

Optimality of the Johnson-Lindenstrauss lemma

Jelani Nelson
Harvard

November 16, 2017

joint work with Kasper Green Larsen (Aarhus)

Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss ’84]

For every X ⊂ `2 of size n, there is an embedding f : X → `m2 for
m = O(ε−2 log n) with distortion 1 + ε. That is, for each x , y ∈ X ,

(1− ε)‖x − y‖2
2 ≤ ‖f (x)− f (y)‖2

2 ≤ (1 + ε)‖x − y‖2
2

Uses in computer science:

I Speed up geometric algorithms by first reducing dimension of
input [Indyk, Motwani ’98], [Indyk ’01]

I Faster/streaming numerical linear algebra algorithms [Sarlós
’06], [LWMRT ’07], [Clarkson, Woodruff ’09]

I Essentially equivalent to RIP matrices from compressed
sensing [Baraniuk et al. ’08], [Krahmer, Ward ’11]
(used for recovery of sparse signals)

I Volume-preserving embeddings (applications to projective
clustering) [Magen ’02]

I . . .

Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss ’84]

For every X ⊂ `2 of size n, there is an embedding f : X → `m2 for
m = O(ε−2 log n) with distortion 1 + ε. That is, for each x , y ∈ X ,

(1− ε)‖x − y‖2
2 ≤ ‖f (x)− f (y)‖2

2 ≤ (1 + ε)‖x − y‖2
2

Uses in computer science:

I Speed up geometric algorithms by first reducing dimension of
input [Indyk, Motwani ’98], [Indyk ’01]

I Faster/streaming numerical linear algebra algorithms [Sarlós
’06], [LWMRT ’07], [Clarkson, Woodruff ’09]

I Essentially equivalent to RIP matrices from compressed
sensing [Baraniuk et al. ’08], [Krahmer, Ward ’11]
(used for recovery of sparse signals)

I Volume-preserving embeddings (applications to projective
clustering) [Magen ’02]

I . . .

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any u ∈ Sd−1

P
Π∼Dε,δ

(∣∣‖Πu‖2
2 − 1

∣∣ > ε
)
< δ.

Proof of JL: Set δ = 1/n2 in DJL and u as the normalized
difference vector of some pair of points. Union bound over the

(n
2

)
pairs. Thus, in fact, the map f : X → `m2 can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011)
For DJL, m = Θ(ε−2 log(1/δ)) is optimal.

Theorem (Alon, 2003)
For JL, m = Ω((ε−2/ log(1/ε)) log n) is required.

Theorem (Larsen, Nelson 2016)
For JL, m = Ω(ε−2 log n) is required if f must be a linear map.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any u ∈ Sd−1

P
Π∼Dε,δ

(∣∣‖Πu‖2
2 − 1

∣∣ > ε
)
< δ.

Proof of JL: Set δ = 1/n2 in DJL and u as the normalized
difference vector of some pair of points. Union bound over the

(n
2

)
pairs. Thus, in fact, the map f : X → `m2 can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011)
For DJL, m = Θ(ε−2 log(1/δ)) is optimal.

Theorem (Alon, 2003)
For JL, m = Ω((ε−2/ log(1/ε)) log n) is required.

Theorem (Larsen, Nelson 2016)
For JL, m = Ω(ε−2 log n) is required if f must be a linear map.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any u ∈ Sd−1

P
Π∼Dε,δ

(∣∣‖Πu‖2
2 − 1

∣∣ > ε
)
< δ.

Proof of JL: Set δ = 1/n2 in DJL and u as the normalized
difference vector of some pair of points. Union bound over the

(n
2

)
pairs. Thus, in fact, the map f : X → `m2 can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011)
For DJL, m = Θ(ε−2 log(1/δ)) is optimal.

Theorem (Alon, 2003)
For JL, m = Ω((ε−2/ log(1/ε)) log n) is required.

Theorem (Larsen, Nelson 2016)
For JL, m = Ω(ε−2 log n) is required if f must be a linear map.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any u ∈ Sd−1

P
Π∼Dε,δ

(∣∣‖Πu‖2
2 − 1

∣∣ > ε
)
< δ.

Proof of JL: Set δ = 1/n2 in DJL and u as the normalized
difference vector of some pair of points. Union bound over the

(n
2

)
pairs. Thus, in fact, the map f : X → `m2 can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011)
For DJL, m = Θ(ε−2 log(1/δ)) is optimal.

Theorem (Alon, 2003)
For JL, m = Ω((ε−2/ log(1/ε)) log n) is required.

Theorem (Larsen, Nelson 2016)
For JL, m = Ω(ε−2 log n) is required if f must be a linear map.

How to prove the JL lemma

Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss ’84])

For any 0 < ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ
on Rm×d for m = O(ε−2 log(1/δ)) such that for any u ∈ Sd−1

P
Π∼Dε,δ

(∣∣‖Πu‖2
2 − 1

∣∣ > ε
)
< δ.

Proof of JL: Set δ = 1/n2 in DJL and u as the normalized
difference vector of some pair of points. Union bound over the

(n
2

)
pairs. Thus, in fact, the map f : X → `m2 can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011)
For DJL, m = Θ(ε−2 log(1/δ)) is optimal.

Theorem (Alon, 2003)
For JL, m = Ω((ε−2/ log(1/ε)) log n) is required.

Theorem (Larsen, Nelson 2017)
For JL, m = Ω(ε−2 log n) is required if f must be a linear map.

