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Optimality of the Johnson-Lindenstrauss lemma

Jelani Nelson
Harvard

November 16, 2017

joint work with Kasper Green Larsen (Aarhus)



Johnson-Lindenstrauss (JL) lemma

JL lemma [Johnson, Lindenstrauss '84]

For every X C /5 of size n, there is an embedding f : X — (5 for
m = O(e2log n) with distortion 1+ . That is, for each x,y € X,

(1 —e)lx = yli3 < [If(x) = FO)IZ < (1 +e)llx — vl
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For every X C /5 of size n, there is an embedding f : X — (5 for
m = O(e2log n) with distortion 1+ . That is, for each x,y € X,

(1 —e)lx = yli3 < [If(x) = FO)IZ < (1 +e)llx — vl

Uses in computer science:
> Speed up geometric algorithms by first reducing dimension of
input [Indyk, Motwani '98], [Indyk '01]
» Faster/streaming numerical linear algebra algorithms [Sarlés
'06], [LWMRT '07], [Clarkson, Woodruff '09]

» Essentially equivalent to RIP matrices from compressed
sensing [Baraniuk et al. '08], [Krahmer, Ward '11]
(used for recovery of sparse signals)

» Volume-preserving embeddings (applications to projective
clustering) [Magen '02]



How to prove the JL lemma
Distributional JL (DJL) lemma

Lemma (DJL lemma [Johnson, Lindenstrauss '84])

Forany 0 < ¢e,0 < 1/2 and d > 1 there exists a distribution D, s
on R™9 for m = O(c~?log(1/0)) such that for any u € S9!

I'IN]%&,; (‘HHUH% —1|>¢) <.
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Proof of JL: Set § = 1/n? in DJL and u as the normalized
difference vector of some pair of points. Union bound over the (’27)
pairs. Thus, in fact, the map f : X — 3" can be linear.
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For JL, m = Q(¢™2 log n) is required if f must be a linear map.
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Lemma (DJL lemma [Johnson, Lindenstrauss '84])

Forany 0 < ¢e,0 < 1/2 and d > 1 there exists a distribution D, s
on R™9 for m = O(c~?log(1/0)) such that for any u € S9!
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pairs. Thus, in fact, the map f : X — 3" can be linear.

Theorem (Jayram-Woodruff, 2011; Kane-Meka-Nelson, 2011)
For DJL, m = ©(¢ 2 log(1/6)) is optimal.

Theorem (Alon, 2003)

For JL, m = Q((¢72/ log(1/€)) log n) is required.

Theorem (Larsen, Nelson 2017)

For JL, m = Q(e%log n) is required #ff—must-be-a-tinear-map.



JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers d,n > 2 and any W < e <1, there

exists a set X C (9 such that any embedding f : X — (3" with
distortion at most 1 4+ £ must have

m = Q(s 2 log n)



JL lower bound

Theorem ([Larsen, Nelson '17])

For any integers d,n > 2 and any W < e <1, there

exists a set X C (9 such that any embedding f : X — (3" with
distortion at most 1 4+ £ must have

m = Q(s 2 log n)

» Can always achieve m = d: f is the identity map.

» Can always achieve m = n — 1: translate so one vector is 0.
Then all vectors live in (n — 1)-dimensional subspace.



JL lower bound

Theorem ([Larsen, Nelson '17])
For any integers d,n > 2 and any W < e <1, there

exists a set X C (9 such that any embedding f : X — (3" with
distortion at most 1 4+ £ must have

m = Q(s 2 log n)

» Can always achieve m = d: f is the identity map.

» Can always achieve m = n — 1: translate so one vector is 0.
Then all vectors live in (n — 1)-dimensional subspace.

» So can only hope JL optimal for e =2 log n < min{n, d},

can view theorem assumption as e 2 log n < min{n, d}%9%.



Lower bound techniques
over time
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Lower bounds over time

\4

V0|ume argument. m = Q(|0g n) [Johnson, Lindenstrauss '84]

» Incoherence + tensor trick. m = Q(E%b'gc’(%) [Alon 03]

Net argument + probabilistic method. m = Q((_}2 log n)
(only against linear maps f(x) = x) (Larsen, Nelson '16]

\{

\4

Encoding argument. m = Q(gi2 log 1) [Larsen, Nelson '17]
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Barrier in previous proofs.

