Day 4 Talk 2 Jelan Nelson Optimality OF the Johnson-Lindenstraus, Joint w Kasper Green Larsen (Aarhus) straves -lemma 18:41 For every XC12 IXI=n: 3 f: X+> (2 with m = D (e⁻²logn) with distortion 1+6, i.e. $\forall x, y \in X$ (1-6) $||x - y||_2^2 \leq ||f(x) - f(y)||_2^2 \leq ||x - y||_2^2$ -Many applications: e.g. high dimensional nedrest neighbor with preprocessing. Distributional DL: 3 distribution Des on $\mathbb{R}^{n, \times \alpha} \quad \text{for} \quad m = O(e^{-2}(o_{S} \not \xi)) \quad \text{s.t.}$ $\forall u \in S^{n-1}$ \mathbb{P} $(\Pi \cup \Pi_2 \cup \Pi_2 \cup I) < S$ TT~ De s JL: Union bound. Proof of These lare - upper bounds -are they fight

mo better en coding Related to static approximate dot product Open poisiens on slides. ł 1 ł.

Optimality of the Johnson-Lindenstrauss lemma

Jelani Nelson Harvard

November 16, 2017

joint work with Kasper Green Larsen (Aarhus)

Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss '84]

For every $X \subset \ell_2$ of size *n*, there is an embedding $f : X \to \ell_2^m$ for $m = O(\varepsilon^{-2} \log n)$ with distortion $1 + \varepsilon$. That is, for each $x, y \in X$,

$$(1-\varepsilon)||x-y||_2^2 \le ||f(x)-f(y)||_2^2 \le (1+\varepsilon)||x-y||_2^2$$

Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss '84]

For every $X \subset \ell_2$ of size *n*, there is an embedding $f : X \to \ell_2^m$ for $m = O(\varepsilon^{-2} \log n)$ with distortion $1 + \varepsilon$. That is, for each $x, y \in X$,

$$(1-\varepsilon)||x-y||_2^2 \le ||f(x)-f(y)||_2^2 \le (1+\varepsilon)||x-y||_2^2$$

Uses in computer science:

- Speed up geometric algorithms by first reducing dimension of input [Indyk, Motwani '98], [Indyk '01]
- Faster/streaming numerical linear algebra algorithms [Sarlós '06], [LWMRT '07], [Clarkson, Woodruff '09]
- Essentially equivalent to RIP matrices from compressed sensing [Baraniuk et al. '08], [Krahmer, Ward '11] (used for recovery of sparse signals)
- Volume-preserving embeddings (applications to projective clustering) [Magen '02]

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times d}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ such that for any $u \in S^{d-1}$

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}}\left(\left|\|\Pi u\|_2^2 - 1\right| > \varepsilon\right) < \delta.$$

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times d}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ such that for any $u \in S^{d-1}$

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}}\left(\left|\|\Pi u\|_2^2 - 1\right| > \varepsilon\right) < \delta.$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs. Thus, in fact, the map $f : X \to \ell_2^m$ can be linear.

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times d}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ such that for any $u \in S^{d-1}$

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}}\left(\left|\|\Pi u\|_2^2 - 1\right| > \varepsilon\right) < \delta.$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs. Thus, in fact, the map $f : X \to \ell_2^m$ can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Theorem (Alon, 2003) For JL, $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$ is required.

Theorem (Larsen, Nelson 2016) For JL, $m = \Omega(\varepsilon^{-2} \log n)$ is required if f must be a linear map.

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times d}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ such that for any $u \in S^{d-1}$

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}}\left(\left|\|\Pi u\|_{2}^{2}-1\right| > \varepsilon\right) < \delta.$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs. Thus, in fact, the map $f : X \to \ell_2^m$ can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Theorem (Alon, 2003) For JL, $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$ is required.

Theorem (Larsen, Nelson 2016) For JL, $m = \Omega(\varepsilon^{-2} \log n)$ is required if f must be a linear map.

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

For any $0 < \varepsilon, \delta < 1/2$ and $d \ge 1$ there exists a distribution $\mathcal{D}_{\varepsilon,\delta}$ on $\mathbb{R}^{m \times d}$ for $m = O(\varepsilon^{-2} \log(1/\delta))$ such that for any $u \in S^{d-1}$

$$\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon,\delta}}\left(\left|\|\Pi u\|_2^2 - 1\right| > \varepsilon\right) < \delta.$$

Proof of JL: Set $\delta = 1/n^2$ in DJL and u as the normalized difference vector of some pair of points. Union bound over the $\binom{n}{2}$ pairs. Thus, in fact, the map $f : X \to \ell_2^m$ can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011) For DJL, $m = \Theta(\varepsilon^{-2} \log(1/\delta))$ is optimal.