JL lower bound

Theorem ([Larsen, Nelson ’17])

For any integers d , n ≥ 2 and any 1
(min{n,d})0.4999 < ε < 1, there

exists a set X ⊂ `d2 such that any embedding f : X → `m2 with
distortion at most 1 + ε must have

m = Ω(ε−2 log n)

I Can always achieve m = d : f is the identity map.

I Can always achieve m = n − 1: translate so one vector is 0.
Then all vectors live in (n − 1)-dimensional subspace.

I So can only hope JL optimal for ε−2 log n ≤ min{n, d},
can view theorem assumption as ε−2 log n� min{n, d}0.999.

JL lower bound

Theorem ([Larsen, Nelson ’17])

For any integers d , n ≥ 2 and any 1
(min{n,d})0.4999 < ε < 1, there

exists a set X ⊂ `d2 such that any embedding f : X → `m2 with
distortion at most 1 + ε must have

m = Ω(ε−2 log n)

I Can always achieve m = d : f is the identity map.

I Can always achieve m = n − 1: translate so one vector is 0.
Then all vectors live in (n − 1)-dimensional subspace.

I So can only hope JL optimal for ε−2 log n ≤ min{n, d},
can view theorem assumption as ε−2 log n� min{n, d}0.999.

JL lower bound

Theorem ([Larsen, Nelson ’17])

For any integers d , n ≥ 2 and any 1
(min{n,d})0.4999 < ε < 1, there

exists a set X ⊂ `d2 such that any embedding f : X → `m2 with
distortion at most 1 + ε must have

m = Ω(ε−2 log n)

I Can always achieve m = d : f is the identity map.

I Can always achieve m = n − 1: translate so one vector is 0.
Then all vectors live in (n − 1)-dimensional subspace.

I So can only hope JL optimal for ε−2 log n ≤ min{n, d},
can view theorem assumption as ε−2 log n� min{n, d}0.999.

Lower bound techniques
over time

Lower bounds over time

I Volume argument. m = Ω(log n) [Johnson, Lindenstrauss ’84]

I Incoherence + tensor trick. m = Ω(1
ε2

log n
log(1/ε)) [Alon ’03]

I Net argument + probabilistic method. m = Ω(1
ε2 log n)

(only against linear maps f (x) = Πx) [Larsen, Nelson ’16]

I Encoding argument. m = Ω(1
ε2 log n) [Larsen, Nelson ’17]

Lower bounds over time

I Volume argument. m = Ω(log n) [Johnson, Lindenstrauss ’84]

I Incoherence + tensor trick. m = Ω(1
ε2

log n
log(1/ε)) [Alon ’03]

I Net argument + probabilistic method. m = Ω(1
ε2 log n)

(only against linear maps f (x) = Πx) [Larsen, Nelson ’16]

I Encoding argument. m = Ω(1
ε2 log n) [Larsen, Nelson ’17]

Lower bounds over time

I Volume argument. m = Ω(log n) [Johnson, Lindenstrauss ’84]

I Incoherence + tensor trick. m = Ω(1
ε2

log n
log(1/ε)) [Alon ’03]

I Net argument + probabilistic method. m = Ω(1
ε2 log n)

(only against linear maps f (x) = Πx) [Larsen, Nelson ’16]

I Encoding argument. m = Ω(1
ε2 log n) [Larsen, Nelson ’17]

Lower bounds over time

I Volume argument. m = Ω(log n) [Johnson, Lindenstrauss ’84]

I Incoherence + tensor trick. m = Ω(1
ε2

log n
log(1/ε)) [Alon ’03]

I Net argument + probabilistic method. m = Ω(1
ε2 log n)

(only against linear maps f (x) = Πx) [Larsen, Nelson ’16]

I Encoding argument. m = Ω(1
ε2 log n) [Larsen, Nelson ’17]

Barrier in previous proofs.
(The limits of incoherence.)

We say x1, . . . , xn are ε-incoherent if

I ∀i ‖xi‖2 = 1

I ∀i 6= j | 〈xi , xj〉 | ≤ ε

Previous hard point sets were incoherent, so could just map to
another set of incoherent vectors in smaller dimension.

m = O(ε−2(log n
log(1/ε)+log log n)2) achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Barrier in previous proofs.
(The limits of incoherence.)

We say x1, . . . , xn are ε-incoherent if

I ∀i ‖xi‖2 = 1

I ∀i 6= j | 〈xi , xj〉 | ≤ ε

Previous hard point sets were incoherent, so could just map to
another set of incoherent vectors in smaller dimension.

m = O(ε−2(log n
log(1/ε)+log log n)2) achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Barrier in previous proofs.
(The limits of incoherence.)

We say x1, . . . , xn are ε-incoherent if

I ∀i ‖xi‖2 = 1

I ∀i 6= j | 〈xi , xj〉 | ≤ ε

Previous hard point sets were incoherent, so could just map to
another set of incoherent vectors in smaller dimension.

m = O(ε−2(log n
log(1/ε)+log log n)2) achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Barrier in previous proofs.
(The limits of incoherence.)

We say x1, . . . , xn are ε-incoherent if

I ∀i ‖xi‖2 = 1

I ∀i 6= j | 〈xi , xj〉 | ≤ ε

Previous hard point sets were incoherent, so could just map to
another set of incoherent vectors in smaller dimension.

m = O(ε−2(log n
log(1/ε)+log log n)2) achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Barrier in previous proofs.
(The limits of incoherence.)

