon)(|x-y||_2^2)$ -Many applications. e.g. high dinensional. Incalrest Indighborum preprocesing. Distributional JL J distribution DES on \mathbb{R}^{n+x-1} for $m=0$ (ϵ^{-2} ($_{\infty}$) \leq 1. $\pi \sim D_{\epsilon,s}$ JL: Union bound. $Proof 64$ These $|a \cap e|$ Upper bands are they tight

huis better encoding Related to static approximate dot product Oper problems da slides. $\frac{1}{4}$ $\bar{\Gamma}$ \cdot 1

Optimality of the Johnson-Lindenstrauss lemma

Jelani Nelson Harvard

November 16, 2017

joint work with Kasper Green Larsen (Aarhus)

Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss '84]

For every $X \subset \ell_2$ of size *n*, there is an embedding $f : X \to \ell_2^m$ for $m = O(\varepsilon^{-2} \log n)$ with distortion $1 + \varepsilon$. That is, for each $x, y \in X$,

$$
(1-\varepsilon) \|x - y\|_2^2 \le \|f(x) - f(y)\|_2^2 \le (1+\varepsilon) \|x - y\|_2^2
$$

Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss '84]

For every $X \subset \ell_2$ of size *n*, there is an embedding $f : X \to \ell_2^m$ for $m = O(\varepsilon^{-2} \log n)$ with distortion $1 + \varepsilon$. That is, for each $x, y \in X$,

$$
(1-\varepsilon) \|x - y\|_2^2 \le \|f(x) - f(y)\|_2^2 \le (1+\varepsilon) \|x - y\|_2^2
$$

Uses in computer science:

- \triangleright Speed up geometric algorithms by first reducing dimension of input [Indyk, Motwani '98], [Indyk '01]
- \triangleright Faster/streaming numerical linear algebra algorithms Sarlós '06], [LWMRT '07], [Clarkson, Woodruff '09]
- \triangleright Essentially equivalent to RIP matrices from compressed sensing [Baraniuk et al. '08], [Krahmer, Ward '11] (used for recovery of sparse signals)
- ▶ Volume-preserving embeddings (applications to projective clustering) [Magen '02]

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{m\times d}$ for $m=O(\varepsilon^{-2}\log(1/\delta))$ such that for any $u\in\mathcal{S}^{d-1}$

$$
\mathop{\mathbb{P}}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}} \left(\left| \|\Pi u\|_2^2 - 1 \right| > \varepsilon \right) < \delta.
$$

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{m\times d}$ for $m=O(\varepsilon^{-2}\log(1/\delta))$ such that for any $u\in\mathcal{S}^{d-1}$

$$
\mathop{\mathbb{P}}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}} \left(\left| \|\Pi u\|_2^2 - 1 \right| > \varepsilon \right) < \delta.
$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ $\binom{n}{2}$ pairs. Thus, in fact, the map $f: X \to \ell_2^m$ can be linear.

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{m\times d}$ for $m=O(\varepsilon^{-2}\log(1/\delta))$ such that for any $u\in\mathcal{S}^{d-1}$

$$
\mathop{\mathbb{P}}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}} \left(\left| \|\Pi u\|_2^2 - 1 \right| > \varepsilon \right) < \delta.
$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ $\binom{n}{2}$ pairs. Thus, in fact, the map $f: X \to \ell_2^m$ can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Theorem (Alon, 2003) For JL, $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$ is required.

Theorem (Larsen, Nelson 2016) For JL, $m = \Omega(\varepsilon^{-2} \log n)$ is required if f must be a linear map.

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{m\times d}$ for $m=O(\varepsilon^{-2}\log(1/\delta))$ such that for any $u\in\mathcal{S}^{d-1}$

$$
\mathop{\mathbb{P}}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}} \left(\left| \|\Pi u\|_2^2 - 1 \right| > \varepsilon \right) < \delta.
$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ $\binom{n}{2}$ pairs. Thus, in fact, the map $f: X \to \ell_2^m$ can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Theorem (Alon, 2003) For JL, $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$ is required.

Theorem (Larsen, Nelson 2016) For JL, $m = \Omega(\varepsilon^{-2} \log n)$ is required if f must be a linear map.

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ on $\mathbb{R}^{m\times d}$ for $m=O(\varepsilon^{-2}\log(1/\delta))$ such that for any $u\in\mathcal{S}^{d-1}$

$$
\mathop{\mathbb{P}}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}} \left(\left| \|\Pi u\|_2^2 - 1 \right| > \varepsilon \right) < \delta.
$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ $\binom{n}{2}$ pairs. Thus, in fact, the map $f: X \to \ell_2^m$ can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Theorem (Alon, 2003) For JL, $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$ is required.