Theorem (Alon, 2003) For JL, $m = \Omega((\varepsilon^{-2}/\log(1/\varepsilon))\log n)$ is required.

Theorem (Larsen, Nelson 2017) For JL, $m = \Omega(\varepsilon^{-2} \log n)$ is required if f must be a linear map.

JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers $d, n \ge 2$ and any $\frac{1}{(\min\{n,d\})^{0.4999}} < \varepsilon < 1$, there exists a set $X \subset \ell_2^d$ such that any embedding $f : X \to \ell_2^m$ with distortion at most $1 + \varepsilon$ must have

$$m = \Omega(\varepsilon^{-2} \log n)$$

JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers $d, n \ge 2$ and any $\frac{1}{(\min\{n,d\})^{0.4999}} < \varepsilon < 1$, there exists a set $X \subset \ell_2^d$ such that any embedding $f : X \to \ell_2^m$ with distortion at most $1 + \varepsilon$ must have

$$m = \Omega(\varepsilon^{-2} \log n)$$

- Can always achieve m = d: f is the identity map.
- ▶ Can always achieve m = n 1: translate so one vector is 0. Then all vectors live in (n - 1)-dimensional subspace.

JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers $d, n \ge 2$ and any $\frac{1}{(\min\{n,d\})^{0.4999}} < \varepsilon < 1$, there exists a set $X \subset \ell_2^d$ such that any embedding $f : X \to \ell_2^m$ with distortion at most $1 + \varepsilon$ must have

$$m = \Omega(\varepsilon^{-2} \log n)$$

- Can always achieve m = d: f is the identity map.
- ▶ Can always achieve m = n 1: translate so one vector is 0. Then all vectors live in (n - 1)-dimensional subspace.
- So can only hope JL optimal for ε⁻² log n ≤ min{n, d}, can view theorem assumption as ε⁻² log n ≪ min{n, d}^{0.999}.

Lower bound techniques over time

• Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]

- ► Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]
- ► Incoherence + tensor trick. $m = \Omega(\frac{1}{\varepsilon^2} \frac{\log n}{\log(1/\varepsilon)})$ [Alon '03]

- ▶ Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]
- ► Incoherence + tensor trick. $m = \Omega(\frac{1}{\varepsilon^2} \frac{\log n}{\log(1/\varepsilon)})$ [Alon '03]
- ► Net argument + probabilistic method. $m = \Omega(\frac{1}{\varepsilon^2} \log n)$ (only against linear maps $f(x) = \Pi x$) [Larsen, Nelson '16]

- ▶ Volume argument. $m = \Omega(\log n)$ [Johnson, Lindenstrauss '84]
- ► Incoherence + tensor trick. $m = \Omega(\frac{1}{\varepsilon^2} \frac{\log n}{\log(1/\varepsilon)})$ [Alon '03]
- ► Net argument + probabilistic method. $m = \Omega(\frac{1}{\varepsilon^2} \log n)$ (only against linear maps $f(x) = \Pi x$) [Larsen, Nelson '16]
- Encoding argument. $m = \Omega(\frac{1}{\varepsilon^2} \log n)$ [Larsen, Nelson '17]

(The limits of incoherence.)

We say x_1, \ldots, x_n are ε -incoherent if

- $\blacktriangleright \forall i ||x_i||_2 = 1$
- $\triangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

We say x_1, \ldots, x_n are ε -incoherent if

- $\blacktriangleright \forall i \|x_i\|_2 = 1$
- $\triangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Previous hard point sets were incoherent, so could just map to another set of incoherent vectors in smaller dimension.

We say x_1, \ldots, x_n are ε -incoherent if

- $\blacktriangleright \forall i \|x_i\|_2 = 1$
- $\triangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Previous hard point sets were incoherent, so could just map to another set of incoherent vectors in smaller dimension.

 $m = O(\varepsilon^{-2}(\frac{\log n}{\log(1/\varepsilon) + \log\log n})^2)$ achievable via Reed-Solomon codes.

We say x_1, \ldots, x_n are ε -incoherent if

- $\blacktriangleright \forall i ||x_i||_2 = 1$
- $\triangleright \forall i \neq j \mid \langle x_i, x_j \rangle \mid \leq \varepsilon$

Previous hard point sets were incoherent, so could just map to another set of incoherent vectors in smaller dimension.