We say x1, . . . , xn are ε-incoherent if

I ∀i ‖xi‖2 = 1

I ∀i 6= j | 〈xi , xj〉 | ≤ ε

Previous hard point sets were incoherent, so could just map to
another set of incoherent vectors in smaller dimension.

m = O(ε−2(log n
log(1/ε)+log log n)2) achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Encoding argument.
[Larsen, Nelson ’17]

JL is optimal even against non-linear maps

We define a large collection X of n-sized sets X ⊂ Rd s.t. if all
X ∈ X can be embedded into dimension ≤ 10−10 · ε−2 log2 n, then
there is an encoding of elements of X into < log2 |X | bits (i.e. a
surjection from X to {0, 1}t for t < log2 |X |). Contradiction.

Encoding argument.
[Larsen, Nelson ’17]

For now: assume d = n/ lg(1/ε)

Encoding argument.
[Larsen, Nelson ’17]

For now: assume d = n/ lg(1/ε)

Observation

I Preserving distances implies preserving dot products. Say
‖x‖2 = ‖y‖2 = 1.

‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2 〈x , y〉 (∗)

‖f (x)− f (y)‖2
2 = ‖f (x)‖2

2 + ‖f (y)‖2
2 − 2 〈f (x), f (y)〉

=⇒ (1± ε)‖x − y‖2
2 = (1± ε)

1︷︸︸︷
‖x‖2

2 +(1± ε)

1︷︸︸︷
‖y‖2

2−2 〈f (x), f (y)〉
(∗∗)

I Now subtract (*) from (**): 〈f (x), f (y)〉 = 〈x , y〉 ± O(ε)

Observation

I Preserving distances implies preserving dot products. Say
‖x‖2 = ‖y‖2 = 1.

‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2 〈x , y〉 (∗)

‖f (x)− f (y)‖2
2 = ‖f (x)‖2

2 + ‖f (y)‖2
2 − 2 〈f (x), f (y)〉

=⇒ (1± ε)‖x − y‖2
2 = (1± ε)

1︷︸︸︷
‖x‖2

2 +(1± ε)

1︷︸︸︷
‖y‖2

2−2 〈f (x), f (y)〉
(∗∗)

I Now subtract (*) from (**): 〈f (x), f (y)〉 = 〈x , y〉 ± O(ε)

JL lower bound outline

I Pick k = 1
100ε2 .

I For S ⊂ [d] of size k, define vector yS = 1√
k

∑
j∈S ej . Note

〈yS , ei 〉 =

{
10ε, i ∈ S

0, otherwise

I Idea: low-distortion embedding preserves dot products up to
±ε, which is enough to distinguish the two cases

I X is set of all ordered tuples of points, possibly with repetition

X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1
) with the Si ∈

([d]
k

)
.

I |X | =
(d
k

)n−d−1
, thus any encoding of X ∈ X

requires ≥ (n − d − 1) lg
(d
k

)
= (1− oε(1))nk lg(d/k) bits.

I Will show any (1 + ε)-distortion embedding into `m2 implies
encoding into O(nm) bits, hence nm = Ω(nk log(d/k))

⇒ m = Ω(k log(d/k)) = Ω(ε−2 log n) for ε not too small.

JL lower bound outline

I Pick k = 1
100ε2 .

I For S ⊂ [d] of size k, define vector yS = 1√
k

∑
j∈S ej . Note

〈yS , ei 〉 =

{
10ε, i ∈ S

0, otherwise

I Idea: low-distortion embedding preserves dot products up to
±ε, which is enough to distinguish the two cases

I X is set of all ordered tuples of points, possibly with repetition

X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1
) with the Si ∈

([d]
k

)
.

I |X | =
(d
k

)n−d−1
, thus any encoding of X ∈ X

requires ≥ (n − d − 1) lg
(d
k

)
= (1− oε(1))nk lg(d/k) bits.

I Will show any (1 + ε)-distortion embedding into `m2 implies
encoding into O(nm) bits, hence nm = Ω(nk log(d/k))

⇒ m = Ω(k log(d/k)) = Ω(ε−2 log n) for ε not too small.

JL lower bound outline

I Pick k = 1
100ε2 .

I For S ⊂ [d] of size k, define vector yS = 1√
k

∑
j∈S ej . Note

〈yS , ei 〉 =

{
10ε, i ∈ S

0, otherwise

I Idea: low-distortion embedding preserves dot products up to
±ε, which is enough to distinguish the two cases

I X is set of all ordered tuples of points, possibly with repetition

X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1
) with the Si ∈

([d]
k

)
.

I |X | =
(d
k

)n−d−1
, thus any encoding of X ∈ X

requires ≥ (n − d − 1) lg
(d
k

)
= (1− oε(1))nk lg(d/k) bits.

I Will show any (1 + ε)-distortion embedding into `m2 implies
encoding into O(nm) bits, hence nm = Ω(nk log(d/k))

⇒ m = Ω(k log(d/k)) = Ω(ε−2 log n) for ε not too small.

JL lower bound outline

I Pick k = 1
100ε2 .

I For S ⊂ [d] of size k, define vector yS = 1√
k

∑
j∈S ej . Note

〈yS , ei 〉 =

{
10ε, i ∈ S

0, otherwise

I Idea: low-distortion embedding preserves dot products up to
±ε, which is enough to distinguish the two cases

I X is set of all ordered tuples of points, possibly with repetition

X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1
) with the Si ∈

([d]
k

)
.

I |X | =
(d
k

)n−d−1
, thus any encoding of X ∈ X

requires ≥ (n − d − 1) lg
(d
k

)
= (1− oε(1))nk lg(d/k) bits.