Theorem (Larsen, Nelson 2017) For JL, $m = \Omega(\varepsilon^{-2} \log n)$ is required if f must be a linear map.

JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers $d,n\geq 2$ and any $\frac{1}{(\min\{n,d\})^{0.4999}}<\varepsilon< 1$, there exists a set $X \subset \ell_2^d$ such that any embedding $f : X \to \ell_2^m$ with distortion at most $1 + \varepsilon$ must have

$$
m = \Omega(\varepsilon^{-2} \log n)
$$

JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers $d,n\geq 2$ and any $\frac{1}{(\min\{n,d\})^{0.4999}}<\varepsilon< 1$, there exists a set $X \subset \ell_2^d$ such that any embedding $f : X \to \ell_2^m$ with distortion at most $1 + \varepsilon$ must have

$$
m = \Omega(\varepsilon^{-2} \log n)
$$

- **Can always achieve** $m = d$: f is the identity map.
- **Can always achieve** $m = n 1$: translate so one vector is 0. Then all vectors live in $(n - 1)$ -dimensional subspace.

JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers $d,n\geq 2$ and any $\frac{1}{(\min\{n,d\})^{0.4999}}<\varepsilon< 1$, there exists a set $X \subset \ell_2^d$ such that any embedding $f : X \to \ell_2^m$ with distortion at most $1 + \varepsilon$ must have

$$
m = \Omega(\varepsilon^{-2} \log n)
$$

- **Can always achieve** $m = d$: f is the identity map.
- **Can always achieve** $m = n 1$: translate so one vector is 0. Then all vectors live in $(n - 1)$ -dimensional subspace.
- ► So can only hope JL optimal for ε^{-2} log $n \leq \min\{n, d\}$, can view theorem assumption as $\varepsilon^{-2}\log n\ll \min\{n,d\}^{0.999}.$

Lower bound techniques over time

 \triangleright Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]

- \triangleright Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]
- ► Incoherence + tensor trick. $m = \Omega(\frac{1}{\varepsilon^2} \frac{\log n}{\log(1/n}))$ $\frac{\log n}{\log(1/\varepsilon)}$) [Alon '03]

- \triangleright Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]
- ► Incoherence + tensor trick. $m = \Omega(\frac{1}{\varepsilon^2} \frac{\log n}{\log(1/n}))$ $\frac{\log n}{\log(1/\varepsilon)}$) [Alon '03]
- ► Net argument + probabilistic method. $m = \Omega(\frac{1}{\varepsilon^2} \log n)$ (only against linear maps $f(x) = \Pi x$) [Larsen, Nelson '16]

- \triangleright Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]
- ► Incoherence + tensor trick. $m = \Omega(\frac{1}{\varepsilon^2} \frac{\log n}{\log(1/n}))$ $\frac{\log n}{\log(1/\varepsilon)}$) [Alon '03]
- ► Net argument + probabilistic method. $m = \Omega(\frac{1}{\varepsilon^2} \log n)$ (only against linear maps $f(x) = \Pi x$) [Larsen, Nelson '16]
- **Encoding argument.** $m = \Omega(\frac{1}{\varepsilon^2} \log n)$ [Larsen, Nelson '17]

Barrier in previous proofs.

(The limits of incoherence.)

Barrier in previous proofs.

(The limits of incoherence.)

We say x_1, \ldots, x_n are ε -incoherent if

- $\blacktriangleright \forall i \; ||x_i||_2 = 1$
- $\blacktriangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Barrier in previous proofs. (The limits of incoherence.)

We say x_1, \ldots, x_n are *ε-incoherent* if

- $\blacktriangleright \forall i \; ||x_i||_2 = 1$
- $\blacktriangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Previous hard point sets were incoherent, so could just map to another set of incoherent vectors in smaller dimension.

Barrier in previous proofs. (The limits of incoherence.)

We say x_1, \ldots, x_n are *ε-incoherent* if

- $\blacktriangleright \forall i \; ||x_i||_2 = 1$
- $\blacktriangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Previous hard point sets were incoherent, so could just map to another set of incoherent vectors in smaller dimension.

 $m = O(\varepsilon^{-2}(\frac{\log n}{\log(1/\varepsilon)+\log n})$ $\frac{\log n}{\log(1/\varepsilon)+\log\log n})^2)$ achievable via Reed-Solomon codes.

Barrier in previous proofs. (The limits of incoherence.)

We say x_1, \ldots, x_n are *ε-incoherent* if

- $\blacktriangleright \forall i \; ||x_i||_2 = 1$
- $\blacktriangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Previous hard point sets were incoherent, so could just map to another set of incoherent vectors in smaller dimension.