 $m = O(\varepsilon^{-2}(\frac{\log n}{\log(1/\varepsilon) + \log\log n})^2)$ achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.

Encoding argument. [Larsen, Nelson '17]

We define a large collection \mathcal{X} of *n*-sized sets $X \subset \mathbb{R}^d$ s.t. if all $X \in \mathcal{X}$ can be embedded into dimension $\leq 10^{-10} \cdot \varepsilon^{-2} \log_2 n$, then there is an encoding of elements of \mathcal{X} into $\langle \log_2 |\mathcal{X}|$ bits (i.e. a surjection from \mathcal{X} to $\{0,1\}^t$ for $t < \log_2 |\mathcal{X}|$). Contradiction.

Encoding argument. [Larsen, Nelson '17]

Encoding argument. [Larsen, Nelson '17] For now: assume $d = n/\lg(1/\varepsilon)$

Observation

Preserving distances implies preserving dot products. Say
||x||₂ = ||y||₂ = 1.

$$\|x - y\|_{2}^{2} = \|x\|_{2}^{2} + \|y\|_{2}^{2} - 2\langle x, y \rangle (*)$$

$$\|f(x) - f(y)\|_{2}^{2} = \|f(x)\|_{2}^{2} + \|f(y)\|_{2}^{2} - 2\langle f(x), f(y) \rangle$$

Observation

Preserving distances implies preserving dot products. Say
||x||₂ = ||y||₂ = 1.

$$\|x - y\|_{2}^{2} = \|x\|_{2}^{2} + \|y\|_{2}^{2} - 2\langle x, y \rangle (*)$$

$$\|f(x) - f(y)\|_{2}^{2} = \|f(x)\|_{2}^{2} + \|f(y)\|_{2}^{2} - 2\langle f(x), f(y) \rangle$$

$$\implies (1\pm\varepsilon)\|x-y\|_2^2 = (1\pm\varepsilon)\overbrace{\|x\|_2^2}^1 + (1\pm\varepsilon)\overbrace{\|y\|_2^2}^1 - 2\langle f(x), f(y)\rangle$$
(**)

▶ Now subtract (*) from (**): $\langle f(x), f(y) \rangle = \langle x, y \rangle \pm O(\varepsilon)$

• Pick
$$k = \frac{1}{100\varepsilon^2}$$
.

▶ For $S \subset [d]$ of size k, define vector $y_S = \frac{1}{\sqrt{k}} \sum_{j \in S} e_j$. Note

$$\langle y_{\mathcal{S}}, e_i
angle = egin{cases} 10arepsilon, & i \in \mathcal{S} \ 0, & ext{otherwise} \end{cases}$$

 Idea: low-distortion embedding preserves dot products up to ±ε, which is enough to distinguish the two cases

• Pick
$$k = \frac{1}{100\varepsilon^2}$$
.

▶ For $S \subset [d]$ of size k, define vector $y_S = \frac{1}{\sqrt{k}} \sum_{j \in S} e_j$. Note

$$\langle y_{\mathcal{S}}, e_i
angle = egin{cases} 10arepsilon, & i \in \mathcal{S} \ 0, & ext{otherwise} \end{cases}$$

- Idea: low-distortion embedding preserves dot products up to ±ε, which is enough to distinguish the two cases
- ▶ \mathcal{X} is set of all ordered tuples of points, possibly with repetition $X = (0, e_1, \dots, e_d, y_{S_1}, \dots, y_{S_{n-d-1}})$ with the $S_i \in {[d] \choose k}$.

• Pick
$$k = \frac{1}{100\varepsilon^2}$$
.

▶ For $S \subset [d]$ of size k, define vector $y_S = \frac{1}{\sqrt{k}} \sum_{j \in S} e_j$. Note

$$\langle y_{\mathcal{S}}, e_i
angle = egin{cases} 10arepsilon, & i \in \mathcal{S} \ 0, & ext{otherwise} \end{cases}$$

- Idea: low-distortion embedding preserves dot products up to ±ε, which is enough to distinguish the two cases
- X is set of all ordered tuples of points, possibly with repetition X = (0, e₁, ..., e_d, y_{S₁}, ..., y<sub>S_{n-d-1}) with the S_i ∈ (^[d]_k).
 |X| = (^d_k)^{n-d-1}, thus any encoding of X ∈ X requires ≥ (n d 1) lg (^d_k) = (1 o_ε(1))nk lg(d/k) bits.
 </sub>

• Pick
$$k = \frac{1}{100\varepsilon^2}$$
.