I Will show any (1 + ε)-distortion embedding into `m2 implies
encoding into O(nm) bits, hence nm = Ω(nk log(d/k))

⇒ m = Ω(k log(d/k)) = Ω(ε−2 log n) for ε not too small.

Problem: Encoding of X ∈ X can’t just be a description of
f (0), f (e1), . . . , f (ed), f (yS1), . . . , f (ySn−d−1

).

Why not?

Want to violate pigeonhole principle, so range of the
encoding must be of size < lg |X |. But f (x) has real entries, so
the range is infinite!

Fix attempt 1: Round entries of f (x) to integer multiples of γ.
Can show γ = O(ε√

m
) suffices =⇒ O(nm log(m/ε)) bit encoding

=⇒ m = Ω(ε−2 log n
log(m/ε)) final lower bound

Slightly better fix: Round each f (x) to a point f̃ (x) in an ε-net
in `2 instead of a γ-net in `∞ as above.

Problem: Encoding of X ∈ X can’t just be a description of
f (0), f (e1), . . . , f (ed), f (yS1), . . . , f (ySn−d−1

).

Why not? Want to violate pigeonhole principle, so range of the
encoding must be of size < lg |X |. But f (x) has real entries, so
the range is infinite!

Fix attempt 1: Round entries of f (x) to integer multiples of γ.
Can show γ = O(ε√

m
) suffices =⇒ O(nm log(m/ε)) bit encoding

=⇒ m = Ω(ε−2 log n
log(m/ε)) final lower bound

Slightly better fix: Round each f (x) to a point f̃ (x) in an ε-net
in `2 instead of a γ-net in `∞ as above.

Problem: Encoding of X ∈ X can’t just be a description of
f (0), f (e1), . . . , f (ed), f (yS1), . . . , f (ySn−d−1

).

Why not? Want to violate pigeonhole principle, so range of the
encoding must be of size < lg |X |. But f (x) has real entries, so
the range is infinite!

Fix attempt 1: Round entries of f (x) to integer multiples of γ.
Can show γ = O(ε√

m
) suffices =⇒ O(nm log(m/ε)) bit encoding

=⇒ m = Ω(ε−2 log n
log(m/ε)) final lower bound

Slightly better fix: Round each f (x) to a point f̃ (x) in an ε-net
in `2 instead of a γ-net in `∞ as above.

Problem: Encoding of X ∈ X can’t just be a description of
f (0), f (e1), . . . , f (ed), f (yS1), . . . , f (ySn−d−1

).

Why not? Want to violate pigeonhole principle, so range of the
encoding must be of size < lg |X |. But f (x) has real entries, so
the range is infinite!

Fix attempt 1: Round entries of f (x) to integer multiples of γ.
Can show γ = O(ε√

m
) suffices =⇒ O(nm log(m/ε)) bit encoding

=⇒ m = Ω(ε−2 log n
log(m/ε)) final lower bound

Slightly better fix: Round each f (x) to a point f̃ (x) in an ε-net
in `2 instead of a γ-net in `∞ as above.

Problem: Encoding of X ∈ X can’t just be a description of
f (0), f (e1), . . . , f (ed), f (yS1), . . . , f (ySn−d−1

).

Why not? Want to violate pigeonhole principle, so range of the
encoding must be of size < lg |X |. But f (x) has real entries, so
the range is infinite!

Fix attempt 1: Round entries of f (x) to integer multiples of γ.
Can show γ = O(ε√

m
) suffices =⇒ O(nm log(m/ε)) bit encoding

=⇒ m = Ω(ε−2 log n
log(m/ε)) final lower bound

Slightly better fix: Round each f (x) to a point f̃ (x) in an ε-net
in `2 instead of a γ-net in `∞ as above.

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2

I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Since distances to 0 preserved, ‖f (x)‖2
2 ≤ 1 + ε for x ∈ X

i.e. ∀x ∈ X , f (x) ∈ (1 + ε)B`m2
I Pick cε-net T of (1 + ε)B`m2 in `2; has size N = O(1/ε)m.

I Encode f (x) as f̃ (x) ∈ T : |X | · lgN = nm lg(1/ε) bits

I Remember: 〈ei , yS〉 ∈ {0, 10ε} (depends on whether i ∈ S)

I Low-distortion embedding preserves dot products, so
〈f (ei), f (yS)〉 ∈ {±ε, 10ε± ε}

I Mapping to cε-net points again preserves dot products, so〈
f̃ (ei), f̃ (yS)

〉
∈ {±2ε, 10ε± 2ε}

I Thus from encodings can recover 〈ei , yS〉 to know which i ∈ S

(dot product either < 2ε in magnitude, or > 8ε)

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

I Thus m = Ω(ε−2 log(ε2d)/ log(1/ε)).

for ε not too small, this is m = Ω(ε−2 log n
log(1/ε))

I Same lower bound as [Alon ’03], but very different argument.

. . . but not what I promised you!

hi

hi

hi

hi

hi

hi

hi

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

I Thus m = Ω(ε−2 log(ε2d)/ log(1/ε)).

for ε not too small, this is m = Ω(ε−2 log n
log(1/ε))

I Same lower bound as [Alon ’03], but very different argument.

. . . but not what I promised you!

hi

hi

hi

hi

hi

hi

hi

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Can decode X , implies nm lg(1/ε) = Ω(nε−2 log(ε2d))

I Thus m = Ω(ε−2 log(ε2d)/ log(1/ε)).

for ε not too small, this is m = Ω(ε−2 log n
log(1/ε))

I Same lower bound as [Alon ’03], but very different argument.