 $m = O(\varepsilon^{-2}(\frac{\log n}{\log(1/\varepsilon)+\log n})$ $\frac{\log n}{\log(1/\varepsilon)+\log\log n})^2)$ achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Encoding argument. [Larsen, Nelson^{'17]}

We define a large collection $\mathcal X$ of *n*-sized sets $\mathcal X\subset\mathbb R^d$ s.t. if all $X\in\mathcal{X}$ can be embedded into dimension $\leq 10^{-10}\cdot \varepsilon^{-2}\log_2 n,$ then there is an encoding of elements of $\mathcal X$ into $<$ log $_2|\mathcal X|$ bits (i.e. a surjection from $\mathcal X$ to $\{0,1\}^t$ for $t < \log_2 |\mathcal X|$). **Contradiction.**

Encoding argument. [Larsen, Nelson⁷17]

Encoding argument. [Larsen, Nelson '17] For now: assume $d = n / \lg(1/\varepsilon)$

Observation

 \triangleright Preserving distances implies preserving dot products. Say $||x||_2 = ||y||_2 = 1.$

$$
||x - y||_2^2 = ||x||_2^2 + ||y||_2^2 - 2 \langle x, y \rangle (*)
$$

$$
||f(x) - f(y)||_2^2 = ||f(x)||_2^2 + ||f(y)||_2^2 - 2 \langle f(x), f(y) \rangle
$$

Observation

 \triangleright Preserving distances implies preserving dot products. Say $||x||_2 = ||y||_2 = 1.$

$$
||x - y||_2^2 = ||x||_2^2 + ||y||_2^2 - 2 \langle x, y \rangle (*)
$$

$$
||f(x) - f(y)||_2^2 = ||f(x)||_2^2 + ||f(y)||_2^2 - 2 \langle f(x), f(y) \rangle
$$

$$
\implies (1 \pm \varepsilon) \|x - y\|_2^2 = (1 \pm \varepsilon) \frac{1}{\|x\|_2^2 + (1 \pm \varepsilon) \frac{1}{\|y\|_2^2 - 2 \langle f(x), f(y) \rangle}}
$$
\n(**)

Now subtract (*) from (**): $\langle f(x), f(y)\rangle = \langle x, y\rangle \pm O(\varepsilon)$

\n- Pick
$$
k = \frac{1}{100\varepsilon^2}
$$
.
\n- For $S \subset [d]$ of size k , define vector $y_S = \frac{1}{\sqrt{k}} \sum_{j \in S} e_j$. N
\n- j to j to $i \in S$.
\n

$$
\langle y_S, e_i \rangle = \begin{cases} -1.5 & \text{otherwise} \\ 0, & \text{otherwise} \end{cases}
$$

lote

 \blacktriangleright Idea: low-distortion embedding preserves dot products up to $\pm\varepsilon$, which is enough to distinguish the two cases

$$
\blacktriangleright \text{ Pick } k = \frac{1}{100\varepsilon^2}.
$$

► For $S \subset [d]$ of size k , define vector $y_S = \frac{1}{\sqrt{2}}$ $\frac{1}{k}\sum_{j\in\mathcal{S}}\mathsf{e}_j$. Note

$$
\langle y_S, e_i \rangle = \begin{cases} 10\varepsilon, & i \in S \\ 0, & \text{otherwise} \end{cases}
$$

- \triangleright Idea: low-distortion embedding preserves dot products up to $\pm\varepsilon$, which is enough to distinguish the two cases
- \triangleright X is set of all ordered tuples of points, possibly with repetition $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$ with the $S_i \in \binom{[d]}{k}$ $\binom{d}{k}$.

$$
\blacktriangleright \text{ Pick } k = \frac{1}{100\varepsilon^2}.
$$

► For $S \subset [d]$ of size k , define vector $y_S = \frac{1}{\sqrt{2}}$ $\frac{1}{k}\sum_{j\in\mathcal{S}}\mathsf{e}_j$. Note

$$
\langle y_S, e_i \rangle = \begin{cases} 10\varepsilon, & i \in S \\ 0, & \text{otherwise} \end{cases}
$$

- \triangleright Idea: low-distortion embedding preserves dot products up to $\pm\varepsilon$, which is enough to distinguish the two cases
- \triangleright X is set of all ordered tuples of points, possibly with repetition $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$ with the $S_i \in \binom{[d]}{k}$ $\binom{d}{k}$. $\blacktriangleright |\mathcal{X}| = \begin{pmatrix} d \\ k \end{pmatrix}$ $\binom{d}{k}^{n-d-1}$, thus any encoding of $X \in \mathcal{X}$ requires $\geq (n-d-1)\lg\binom{d}{k}$ ζ^{d}_{k}) = $(1-o_{\varepsilon}(1))$ nk lg (d/k) bits.