▶ For $S \subset [d]$ of size k, define vector $y_S = \frac{1}{\sqrt{k}} \sum_{j \in S} e_j$. Note

$$\langle y_{\mathcal{S}}, e_i
angle = egin{cases} 10arepsilon, & i \in \mathcal{S} \ 0, & ext{otherwise} \end{cases}$$

- Idea: low-distortion embedding preserves dot products up to ±ε, which is enough to distinguish the two cases
- X is set of all ordered tuples of points, possibly with repetition X = (0, e₁, ..., e_d, y_{S₁}, ..., y<sub>S_{n-d-1}) with the S_i ∈ (^[d]_k).
 |X| = (^d_k)^{n-d-1}, thus any encoding of X ∈ X requires ≥ (n d 1) lg (^d_k) = (1 o_ε(1))nk lg(d/k) bits.
 </sub>
- Will show any (1 + ε)-distortion embedding into ℓ₂^m implies encoding into O(nm) bits, hence nm = Ω(nk log(d/k))
 ⇒ m = Ω(k log(d/k)) = Ω(ε⁻² log n) for ε not too small.
Why not?

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $< \lg |\mathcal{X}|$. But f(x) has real entries, so the range is infinite!

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $< \lg |\mathcal{X}|$. But f(x) has real entries, so the range is infinite!

Fix attempt 1: Round entries of f(x) to integer multiples of γ . Can show $\gamma = O(\frac{\varepsilon}{\sqrt{m}})$ suffices $\implies O(nm \log(m/\varepsilon))$ bit encoding

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $< \lg |\mathcal{X}|$. But f(x) has real entries, so the range is infinite!

Fix attempt 1: Round entries of f(x) to integer multiples of γ . Can show $\gamma = O(\frac{\varepsilon}{\sqrt{m}})$ suffices $\implies O(nm \log(m/\varepsilon))$ bit encoding $\implies m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(m/\varepsilon)})$ final lower bound

Why not? Want to violate pigeonhole principle, so range of the encoding must be of size $< \lg |\mathcal{X}|$. But f(x) has real entries, so the range is infinite!

Fix attempt 1: Round entries of f(x) to integer multiples of γ . Can show $\gamma = O(\frac{\varepsilon}{\sqrt{m}})$ suffices $\implies O(nm \log(m/\varepsilon))$ bit encoding $\implies m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(m/\varepsilon)})$ final lower bound

Slightly better fix: Round each f(x) to a point f(x) in an ε -net in ℓ_2 instead of a γ -net in ℓ_{∞} as above.

Recall $X = (0, e_1, \dots, e_d, y_{S_1}, \dots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f : X \to \ell_2^m$, wlog f(0) = 0 (by translating).

▶ Since distances to 0 preserved, $||f(x)||_2^2 \le 1 + \varepsilon$ for $x \in X$

i.e. $\forall x \in X$, $f(x) \in (1 + \varepsilon)B_{\ell_2^m}$

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ₂}
- ▶ Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ₂}
- Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- Encode f(x) as $f(x) \in T$: $|X| \cdot \lg N = nm \lg(1/\varepsilon)$ bits

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ₂}
- Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- Encode f(x) as $f(x) \in T$: $|X| \cdot \lg N = nm \lg(1/\varepsilon)$ bits
- ▶ **Remember:** $\langle e_i, y_S \rangle \in \{0, 10\varepsilon\}$ (depends on whether $i \in S$)

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ₂}
- Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- ► Encode f(x) as $f(x) \in T$: $|X| \cdot \lg N = nm \lg(1/\varepsilon)$ bits
- ▶ **Remember:** $\langle e_i, y_S \rangle \in \{0, 10\varepsilon\}$ (depends on whether $i \in S$)
- ► Low-distortion embedding preserves dot products, so $\langle f(e_i), f(y_S) \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ₂}
- ▶ Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- ► Encode f(x) as $f(x) \in T$: $|X| \cdot \lg N = nm \lg(1/\varepsilon)$ bits
- ▶ **Remember:** $\langle e_i, y_S \rangle \in \{0, 10\varepsilon\}$ (depends on whether $i \in S$)
- ► Low-distortion embedding preserves dot products, so $\langle f(e_i), f(y_S) \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$
- ► Mapping to $c\varepsilon$ -net points again preserves dot products, so $\langle \widetilde{f(e_i)}, \widetilde{f(y_S)} \rangle \in \{\pm 2\varepsilon, 10\varepsilon \pm 2\varepsilon\}$