. . . but not what I promised you!

hi

hi

hi

hi

hi

hi

hi

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Can decode X , implies nmlg(1/ε) = Ω(nε−2 log(ε2d))

I Thus m = Ω(ε−2 log(ε2d)/log(1/ε)).

for ε not too small, this is m = Ω(ε−2 log n
log(1/ε))

I Same lower bound as [Alon ’03], but very different argument.

. . . but not what I promised you!

I Will now show a better encoding.

remember, we are for now assuming d = n/ lg(1/ε)

hi

hi

hi

hi

hi

hi

A warmup lower bound
Recall X = (0, e1, . . . , ed , yS1 , . . . , ySn−d−1

). For (1 + ε)-distortion
embedding f : X → `m2 , wlog f (0) = 0 (by translating).

I Can decode X , implies nmlg(1/ε) = Ω(nε−2 log(ε2d))

I Thus m = Ω(ε−2 log(ε2d)/log(1/ε)).

for ε not too small, this is m = Ω(ε−2 log n
log(1/ε))

I Same lower bound as [Alon ’03], but very different argument.

. . . but not what I promised you!

I Will now show a better encoding.

remember, we are for now assuming d = n/ lg(1/ε)

hi

hi

hi

hi

hi

hi

An encoding of X into O(nm) bits
Sufficed for decoding X : knowing

〈
f̃ (ei), f̃ (ySj)

〉
for each i , j

A



f̃ (e1)
T

f̃ (e2)
T

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

f̃ (ed)
T

· f̃ (ySj) =

〈
f̃ (e1), f̃ (ySj)

〉
〈
f̃ (e2), f̃ (ySj)

〉
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·〈

f̃ (ed), f̃ (ySj)
〉



vj

I Knowing v1, . . . , vn−d−1 would allow us to decode.
I In fact, suffices to know ṽj such that ‖vj − ṽj‖∞ < ε.

(then each entry of ṽj is < 3ε or > 7ε in magnitude)

An encoding of X into O(nm) bits
Sufficed for decoding X : knowing

〈
f̃ (ei), f̃ (ySj)

〉
for each i , j

A



f̃ (e1)
T

f̃ (e2)
T

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

f̃ (ed)
T

· f̃ (ySj) =

〈
f̃ (e1), f̃ (ySj)

〉
〈
f̃ (e2), f̃ (ySj)

〉
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·〈

f̃ (ed), f̃ (ySj)
〉



vj

I Knowing v1, . . . , vn−d−1 would allow us to decode.

I In fact, suffices to know ṽj such that ‖vj − ṽj‖∞ < ε.

(then each entry of ṽj is < 3ε or > 7ε in magnitude)

An encoding of X into O(nm) bits
Sufficed for decoding X : knowing

〈
f̃ (ei), f̃ (ySj)

〉
for each i , j

A



f̃ (e1)
T

f̃ (e2)
T

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

f̃ (ed)
T

· f̃ (ySj) =

〈
f̃ (e1), f̃ (ySj)

〉
〈
f̃ (e2), f̃ (ySj)

〉
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·〈

f̃ (ed), f̃ (ySj)
〉



vj

I Knowing v1, . . . , vn−d−1 would allow us to decode.
I In fact, suffices to know ṽj such that ‖vj − ṽj‖∞ < ε.

(then each entry of ṽj is < 3ε or > 7ε in magnitude)

An encoding of X into O(nm) bits

I A ∈ Rd×m

I f̃ (ySj) ∈ Rm

I vj ∈ Rd

I Let E denote the column space of A

dim(E) ≤ m.

I Define K = E ∩ (12εB`d∞), ∀j vj ∈ K

I K has 1
12 -net in K -norm of size ≤ 2O(m)

I Define ṽj as closest point in this net to vj

which contains vj . O(m) bits.

=⇒ ‖vj − ṽj‖∞ < ε. Done?

I Encoding needs to specify E (i.e. A).

Encode f̃ (ei) using O(m log(1/ε)) bits

For the ei : O(dm lg(1/ε)) = O(nm) bits

I Total: O(nm) bit encoding

An encoding of X into O(nm) bits

I A ∈ Rd×m

I f̃ (ySj) ∈ Rm

I vj ∈ Rd

I Let E denote the column space of A

dim(E) ≤ m.

I Define K = E ∩ (12εB`d∞), ∀j vj ∈ K

I K has 1
12 -net in K -norm of size ≤ 2O(m)

I Define ṽj as closest point in this net to vj

which contains vj . O(m) bits.

=⇒ ‖vj − ṽj‖∞ < ε. Done?

I Encoding needs to specify E (i.e. A).

Encode f̃ (ei) using O(m log(1/ε)) bits

For the ei : O(dm lg(1/ε)) = O(nm) bits

I Total: O(nm) bit encoding

An encoding of X into O(nm) bits

I A ∈ Rd×m

I f̃ (ySj) ∈ Rm

I vj ∈ Rd

I Let E denote the column space of A

dim(E) ≤ m.

I Define K = E ∩ (12εB`d∞), ∀j vj ∈ K

I K has 1
12 -net in K -norm of size ≤ 2O(m)

I Define ṽj as closest point in this net to vj

which contains vj . O(m) bits.

=⇒ ‖vj − ṽj‖∞ < ε. Done?

I Encoding needs to specify E (i.e. A).