$$
\blacktriangleright \text{ Pick } k = \frac{1}{100\varepsilon^2}.
$$

► For $S \subset [d]$ of size k , define vector $y_S = \frac{1}{\sqrt{2}}$ $\frac{1}{k}\sum_{j\in\mathcal{S}}\mathsf{e}_j$. Note

$$
\langle y_S, e_i \rangle = \begin{cases} 10\varepsilon, & i \in S \\ 0, & \text{otherwise} \end{cases}
$$

- \triangleright Idea: low-distortion embedding preserves dot products up to $\pm\varepsilon$, which is enough to distinguish the two cases
- \triangleright X is set of all ordered tuples of points, possibly with repetition $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$ with the $S_i \in \binom{[d]}{k}$ $\binom{d}{k}$. $\blacktriangleright |\mathcal{X}| = \begin{pmatrix} d \\ k \end{pmatrix}$ $\binom{d}{k}^{n-d-1}$, thus any encoding of $X \in \mathcal{X}$ requires $\geq (n-d-1)\lg\binom{d}{k}$ ζ^{d}_{k}) = $(1-o_{\varepsilon}(1))$ nk lg (d/k) bits.
- \blacktriangleright Will show any $(1+\varepsilon)$ -distortion embedding into ℓ_2^m implies encoding into $O(nm)$ bits, hence $nm = \Omega(nk \log(d/k))$ \Rightarrow $m = \Omega(k \log(d/k)) = \Omega(\varepsilon^{-2} \log n)$ for ε not too small.
Why not?

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $\langle |g|\mathcal{X}|$. But $\overline{f(x)}$ has real entries, so the range is infinite!

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $\langle |g|\mathcal{X}|$. But $f(x)$ has real entries, so the range is infinite!

Fix attempt 1: Round entries of $f(x)$ to integer multiples of γ . Can show $\gamma=O(\frac{\varepsilon}{\sqrt{m}})$ suffices $\Longrightarrow O(nm\log(m/\varepsilon))$ bit encoding

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $\langle |g|\mathcal{X}|$. But $f(x)$ has real entries, so the range is infinite!

Fix attempt 1: Round entries of $f(x)$ to integer multiples of γ . Can show $\gamma=O(\frac{\varepsilon}{\sqrt{m}})$ suffices $\Longrightarrow O(nm\log(m/\varepsilon))$ bit encoding $\Longrightarrow m = \Omega(\varepsilon^{-2} \frac{\log n}{\log (m/\varepsilon)})$ final lower bound

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $\langle |g|\mathcal{X}|$. But $\overline{f(x)}$ has real entries, so the range is infinite!

Fix attempt 1: Round entries of $f(x)$ to integer multiples of γ . Can show $\gamma=O(\frac{\varepsilon}{\sqrt{m}})$ suffices $\Longrightarrow O(nm\log(m/\varepsilon))$ bit encoding $\Longrightarrow m = \Omega(\varepsilon^{-2} \frac{\log n}{\log (m/\varepsilon)})$ final lower bound

Slightly better fix: Round each $f(x)$ to a point $f(x)$ in an ε -net in ℓ_2 instead of a γ -net in ℓ_{∞} as above.

Recall $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f: X \to \ell_2^m$, wlog $f(0) = 0$ (by translating).

► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- **►** Encode $f(x)$ as $f(x) \in T$: $|X| \cdot |g| = nm \lg(1/\varepsilon)$ bits

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- **►** Encode $f(x)$ as $f(x) \in T$: $|X| \cdot |g| = nm \lg(1/\varepsilon)$ bits
- ► Remember: $\langle e_i, y_\mathcal{S} \rangle \in \{0, 10 \varepsilon\}$ (depends on whether $i \in \mathcal{S}$)

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- **►** Encode $f(x)$ as $f(x) \in T$: $|X| \cdot |g| = nm \lg(1/\varepsilon)$ bits
- ► Remember: $\langle e_i, y_\mathcal{S} \rangle \in \{0, 10 \varepsilon\}$ (depends on whether $i \in \mathcal{S}$)
- ▶ Low-distortion embedding preserves dot products, so $\langle f(e_i), f(y_S) \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall \mathsf{x} \in \mathsf{X}$, $f(\mathsf{x}) \in (1+\varepsilon)B_{\ell_{2}^{m}}$ 2
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- **►** Encode $f(x)$ as $f(x) \in T$: $|X| \cdot |g| = nm \lg(1/\varepsilon)$ bits
- ► Remember: $\langle e_i, y_\mathcal{S} \rangle \in \{0, 10 \varepsilon\}$ (depends on whether $i \in \mathcal{S}$)
- **Low-distortion embedding preserves dot products, so** $\langle f(e_i), f(y_S) \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$
- \triangleright Mapping to c ε -net points again preserves dot products, so $\left\langle \widetilde{f(e_i)}, \widetilde{f(y_S)} \right\rangle \in \{\pm 2\varepsilon, 10\varepsilon \pm 2\varepsilon\}$