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ^m₂}
- Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- Encode f(x) as $f(x) \in T$: $|X| \cdot \lg N = nm \lg(1/\varepsilon)$ bits
- ▶ **Remember:** $\langle e_i, y_S \rangle \in \{0, 10\varepsilon\}$ (depends on whether $i \in S$)
- ► Low-distortion embedding preserves dot products, so $\langle f(e_i), f(y_S) \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$
- ► Mapping to $c\varepsilon$ -net points again preserves dot products, so $\langle \widetilde{f(e_i)}, \widetilde{f(y_S)} \rangle \in \{\pm 2\varepsilon, 10\varepsilon \pm 2\varepsilon\}$
- ► Thus from encodings can recover (e_i, y_S) to know which i ∈ S (dot product either < 2ε in magnitude, or > 8ε)

- Since distances to 0 preserved, ||f(x)||₂² ≤ 1 + ε for x ∈ X i.e. ∀x ∈ X, f(x) ∈ (1 + ε)B_{ℓ^m₂}
- Pick $c\varepsilon$ -net T of $(1 + \varepsilon)B_{\ell_2^m}$ in ℓ_2 ; has size $N = O(1/\varepsilon)^m$.
- ► Encode f(x) as $f(x) \in T$: $|X| \cdot \lg N = nm \lg(1/\varepsilon)$ bits
- ▶ **Remember:** $\langle e_i, y_S \rangle \in \{0, 10\varepsilon\}$ (depends on whether $i \in S$)
- ► Low-distortion embedding preserves dot products, so $\langle f(e_i), f(y_S) \rangle \in \{\pm \varepsilon, 10\varepsilon \pm \varepsilon\}$
- ► Mapping to $c\varepsilon$ -net points again preserves dot products, so $\left\langle \widetilde{f(e_i)}, \widetilde{f(y_S)} \right\rangle \in \{\pm 2\varepsilon, 10\varepsilon \pm 2\varepsilon\}$
- ► Thus from encodings can recover (e_i, y_S) to know which i ∈ S (dot product either < 2ε in magnitude, or > 8ε)
- ► Can decode X, implies $nm \log(1/\varepsilon) = \Omega(n\varepsilon^{-2} \log(\varepsilon^2 d))$

Recall $X = (0, e_1, \dots, e_d, y_{S_1}, \dots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f : X \to \ell_2^m$, wlog f(0) = 0 (by translating).

► Can decode X, implies $nm \log(1/\varepsilon) = \Omega(n\varepsilon^{-2} \log(\varepsilon^2 d))$

- Can decode X, implies $nm \log(1/\varepsilon) = \Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$
- ► Thus $m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))$. for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$

- Can decode X, implies $nm \log(1/\varepsilon) = \Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$
- ► Thus $m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))$. for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
- Same lower bound as [Alon '03], but very different argument. ... but not what I promised you!

Recall $X = (0, e_1, \dots, e_d, y_{S_1}, \dots, y_{S_{n-d-1}})$. For $(1 + \varepsilon)$ -distortion embedding $f : X \to \ell_2^m$, wlog f(0) = 0 (by translating).

- ► Can decode X, implies $nmlg(1/\varepsilon) = \Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$
- ► Thus $m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))$. for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
- ► Same lower bound as [Alon '03], but very different argument.

... but not what I promised you!

- ► Can decode X, implies $nmlg(1/\varepsilon) = \Omega(n\varepsilon^{-2}\log(\varepsilon^2 d))$
- ► Thus $m = \Omega(\varepsilon^{-2} \log(\varepsilon^2 d) / \log(1/\varepsilon))$. for ε not too small, this is $m = \Omega(\varepsilon^{-2} \frac{\log n}{\log(1/\varepsilon)})$
- Same lower bound as [Alon '03], but very different argument. ... but not what I promised you!
- ► Will now show a better encoding. remember, we are for now assuming d = n/lg(1/ε)

An encoding of X into O(nm) bits Sufficed for decoding X: knowing $\langle \widetilde{f(e_i)}, \widetilde{f(y_{S_j})} \rangle$ for each i, j

An encoding of X into O(nm) bits Sufficed for decoding X: knowing $\langle \widetilde{f(e_i)}, \widetilde{f(y_{S_j})} \rangle$ for each i, j

• Knowing v_1, \ldots, v_{n-d-1} would allow us to decode.

An encoding of X into O(nm) bits Sufficed for decoding X: knowing $\langle \widetilde{f(e_i)}, \widetilde{f(y_{S_j})} \rangle$ for each i, j

• Knowing v_1, \ldots, v_{n-d-1} would allow us to decode.