Encode f̃ (ei) using O(m log(1/ε)) bits

For the ei : O(dm lg(1/ε)) = O(nm) bits

I Total: O(nm) bit encoding

An encoding of X into O(nm) bits

I A ∈ Rd×m

I f̃ (ySj) ∈ Rm

I vj ∈ Rd

I Let E denote the column space of A

dim(E) ≤ m.

I Define K = E ∩ (12εB`d∞), ∀j vj ∈ K

I K has 1
12 -net in K -norm of size ≤ 2O(m)

I Define ṽj as closest point in this net to vj

which contains vj . O(m) bits.

=⇒ ‖vj − ṽj‖∞ < ε. Done?

I Encoding needs to specify E (i.e. A).

Encode f̃ (ei) using O(m log(1/ε)) bits

For the ei : O(dm lg(1/ε)) = O(nm) bits

I Total: O(nm) bit encoding

An encoding of X into O(nm) bits

I A ∈ Rd×m

I f̃ (ySj) ∈ Rm

I vj ∈ Rd

I Let E denote the column space of A

dim(E) ≤ m.

I Define K = E ∩ (12εB`d∞), ∀j vj ∈ K

I K has 1
12 -net in K -norm of size ≤ 2O(m)

I Define ṽj as closest point in this net to vj

which contains vj . O(m) bits.

=⇒ ‖vj − ṽj‖∞ < ε. Done?

I Encoding needs to specify E (i.e. A).

Encode f̃ (ei) using O(m log(1/ε)) bits

For the ei : O(dm lg(1/ε)) = O(nm) bits

I Total: O(nm) bit encoding

An encoding of X into O(nm) bits

I A ∈ Rd×m

I f̃ (ySj) ∈ Rm

I vj ∈ Rd

I Let E denote the column space of A

dim(E) ≤ m.

I Define K = E ∩ (12εB`d∞), ∀j vj ∈ K

I K has 1
12 -net in K -norm of size ≤ 2O(m)

I Define ṽj as closest point in this net to vj

which contains vj . O(m) bits.

=⇒ ‖vj − ṽj‖∞ < ε. Done?

I Encoding needs to specify E (i.e. A).

Encode f̃ (ei) using O(m log(1/ε)) bits

For the ei : O(dm lg(1/ε)) = O(nm) bits

I Total: O(nm) bit encoding

QED

What about when d 6= n/ lg(1/ε)?
(We were originally doing something a little more complicated, but

Oded Regev pointed out the following simple argument.)

QED
What about when d 6= n/ lg(1/ε)?

(We were originally doing something a little more complicated, but
Oded Regev pointed out the following simple argument.)

QED
What about when d 6= n/ lg(1/ε)?

(We were originally doing something a little more complicated, but
Oded Regev pointed out the following simple argument.)

Extending to arbitrary d , n

I Suppose X ⊂ `d ′2 , |X | = n, is a hard set for some ε where
d ′ = Θ(n/ log(1/ε)) (X has Ω(ε−2 log n) lower bound).

I d > d ′: we have a hard set for any d > d ′ by zero-padding
vectors in X . Thus, name of the game: for fixed n, ε, show
lower bound for as small a d as possible.

I d < d ′: For d ≥ Cε−2 log n: we know (1 + ε)-distortion
embedding f : X → `d2 exists (JL upper bound).

f (X) must be hard, else if good
low-dimensional/low-distortion embedding g exists, then g ◦ f
is a good low-distortional embedding for X (which we know
doesn’t exist).

Extending to arbitrary d , n

I Suppose X ⊂ `d ′2 , |X | = n, is a hard set for some ε where
d ′ = Θ(n/ log(1/ε)) (X has Ω(ε−2 log n) lower bound).

I d > d ′: we have a hard set for any d > d ′ by zero-padding
vectors in X . Thus, name of the game: for fixed n, ε, show
lower bound for as small a d as possible.

I d < d ′: For d ≥ Cε−2 log n: we know (1 + ε)-distortion
embedding f : X → `d2 exists (JL upper bound).

f (X) must be hard, else if good
low-dimensional/low-distortion embedding g exists, then g ◦ f
is a good low-distortional embedding for X (which we know
doesn’t exist).

Extending to arbitrary d , n

I Suppose X ⊂ `d ′2 , |X | = n, is a hard set for some ε where
d ′ = Θ(n/ log(1/ε)) (X has Ω(ε−2 log n) lower bound).

I d > d ′: we have a hard set for any d > d ′ by zero-padding
vectors in X . Thus, name of the game: for fixed n, ε, show
lower bound for as small a d as possible.

I d < d ′: For d ≥ Cε−2 log n: we know (1 + ε)-distortion
embedding f : X → `d2 exists (JL upper bound).

f (X) must be hard, else if good
low-dimensional/low-distortion embedding g exists, then g ◦ f
is a good low-distortional embedding for X (which we know
doesn’t exist).

Extending to arbitrary d , n

I Suppose X ⊂ `d ′2 , |X | = n, is a hard set for some ε where
d ′ = Θ(n/ log(1/ε)) (X has Ω(ε−2 log n) lower bound).

I d > d ′: we have a hard set for any d > d ′ by zero-padding
vectors in X . Thus, name of the game: for fixed n, ε, show
lower bound for as small a d as possible.

I d < d ′: For d ≥ Cε−2 log n: we know (1 + ε)-distortion
embedding f : X → `d2 exists (JL upper bound).

f (X) must be hard, else if good
low-dimensional/low-distortion embedding g exists, then g ◦ f
is a good low-distortional embedding for X (which we know
doesn’t exist).

What next?