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- **►** Encode $f(x)$ as $f(x) \in T$: $|X| \cdot |g| = nm \lg(1/\varepsilon)$ bits
- ► Remember: $\langle e_i, y_\mathcal{S} \rangle \in \{0, 10 \varepsilon\}$ (depends on whether $i \in \mathcal{S}$)
- \triangleright Low-distortion embedding preserves dot products, so $\langle f(e_i), \overline{f(y_S)} \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$
- \triangleright Mapping to $c\epsilon$ -net points again preserves dot products, so $\left\langle \widetilde{f(e_i)}, \widetilde{f(y_S)} \right\rangle \in \{\pm 2\varepsilon, 10\varepsilon \pm 2\varepsilon\}$
- ► Thus from encodings can recover $\langle e_i, y_S \rangle$ to know which $i \in S$ (dot product either $< 2\varepsilon$ in magnitude, or $> 8\varepsilon$)

- ► Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$ i.e. $\forall x \in X$, $f(x) \in (1+\varepsilon)B_{\ell_2^m}$
- Pick c ε -net T of $(1+\varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- **►** Encode $f(x)$ as $f(x) \in T$: $|X| \cdot |g| = nm \lg(1/\varepsilon)$ bits
- ► Remember: $\langle e_i, y_\mathcal{S} \rangle \in \{0, 10 \varepsilon\}$ (depends on whether $i \in \mathcal{S}$)
- \triangleright Low-distortion embedding preserves dot products, so $\langle f(e_i), \overline{f(y_S)} \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$
- \triangleright Mapping to $c\epsilon$ -net points again preserves dot products, so $\left\langle \widetilde{f(e_i)}, \widetilde{f(y_S)} \right\rangle \in \{\pm 2\varepsilon, 10\varepsilon \pm 2\varepsilon\}$
- ► Thus from encodings can recover $\langle e_i, y_S \rangle$ to know which $i \in S$ (dot product either $< 2\varepsilon$ in magnitude, or $> 8\varepsilon$)
- ► Can decode X, implies $nm \lg(1/\varepsilon) = \Omega(n\varepsilon^{-2} \log(\varepsilon^2 d))$

Recall $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f: X \to \ell_2^m$, wlog $f(0) = 0$ (by translating).

► Can decode X, implies $nm\lg(1/\varepsilon)=\Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$

Recall $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f: X \to \ell_2^m$, wlog $f(0) = 0$ (by translating).

► Can decode X, implies $nm\lg(1/\varepsilon)=\Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$

\n- Thus
$$
m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))
$$
.
\n- for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
\n

- ► Can decode X, implies $nm\lg(1/\varepsilon)=\Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$
- ► Thus $m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon)).$ for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
- \triangleright Same lower bound as [Alon '03], but very different argument. . . . but not what I promised you!

Recall $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f: X \to \ell_2^m$, wlog $f(0) = 0$ (by translating).

► Can decode X, implies nml g $(1/\varepsilon)=\Omega(n\varepsilon^{-2}\log(\varepsilon^2d))$

\n- Thus
$$
m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))
$$
.
\n- for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
\n

Same lower bound as [Alon '03], but very different argument. . . . but not what I promised you!

Recall $X = (0, e_1, \ldots, e_d, y_{S_1}, \ldots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f: X \to \ell_2^m$, wlog $f(0) = 0$ (by translating).

► Can decode X, implies nml g $(1/\varepsilon)=\Omega(n\varepsilon^{-2}\log(\varepsilon^2d))$

\n- Thus
$$
m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))
$$
.
\n- for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
\n

Same lower bound as [Alon '03], but very different argument. . . . but not what I promised you!

\n- Will now show a better encoding.
\n- remember, we are for now assuming
$$
d = n / \lg(1/\varepsilon)
$$
\n

An encoding of X into $O(nm)$ bits Sufficed for decoding X: knowing $\left\langle \widetilde{f(e_i)},\widetilde{f(y_{S_j})} \right\rangle$ for each i, j

An encoding of X into $O(nm)$ bits Sufficed for decoding X: knowing $\left\langle \widetilde{f(e_i)},\widetilde{f(y_{S_j})} \right\rangle$ for each i, j

► Knowing v_1, \ldots, v_{n-d-1} would allow us to decode.

An encoding of X into $O(nm)$ bits Sufficed for decoding X: knowing $\left\langle \widetilde{f(e_i)},\widetilde{f(y_{S_j})} \right\rangle$ for each i, j

► Knowing v_1, \ldots, v_{n-d-1} would allow us to decode.

In fact, suffices to know \tilde{v}_i such that $||v_i - \tilde{v}_i||_{\infty} < \varepsilon$. (then each entry of \widetilde{v}_j is $< 3\varepsilon$ or $> 7\varepsilon$ in magnitude)

 \triangleright Let E denote the column space of A $dim(E) \leq m$.