 In fact, suffices to know v
_j such that ||v_j − v
j||∞ < ε. (then each entry of v
_j is < 3ε or > 7ε in magnitude)

► Let E denote the column space of A dim(E) ≤ m.

- ► $A \in \mathbb{R}^{d \times m}$
- $\widetilde{f(y_{S_j})} \in \mathbb{R}^m$
- ► $v_j \in \mathbb{R}^d$

► Let E denote the column space of A dim(E) ≤ m.

▶ Define
$$K = E \cap (12\varepsilon B_{\ell_{\infty}^d}), \forall j \ v_j \in K$$

- ► $A \in \mathbb{R}^{d \times m}$
- $\widetilde{f(y_{S_j})} \in \mathbb{R}^m$
- ► $v_j \in \mathbb{R}^d$

- ► Let E denote the column space of A dim(E) ≤ m.
- ▶ Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j \ v_j \in K$
- K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$

- ► $A \in \mathbb{R}^{d \times m}$
- $\widetilde{f(y_{S_j})} \in \mathbb{R}^m$
- ► $v_j \in \mathbb{R}^d$

- ► Let E denote the column space of A dim(E) ≤ m.
- ▶ Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j \ v_j \in K$
- K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$
- Define v
 _j as closest point in this net to v_j which contains v_j. O(m) bits.

$$\implies \|v_j - \tilde{v}_j\|_{\infty} < \varepsilon.$$
 Done?

- ► $A \in \mathbb{R}^{d \times m}$
- $\widetilde{f(y_{S_j})} \in \mathbb{R}^m$
- ► $v_j \in \mathbb{R}^d$

► $A \in \mathbb{R}^{d \times m}$

• $\widetilde{f(y_{S_j})} \in \mathbb{R}^m$

► $v_j \in \mathbb{R}^d$

- ► Let E denote the column space of A dim(E) ≤ m.
- ▶ Define $K = E \cap (12\varepsilon B_{\ell_{\infty}^d})$, $\forall j \ v_j \in K$
- K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$
- Define v_j as closest point in this net to v_j which contains v_j. O(m) bits.

 $\implies \|v_j - \tilde{v}_j\|_{\infty} < \varepsilon.$ Done?

► Encoding needs to specify E (i.e. A).
 Encode f(e_i) using O(m log(1/ε)) bits
 For the e_i: O(dm lg(1/ε)) = O(nm) bits

► $A \in \mathbb{R}^{d \times m}$

• $\widetilde{f(y_{S_j})} \in \mathbb{R}^m$

► $v_j \in \mathbb{R}^d$

- Let E denote the column space of A dim(E) ≤ m.
- ▶ Define $K = E \cap (12 \varepsilon B_{\ell_{\infty}^d})$, $\forall j \ v_j \in K$
- K has $\frac{1}{12}$ -net in K-norm of size $\leq 2^{O(m)}$
- Define v_j as closest point in this net to v_j which contains v_j. O(m) bits.

 $\implies \|v_j - \tilde{v}_j\|_{\infty} < \varepsilon.$ Done?

- ► Encoding needs to specify E (i.e. A).
 Encode f(e_i) using O(m log(1/ε)) bits
 For the e_i: O(dm lg(1/ε)) = O(nm) bits
- ▶ **Total:** *O*(*nm*) bit encoding

QED What about when $d \neq n/\lg(1/\varepsilon)$?

(We were originally doing something a little more complicated, but Oded Regev pointed out the following simple argument.)

Suppose $X \subset \ell_2^{d'}$, |X| = n, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ (X has $\Omega(\varepsilon^{-2} \log n)$ lower bound).

- Suppose $X \subset \ell_2^{d'}$, |X| = n, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ (X has $\Omega(\varepsilon^{-2} \log n)$ lower bound).
- *d* > *d*': we have a hard set for any *d* > *d*' by zero-padding vectors in *X*. Thus, name of the game: for fixed *n*, ε, show lower bound for as small a *d* as possible.

- Suppose $X \subset \ell_2^{d'}$, |X| = n, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ (X has $\Omega(\varepsilon^{-2} \log n)$ lower bound).
- *d* > *d*': we have a hard set for any *d* > *d*' by zero-padding vectors in *X*. Thus, name of the game: for fixed *n*, ε, show lower bound for as small a *d* as possible.
- ► d < d': For $d \ge C\varepsilon^{-2} \log n$: we know $(1 + \varepsilon)$ -distortion embedding $f : X \to \ell_2^d$ exists (JL *upper* bound).