Static approximate dot product

Two days after [Larsen, Nelson ’17]

I Noga Alon: “Hi Jelani, Kasper, I wonder . . . if you can get a
tight estimate for the number of possibilities for the

(n
2

)
distances among n vectors of length at most 1 . . .”

I 4 later: problem solved! (for knowing up to additive ε)

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉 ± ε for any xi , xj ∈ X .

I Here f (n, d , ε) is a bound they prove optimal for this problem

f (n, d , ε) =


n log n
ε2 , log n

ε2 ≤ d ≤ n

nd log(2 + log n
ε2d

), log n ≤ d ≤ log n
ε2

nd log(1/ε), 1 ≤ d ≤ log n

I First case for d , upper bound for this data structural problem
achieved earlier by [Kushilevitz, Ostrovsky, Rabani ’98]

Static approximate dot product

Two days after [Larsen, Nelson ’17]

I Noga Alon: “Hi Jelani, Kasper, I wonder . . . if you can get a
tight estimate for the number of possibilities for the

(n
2

)
distances among n vectors of length at most 1 . . .”

I 4 later: problem solved! (for knowing up to additive ε)

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉 ± ε for any xi , xj ∈ X .

I Here f (n, d , ε) is a bound they prove optimal for this problem

f (n, d , ε) =


n log n
ε2 , log n

ε2 ≤ d ≤ n

nd log(2 + log n
ε2d

), log n ≤ d ≤ log n
ε2

nd log(1/ε), 1 ≤ d ≤ log n

I First case for d , upper bound for this data structural problem
achieved earlier by [Kushilevitz, Ostrovsky, Rabani ’98]

Static approximate dot product

Two days after [Larsen, Nelson ’17]

I Noga Alon: “Hi Jelani, Kasper, I wonder . . . if you can get a
tight estimate for the number of possibilities for the

(n
2

)
distances among n vectors of length at most 1 . . .”

I 4 later: problem solved! (for knowing up to additive ε)

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉 ± ε for any xi , xj ∈ X .

I Here f (n, d , ε) is a bound they prove optimal for this problem

f (n, d , ε) =


n log n
ε2 , log n

ε2 ≤ d ≤ n

nd log(2 + log n
ε2d

), log n ≤ d ≤ log n
ε2

nd log(1/ε), 1 ≤ d ≤ log n

I First case for d , upper bound for this data structural problem
achieved earlier by [Kushilevitz, Ostrovsky, Rabani ’98]

Static approximate dot product

Two days after [Larsen, Nelson ’17]

I Noga Alon: “Hi Jelani, Kasper, I wonder . . . if you can get a
tight estimate for the number of possibilities for the

(n
2

)
distances among n vectors of length at most 1 . . .”

I 4 later: problem solved! (for knowing up to additive ε)

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉 ± ε for any xi , xj ∈ X .

I Here f (n, d , ε) is a bound they prove optimal for this problem

f (n, d , ε) =


n log n
ε2 , log n

ε2 ≤ d ≤ n

nd log(2 + log n
ε2d

), log n ≤ d ≤ log n
ε2

nd log(1/ε), 1 ≤ d ≤ log n

I First case for d , upper bound for this data structural problem
achieved earlier by [Kushilevitz, Ostrovsky, Rabani ’98]

Static approximate dot product

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉+ O(ε) for any xi , xj ∈ X .

I Proof also via encoding argument.

Essentially the problem is equivalent to the following: let G be
the set of all n × n Gram matrices of rank d and diagonal
entries ≤ 1. What is the logarithm of the size of the smallest
ε-net of G under entrywise `∞-norm?

Encode X as name of closest net point to its Gram matrix.

I Also implies optimal JL lower bound!

f (n, n, 2ε) ≤ f (n,m, ε) if low-distortion embedding into `m2
existed (first embed points then build data structure)

I But [AK’17] gave upper bound on f (n,m, ε), so m can’t be
too small lest their lower bound on f (n, n, 2ε) be violated.

Static approximate dot product

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉+ O(ε) for any xi , xj ∈ X .

I Proof also via encoding argument.

Essentially the problem is equivalent to the following: let G be
the set of all n × n Gram matrices of rank d and diagonal
entries ≤ 1. What is the logarithm of the size of the smallest
ε-net of G under entrywise `∞-norm?

Encode X as name of closest net point to its Gram matrix.

I Also implies optimal JL lower bound!

f (n, n, 2ε) ≤ f (n,m, ε) if low-distortion embedding into `m2
existed (first embed points then build data structure)

I But [AK’17] gave upper bound on f (n,m, ε), so m can’t be
too small lest their lower bound on f (n, n, 2ε) be violated.

Static approximate dot product

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉+ O(ε) for any xi , xj ∈ X .

I Proof also via encoding argument.

Essentially the problem is equivalent to the following: let G be
the set of all n × n Gram matrices of rank d and diagonal
entries ≤ 1. What is the logarithm of the size of the smallest
ε-net of G under entrywise `∞-norm?

Encode X as name of closest net point to its Gram matrix.

I Also implies optimal JL lower bound!

f (n, n, 2ε) ≤ f (n,m, ε) if low-distortion embedding into `m2
existed (first embed points then build data structure)

I But [AK’17] gave upper bound on f (n,m, ε), so m can’t be
too small lest their lower bound on f (n, n, 2ε) be violated.

Static approximate dot product

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉+ O(ε) for any xi , xj ∈ X .

I Proof also via encoding argument.

Essentially the problem is equivalent to the following: let G be
the set of all n × n Gram matrices of rank d and diagonal
entries ≤ 1. What is the logarithm of the size of the smallest
ε-net of G under entrywise `∞-norm?