- \blacktriangleright $A \in \mathbb{R}^{d \times m}$
- \blacktriangleright $\widetilde{f(y_{\mathcal{S}_j})} \in \mathbb{R}^m$
- \blacktriangleright $v_j \in \mathbb{R}^d$

 \triangleright Let E denote the column space of A $dim(E) \leq m$.

► Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j$ $\mathsf{v}_j \in K$

- \blacktriangleright $A \in \mathbb{R}^{d \times m}$
- \blacktriangleright $\widetilde{f(y_{\mathcal{S}_j})} \in \mathbb{R}^m$
- \blacktriangleright $v_j \in \mathbb{R}^d$

- \triangleright Let E denote the column space of A $dim(E) \leq m$.
- ► Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j$ $\mathsf{v}_j \in K$
- ► K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$

- \blacktriangleright $A \in \mathbb{R}^{d \times m}$
- \blacktriangleright $\widetilde{f(y_{\mathcal{S}_j})} \in \mathbb{R}^m$
- \blacktriangleright $v_j \in \mathbb{R}^d$

- \triangleright Let E denote the column space of A $dim(E) \leq m$.
- ► Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j$ $\mathsf{v}_j \in K$
- ► K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$
- Define \tilde{v}_i as closest point in this net to v_i which contains v_j . $O(m)$ bits.

$$
\Longrightarrow ||v_j - \tilde{v}_j||_{\infty} < \varepsilon. \text{ Done?}
$$

 \blacktriangleright $A \in \mathbb{R}^{d \times m}$

$$
\blacktriangleright \widetilde{f(y_{S_j})} \in \mathbb{R}^m
$$

 \blacktriangleright $v_j \in \mathbb{R}^d$

 \blacktriangleright $A \in \mathbb{R}^{d \times m}$

 \blacktriangleright $\widetilde{f(y_{\mathcal{S}_j})} \in \mathbb{R}^m$

 \blacktriangleright $v_j \in \mathbb{R}^d$

- \triangleright Let E denote the column space of A $dim(E) \leq m$.
- ► Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j$ $\mathsf{v}_j \in K$
- ► K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$
- Define \tilde{v}_i as closest point in this net to v_i which contains v_j . $O(m)$ bits.

 $\Longrightarrow ||v_i - \tilde{v}_i||_{\infty} < \varepsilon$. Done?

Encoding needs to specify E (i.e. A). Encode $f(e_i)$ using $O(m \log(1/\varepsilon))$ bits For the $e_i\colon\thinspace O(\mathit{dm}\lg(1/\varepsilon))=O(\mathit{nm})$ bits

 \blacktriangleright $A \in \mathbb{R}^{d \times m}$

 \blacktriangleright $\widetilde{f(y_{\mathcal{S}_j})} \in \mathbb{R}^m$

 \blacktriangleright $v_j \in \mathbb{R}^d$

- \triangleright Let E denote the column space of A $dim(E) \leq m$.
- ► Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j$ $\mathsf{v}_j \in K$
- ► K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$
- Define \tilde{v}_i as closest point in this net to v_i which contains v_j . $O(m)$ bits.

 $\Longrightarrow ||v_i - \tilde{v}_i||_{\infty} < \varepsilon$. Done?

- Encoding needs to specify E (i.e. A). Encode $f(e_i)$ using $O(m \log(1/\varepsilon))$ bits For the $e_i\colon\thinspace O(\mathit{dm}\lg(1/\varepsilon))=O(\mathit{nm})$ bits
- \triangleright Total: $O(nm)$ bit encoding

QED What about when $d \neq n/\lg(1/\varepsilon)$?

(We were originally doing something a little more complicated, but Oded Regev pointed out the following simple argument.)

► Suppose $X \subset \ell_2^{d'}$ $\mathcal{C}^{a'}_2$, $|X|=n$, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ $(X$ has $\Omega(\varepsilon^{-2} \log n)$ lower bound).

- ► Suppose $X \subset \ell_2^{d'}$ $\mathcal{C}^{a'}_2$, $|X|=n$, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ $(X$ has $\Omega(\varepsilon^{-2} \log n)$ lower bound).
- \blacktriangleright $d > d'$: we have a hard set for any $d > d'$ by zero-padding vectors in X. Thus, name of the game: for fixed n, ε , show lower bound for as small a d as possible.