- Suppose $X \subset \ell_2^{d'}$, |X| = n, is a hard set for some ε where $d' = \Theta(n/\log(1/\varepsilon))$ (X has $\Omega(\varepsilon^{-2} \log n)$ lower bound).
- ► d > d': we have a hard set for any d > d' by zero-padding vectors in X. Thus, name of the game: for fixed n, ε, show lower bound for as small a d as possible.
- ► d < d': For $d \ge C\varepsilon^{-2} \log n$: we know $(1 + \varepsilon)$ -distortion embedding $f : X \to \ell_2^d$ exists (JL upper bound).

f(X) must be hard, else if good low-dimensional/low-distortion embedding g exists, then $g \circ f$ is a good low-distortional embedding for X (which we know doesn't exist).

What next?

Two days after [Larsen, Nelson '17]

► Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the ⁿ₂ distances among n vectors of length at most 1 ..."

Two days after [Larsen, Nelson '17]

- Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the ⁿ₂ distances among n vectors of length at most 1 ..."
- 4 later: problem solved! (for knowing up to additive ε)
 [Alon, Klartag '17]: Given X ⊂ S^{d-1}, |X| = n, can create a data structure consuming f(n, d, ε) bits such that can answer query(i,j) = ⟨x_i, x_j⟩ ± ε for any x_i, x_j ∈ X.

Two days after [Larsen, Nelson '17]

- Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the ⁿ₂ distances among n vectors of length at most 1 ..."
- 4 later: problem solved! (for knowing up to additive ε)
 [Alon, Klartag '17]: Given X ⊂ S^{d-1}, |X| = n, can create a data structure consuming f(n, d, ε) bits such that can answer query(i,j) = ⟨x_i, x_j⟩ ± ε for any x_i, x_j ∈ X.

• Here $f(n, d, \varepsilon)$ is a bound they prove optimal for this problem

$$f(n, d, \varepsilon) = \begin{cases} \frac{n \log n}{\varepsilon^2}, & \frac{\log n}{\varepsilon^2} \le d \le n\\ nd \log(2 + \frac{\log n}{\varepsilon^2 d}), & \log n \le d \le \frac{\log n}{\varepsilon^2}\\ nd \log(1/\varepsilon), & 1 \le d \le \log n \end{cases}$$

Two days after [Larsen, Nelson '17]

- Noga Alon: "Hi Jelani, Kasper, I wonder ... if you can get a tight estimate for the number of possibilities for the ⁿ₂ distances among n vectors of length at most 1 ..."
- ▶ 4 later: problem solved! (for knowing up to additive ε) [Alon, Klartag '17]: Given $X \subset S^{d-1}$, |X| = n, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $query(i, j) = \langle x_i, x_j \rangle \pm \varepsilon$ for any $x_i, x_j \in X$.
- Here $f(n, d, \varepsilon)$ is a bound they prove optimal for this problem

$$f(n, d, \varepsilon) = \begin{cases} \frac{n \log n}{\varepsilon^2}, & \frac{\log n}{\varepsilon^2} \le d \le n\\ nd \log(2 + \frac{\log n}{\varepsilon^2 d}), & \log n \le d \le \frac{\log n}{\varepsilon^2}\\ nd \log(1/\varepsilon), & 1 \le d \le \log n \end{cases}$$

First case for d, upper bound for this data structural problem achieved earlier by [Kushilevitz, Ostrovsky, Rabani '98]

[Alon, Klartag '17]: Given $X \subset S^{d-1}$, |X| = n, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $query(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

[Alon, Klartag '17]: Given $X \subset S^{d-1}$, |X| = n, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $query(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

Proof also via encoding argument.

Essentially the problem is equivalent to the following: let \mathcal{G} be the set of all $n \times n$ Gram matrices of rank d and diagonal entries ≤ 1 . What is the logarithm of the size of the smallest ε -net of \mathcal{G} under entrywise ℓ_{∞} -norm?

Encode X as name of closest net point to its Gram matrix.

[Alon, Klartag '17]: Given $X \subset S^{d-1}$, |X| = n, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $query(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

Proof also via encoding argument.

Essentially the problem is equivalent to the following: let \mathcal{G} be the set of all $n \times n$ Gram matrices of rank d and diagonal entries ≤ 1 . What is the logarithm of the size of the smallest ε -net of \mathcal{G} under entrywise ℓ_{∞} -norm?

Encode X as name of closest net point to its Gram matrix.

Also implies optimal JL lower bound!

 $f(n, n, 2\varepsilon) \leq f(n, m, \varepsilon)$ if low-distortion embedding into ℓ_2^m existed (first embed points then build data structure)

[Alon, Klartag '17]: Given $X \subset S^{d-1}$, |X| = n, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $query(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

Proof also via encoding argument.