Encode X as name of closest net point to its Gram matrix.

I Also implies optimal JL lower bound!

f (n, n, 2ε) ≤ f (n,m, ε) if low-distortion embedding into `m2
existed (first embed points then build data structure)

I But [AK’17] gave upper bound on f (n,m, ε), so m can’t be
too small lest their lower bound on f (n, n, 2ε) be violated.

Static approximate dot product

[Alon, Klartag ’17]: Given X ⊂ Sd−1, |X | = n, can create a
data structure consuming f (n, d , ε) bits such that can answer
query(i , j) = 〈xi , xj〉+ O(ε) for any xi , xj ∈ X .

I OPEN:
I dynamic approx. dot product with fast update/query?
I approximate distance query with relative 1 + ε error?

(see [Indyk, Wagner ’17]; potential gap of lg(1/ε) remains)

And yet there’s more

I Conjecture: ([Larsen, Nelson ’17]) If s(n, d , ε) is the optimal
m for distortion 1 + ε for n-point subsets of `d2 , then
s(n, d , ε) = Θ(min{n, d , ε−2 log(2 + ε2n)}) for all ε, n, d .

(i.e. JL is suboptimal for ε approaching 1/
√
n)

I [Alon, Klartag ’17]: some progress toward conjecture. Proved
lower bound. As for upper bound . . .

for bipartite version of problem with x1, . . . , xn, y1, . . . , yn of
unit norm, can show there exist a1, . . . , an, b1, . . . , bn ∈ Rm

for m = O(ε−2 log(2 + ε2n)) with

∀i , j | 〈xi , yj〉 − 〈ai , bj〉 | ≤ ε

I [Alon, Klartag ’17] positive result on bipartite problem makes
use of low M∗-estimate [Pajor, Tomczak-Jaegermann ’86] and
Khatri-Sidak lemma [Khatri ’67], [Sidak ’67].

I Conjecture: ([Larsen, Nelson ’17]) If s(n, d , ε) is the optimal
m for distortion 1 + ε for n-point subsets of `d2 , then
s(n, d , ε) = Θ(min{n, d , ε−2 log(2 + ε2n)}) for all ε, n, d .

(i.e. JL is suboptimal for ε approaching 1/
√
n)

I [Alon, Klartag ’17]: some progress toward conjecture. Proved
lower bound. As for upper bound . . .

for bipartite version of problem with x1, . . . , xn, y1, . . . , yn of
unit norm, can show there exist a1, . . . , an, b1, . . . , bn ∈ Rm

for m = O(ε−2 log(2 + ε2n)) with

∀i , j | 〈xi , yj〉 − 〈ai , bj〉 | ≤ ε

I [Alon, Klartag ’17] positive result on bipartite problem makes
use of low M∗-estimate [Pajor, Tomczak-Jaegermann ’86] and
Khatri-Sidak lemma [Khatri ’67], [Sidak ’67].

I Conjecture: ([Larsen, Nelson ’17]) If s(n, d , ε) is the optimal
m for distortion 1 + ε for n-point subsets of `d2 , then
s(n, d , ε) = Θ(min{n, d , ε−2 log(2 + ε2n)}) for all ε, n, d .

(i.e. JL is suboptimal for ε approaching 1/
√
n)

I [Alon, Klartag ’17]: some progress toward conjecture. Proved
lower bound. As for upper bound . . .

for bipartite version of problem with x1, . . . , xn, y1, . . . , yn of
unit norm, can show there exist a1, . . . , an, b1, . . . , bn ∈ Rm

for m = O(ε−2 log(2 + ε2n)) with

∀i , j | 〈xi , yj〉 − 〈ai , bj〉 | ≤ ε

I [Alon, Klartag ’17] positive result on bipartite problem makes
use of low M∗-estimate [Pajor, Tomczak-Jaegermann ’86] and
Khatri-Sidak lemma [Khatri ’67], [Sidak ’67].

I Conjecture: ([Larsen, Nelson ’17]) If s(n, d , ε) is the optimal
m for distortion 1 + ε for n-point subsets of `d2 , then
s(n, d , ε) = Θ(min{n, d , ε−2 log(2 + ε2n)}) for all ε, n, d .

(i.e. JL is suboptimal for ε approaching 1/
√
n)

I [Alon, Klartag ’17]: some progress toward conjecture. Proved
lower bound. As for upper bound . . .

for bipartite version of problem with x1, . . . , xn, y1, . . . , yn of
unit norm, can show there exist a1, . . . , an, b1, . . . , bn ∈ Rm

for m = O(ε−2 log(2 + ε2n)) with

∀i , j | 〈xi , yj〉 − 〈ai , bj〉 | ≤ ε

I [Alon, Klartag ’17] positive result on bipartite problem makes
use of low M∗-estimate [Pajor, Tomczak-Jaegermann ’86] and
Khatri-Sidak lemma [Khatri ’67], [Sidak ’67].

More open problems

Open problems

I Improved upper bound for constructing incoherent vectors?

Maybe [Alon ’03] sharp and Gilbert-Varshamov bound
always suboptimal!?

I Instance-wise optimality for `2 dimensionality reduction?

What’s the right m in terms of X itself? Bicriteria results?

I JL map that can be applied to x in time Õ(m + ‖x‖0)?

‖ · ‖0 denotes support size

I Explicit DJL distribution with seed length O(log d
δ)?

I Rasmus Pagh: Las Vegas algorithm for computing a JL map
for set of n points faster than repeated random projections
then checking?