- ► Suppose $X \subset \ell_2^{d'}$ $\mathcal{C}^{a'}_2$, $|X|=n$, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ $(X$ has $\Omega(\varepsilon^{-2} \log n)$ lower bound).
- \blacktriangleright $d > d'$: we have a hard set for any $d > d'$ by zero-padding vectors in X. Thus, name of the game: for fixed n, ε , show lower bound for as small a d as possible.
- $\blacktriangleright\; d < d'$: For $d \geq \mathsf{C}\varepsilon^{-2}\log n$: we know $(1+\varepsilon)$ -distortion embedding $f: X \to \ell_2^d$ exists (JL *upper* bound).

- ► Suppose $X \subset \ell_2^{d'}$ $\mathcal{C}^{a'}_2$, $|X|=n$, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ $(X$ has $\Omega(\varepsilon^{-2} \log n)$ lower bound).
- \blacktriangleright $d > d'$: we have a hard set for any $d > d'$ by zero-padding vectors in X. Thus, name of the game: for fixed n, ε , show lower bound for as small a d as possible.
- $\blacktriangleright\; d < d'$: For $d \geq \mathsf{C}\varepsilon^{-2}\log n$: we know $(1+\varepsilon)$ -distortion embedding $f: X \to \ell_2^d$ exists (JL *upper* bound).

 $f(X)$ must be hard, else if good low-dimensional/low-distortion embedding g exists, then $g \circ f$ is a good low-distortional embedding for X (which we know doesn't exist).

What next?

Two days after [Larsen, Nelson '17]

▶ Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the $\binom{n}{2}$ $\binom{n}{2}$ distances among n vectors of length at most 1 ..."

Two days after [Larsen, Nelson '17]

- ▶ Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the $\binom{n}{2}$ $\binom{n}{2}$ distances among n vectors of length at most $1 \ldots$ "
- **•** 4 later: problem solved! (for knowing up to additive ε) [Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle \pm \varepsilon$ for any $x_i, x_j \in X$.

Two days after [Larsen, Nelson '17]

- ▶ Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the $\binom{n}{2}$ $\binom{n}{2}$ distances among n vectors of length at most $1 \ldots$ "
- **•** 4 later: problem solved! (for knowing up to additive ε) [Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle \pm \varepsilon$ for any $x_i, x_j \in X$.

Here $f(n, d, \varepsilon)$ is a bound they prove optimal for this problem

$$
f(n, d, \varepsilon) = \begin{cases} \frac{n \log n}{\varepsilon^2}, & \frac{\log n}{\varepsilon^2} \le d \le n \\ nd \log(2 + \frac{\log n}{\varepsilon^2 d}), & \log n \le d \le \frac{\log n}{\varepsilon^2} \\ nd \log(1/\varepsilon), & 1 \le d \le \log n \end{cases}
$$

Two days after [Larsen, Nelson '17]

- ▶ Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the $\binom{n}{2}$ $\binom{n}{2}$ distances among n vectors of length at most 1 ..."
- **•** 4 later: problem solved! (for knowing up to additive ε) [Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle \pm \varepsilon$ for any $x_i, x_j \in X$.
- Here $f(n, d, \varepsilon)$ is a bound they prove optimal for this problem

$$
f(n, d, \varepsilon) = \begin{cases} \frac{n \log n}{\varepsilon^2}, & \frac{\log n}{\varepsilon^2} \le d \le n \\ nd \log(2 + \frac{\log n}{\varepsilon^2 d}), & \log n \le d \le \frac{\log n}{\varepsilon^2} \\ nd \log(1/\varepsilon), & 1 \le d \le \log n \end{cases}
$$

 \triangleright First case for d, upper bound for this data structural problem achieved earlier by [Kushilevitz, Ostrovsky, Rabani '98]

[Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

[Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

 \blacktriangleright Proof also via encoding argument.

Essentially the problem is equivalent to the following: let $\mathcal G$ be the set of all $n \times n$ Gram matrices of rank d and diagonal entries ≤ 1 . What is the logarithm of the size of the smallest ε -net of G under entrywise ℓ_{∞} -norm?

Encode X as name of closest net point to its Gram matrix.

[Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

\blacktriangleright Proof also via encoding argument.

Essentially the problem is equivalent to the following: let $\mathcal G$ be the set of all $n \times n$ Gram matrices of rank d and diagonal entries ≤ 1 . What is the logarithm of the size of the smallest ε -net of G under entrywise ℓ_{∞} -norm?

Encode X as name of closest net point to its Gram matrix.

\triangleright Also implies optimal JL lower bound!

 $f(n, n, 2\varepsilon) \leq f(n, m, \varepsilon)$ if low-distortion embedding into ℓ_2^m existed (first embed points then build data structure)

[Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

\blacktriangleright Proof also via encoding argument.

Essentially the problem is equivalent to the following: let $\mathcal G$ be the set of all $n \times n$ Gram matrices of rank d and diagonal entries ≤ 1 . What is the logarithm of the size of the smallest ε -net of G under entrywise ℓ_{∞} -norm?

Encode X as name of closest net point to its Gram matrix.