Essentially the problem is equivalent to the following: let \mathcal{G} be the set of all $n \times n$ Gram matrices of rank d and diagonal entries ≤ 1 . What is the logarithm of the size of the smallest ε -net of \mathcal{G} under entrywise ℓ_{∞} -norm?

Encode X as name of closest net point to its Gram matrix.

Also implies optimal JL lower bound!

 $f(n, n, 2\varepsilon) \leq f(n, m, \varepsilon)$ if low-distortion embedding into ℓ_2^m existed (first embed points then build data structure)

▶ But [AK'17] gave upper bound on f(n, m, ε), so m can't be too small lest their lower bound on f(n, n, 2ε) be violated.

[Alon, Klartag '17]: Given $X \subset S^{d-1}$, |X| = n, can create a data structure consuming $f(n, d, \varepsilon)$ bits such that can answer $query(i, j) = \langle x_i, x_j \rangle + O(\varepsilon)$ for any $x_i, x_j \in X$.

- OPEN:
 - dynamic approx. dot product with fast update/query?
 - approximate distance query with relative 1 + ε error?
 (see [Indyk, Wagner '17]; potential gap of lg(1/ε) remains)

And yet there's more

Conjecture: ([Larsen, Nelson '17]) If s(n, d, ε) is the optimal m for distortion 1 + ε for n-point subsets of l^d₂, then s(n, d, ε) = Θ(min{n, d, ε⁻² log(2 + ε²n)}) for all ε, n, d. (i.e. JL is suboptimal for ε approaching 1/√n)

- Conjecture: ([Larsen, Nelson '17]) If s(n, d, ε) is the optimal m for distortion 1 + ε for n-point subsets of ℓ₂^d, then s(n, d, ε) = Θ(min{n, d, ε⁻² log(2 + ε²n)}) for all ε, n, d. (i.e. JL is suboptimal for ε approaching 1/√n)
- [Alon, Klartag '17]: some progress toward conjecture. Proved lower bound. As for upper bound ...

- Conjecture: ([Larsen, Nelson '17]) If s(n, d, ε) is the optimal m for distortion 1 + ε for n-point subsets of l^d₂, then s(n, d, ε) = Θ(min{n, d, ε⁻² log(2 + ε²n)}) for all ε, n, d. (i.e. JL is suboptimal for ε approaching 1/√n)
- [Alon, Klartag '17]: some progress toward conjecture. Proved lower bound. As for upper bound ...

for *bipartite* version of problem with $x_1, \ldots, x_n, y_1, \ldots, y_n$ of unit norm, can show there exist $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}^m$ for $m = O(\varepsilon^{-2} \log(2 + \varepsilon^2 n))$ with

 $\forall i, j \mid \langle x_i, y_j \rangle - \langle a_i, b_j \rangle \mid \leq \varepsilon$

- Conjecture: ([Larsen, Nelson '17]) If s(n, d, ε) is the optimal m for distortion 1 + ε for n-point subsets of l^d₂, then s(n, d, ε) = Θ(min{n, d, ε⁻² log(2 + ε²n)}) for all ε, n, d. (i.e. JL is suboptimal for ε approaching 1/√n)
- [Alon, Klartag '17]: some progress toward conjecture. Proved lower bound. As for upper bound ...

for *bipartite* version of problem with $x_1, \ldots, x_n, y_1, \ldots, y_n$ of unit norm, can show there exist $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}^m$ for $m = O(\varepsilon^{-2} \log(2 + \varepsilon^2 n))$ with

$$\forall i, j \mid \langle x_i, y_j \rangle - \langle a_i, b_j \rangle \mid \leq \varepsilon$$

 [Alon, Klartag '17] positive result on bipartite problem makes use of low M*-estimate [Pajor, Tomczak-Jaegermann '86] and Khatri-Sidak lemma [Khatri '67], [Sidak '67].

More open problems

Open problems

- Improved upper bound for constructing incoherent vectors? Maybe [Alon '03] sharp and Gilbert-Varshamov bound always suboptimal!?
- Instance-wise optimality for l₂ dimensionality reduction? What's the right m in terms of X itself? Bicriteria results?
- ► JL map that can be applied to x in time $\tilde{O}(m + ||x||_0)$? $|| \cdot ||_0$ denotes support size
- Explicit DJL distribution with seed length $O(\log \frac{d}{\delta})$?
- Rasmus Pagh: Las Vegas algorithm for computing a JL map for set of *n* points faster than repeated random projections then checking?