\triangleright Also implies optimal JL lower bound!

 $f(n, n, 2\varepsilon) \leq f(n, m, \varepsilon)$ if low-distortion embedding into ℓ_2^m existed (first embed points then build data structure)

But [AK'17] gave upper bound on $f(n, m, \varepsilon)$, so m can't be too small lest their lower bound on $f(n, n, 2\varepsilon)$ be violated.

[Alon, Klartag '17]: Given $X\subset S^{d-1}$, $|X|=n$, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $\text{query}(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

- \triangleright OPEN:
	- \rightarrow dynamic approx. dot product with fast update/query?
	- **P** approximate distance query with **relative** $1 + \varepsilon$ error? (see [Indyk, Wagner '17]; potential gap of $\lg(1/\varepsilon)$ remains)

And yet there's more

Conjecture: ([Larsen, Nelson '17]) If $s(n, d, \varepsilon)$ is the optimal *m* for distortion $1 + \varepsilon$ for *n*-point subsets of ℓ_2^d , then $s(n, d, \varepsilon) = \Theta(\min\{n, d, \varepsilon^{-2}\log(2 + \varepsilon^2 n)\})$ for all ε, n, d . (i.e. JL is suboptimal for ε approaching $1/$ √ $\overline{n})$

- **Conjecture:** ([Larsen, Nelson '17]) If $s(n, d, \varepsilon)$ is the optimal *m* for distortion $1 + \varepsilon$ for *n*-point subsets of ℓ_2^d , then $s(n, d, \varepsilon) = \Theta(\min\{n, d, \varepsilon^{-2}\log(2 + \varepsilon^2 n)\})$ for all ε, n, d . (i.e. JL is suboptimal for ε approaching $1/$ √ $\overline{n})$
- \blacktriangleright [Alon, Klartag '17]: some progress toward conjecture. Proved lower bound. As for upper bound ...
- **Conjecture:** ([Larsen, Nelson '17]) If $s(n, d, \varepsilon)$ is the optimal *m* for distortion $1 + \varepsilon$ for *n*-point subsets of ℓ_2^d , then $s(n, d, \varepsilon) = \Theta(\min\{n, d, \varepsilon^{-2}\log(2 + \varepsilon^2 n)\})$ for all ε, n, d . (i.e. JL is suboptimal for ε approaching $1/$ √ $\overline{n})$
- \blacktriangleright [Alon, Klartag '17]: some progress toward conjecture. Proved lower bound. As for upper bound ...

for *bipartite* version of problem with $x_1, \ldots, x_n, y_1, \ldots, y_n$ of unit norm, can show there exist $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}^m$ for $m = O(\varepsilon^{-2}\log(2 + \varepsilon^2 n))$ with

 $\forall i,j \mid \langle x_i,y_j\rangle - \langle \textit{a}_i,\textit{b}_j\rangle \mid \ \leq \varepsilon$

- **Conjecture:** ([Larsen, Nelson '17]) If $s(n, d, \varepsilon)$ is the optimal *m* for distortion $1 + \varepsilon$ for *n*-point subsets of ℓ_2^d , then $s(n, d, \varepsilon) = \Theta(\min\{n, d, \varepsilon^{-2}\log(2 + \varepsilon^2 n)\})$ for all ε, n, d . (i.e. JL is suboptimal for ε approaching $1/$ √ $\overline{n})$
- \blacktriangleright [Alon, Klartag '17]: some progress toward conjecture. Proved lower bound. As for upper bound ...

for *bipartite* version of problem with $x_1, \ldots, x_n, y_1, \ldots, y_n$ of unit norm, can show there exist $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}^m$ for $m = O(\varepsilon^{-2}\log(2 + \varepsilon^2 n))$ with

$$
\forall i,j \mid \langle x_i,y_j\rangle - \langle a_i,b_j\rangle \mid \leq \varepsilon
$$

 \blacktriangleright [Alon, Klartag '17] positive result on bipartite problem makes use of low M[∗] -estimate [Pajor, Tomczak-Jaegermann '86] and Khatri-Sidak lemma [Khatri '67], [Sidak '67].

More open problems

Open problems

- \blacktriangleright Improved upper bound for constructing incoherent vectors? Maybe [Alon '03] sharp and **Gilbert-Varshamov bound** always suboptimal!?
- Instance-wise optimality for ℓ_2 dimensionality reduction? What's the right m in terms of X itself? Bicriteria results?
- In JL map that can be applied to x in time $\tilde{O}(m + ||x||_0)$?
	- $\|\cdot\|_0$ denotes support size
- ► Explicit DJL distribution with seed length $O(\log \frac{d}{\delta})$?
- **Rasmus Pagh:** Las Vegas algorithm for computing a JL map for set of *n* points faster than repeated random projections then checking?