(The limits of incoherence.)

We say x1, ..., x, are e-incoherent if
> Vi |[xill2 =1
> Vi (xix) | < e

Previous hard point sets were incoherent, so could just map to
another set of incoherent vectors in smaller dimension.

m= O(a‘%@’%)ﬂ achievable via Reed-Solomon codes.

Our new lower bound must use more than just incoherence.



Encoding argument.

[Larsen, Nelson '17]



JL is optimal even against non-linear maps

We define a large collection X of n-sized sets X C R s.t. if all

X € X can be embedded into dimension < 10710 . £?log, n, then
there is an encoding of elements of X" into < log, |X| bits (i.e. a
surjection from X to {0,1}* for t < log, |X|). Contradiction.



Encoding argument.
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Encoding argument.

[Larsen, Nelson '17]

For now: assume d = n/lg(1/¢)



Observation

> Preserving distances implies preserving dot products. Say
Ix[l2 = llyll2 = 1.

Ix =12 = IxI3 + lIylz =2 (x, ¥) ()
1FG0) = FOIZ = IFCIE + IF (I3 = 2 (F(x), F(y))



Observation

> Preserving distances implies preserving dot products. Say
Ix[l2 = llyll2 = 1.

Ix =12 = IxI3 + lIylz =2 (x, ¥) ()
1FG0) = FOIZ = IFCNE + IFOIZ = 2 (F(x), F(¥))

—~ s
= (126)|x—y[3 = (1 =) x5 +(1 %) lIyl15 -2 (F(). £(»))

()
» Now subtract (*) from (**): (f(x),f(y)) = (x,y) + O(¢)



JL lower bound outline

> Pick k = 55

» For S C [d] of size k, define vector ys = ﬁ >_jes - Note

10e, i€S
(vs,ej) = {

0, otherwise

> lIdea: low-distortion embedding preserves dot products up to
=+¢, which is enough to distinguish the two cases
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JL lower bound outline

> Pick k = 55
For S C [d] of size k, define vector ys = ﬁ >_jes - Note

10e, i€S
(vs,ej) = {

0, otherwise

\4

Idea: low-distortion embedding preserves dot products up to
=+¢, which is enough to distinguish the two cases

\4

X is set of all ordered tuples of points, possibly with repetition
X =(0,e1,...,€e4,¥5,---,¥s,_,_,) With the 5; € ([Z]).

|X| = (Z)nidil, thus any encoding of X € X

requires > (n—d — 1) g (Z) = (1 — o-(1))nklg(d/k) bits.

v

\{



JL lower bound outline

>

\4

H _ 1
Pick k = 1002

For S C [d] of size k, define vector ys = ﬁ >_jes - Note

10e, i€S
(vs,ej) = {

0, otherwise
Idea: low-distortion embedding preserves dot products up to
=+¢, which is enough to distinguish the two cases
X is set of all ordered tuples of points, possibly with repetition
X =(0,e,.. ~,ed,)/51,---7}/5n,d,1) with the S; € ([Z]).
—d—
|X| = (Z)n 1, thus any encoding of X € X
requires > (n—d — 1) g (Z) = (1 — o-(1))nklg(d/k) bits.

Will show any (1 + ¢)-distortion embedding into ¢5" implies
encoding into O(nm) bits, hence nm = Q(nk log(d/k))

= m = Q(klog(d/k)) = Q(¢ 2 log n) for € not too small.
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f(0),f(er),....f(eq), f(ys)s - f(¥s,_, 1)
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the range is infinite!
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Problem: Encoding of X € X can’t just be a description of
f(0),f(er),....f(eq), f(ys)s - f(¥s,_, 1)

Why not? Want to violate pigeonhole principle, so range of the
encoding must be of size < Ig|X|. But f(x) has real entries, so
the range is infinite!

Fix attempt 1: Round entries of f(x) to integer multiples of ~.
Can show v = O(ﬁ) suffices = O(nmlog(m/¢c)) bit encoding

log n
log(m/<)

= m= Q2 ) final lower bound

Slightly better fix: Round each f(x) to a point f(x) in an e-net
in {5 instead of a y-net in /, as above.



A warmup lower bound
Recall X = (0, e1,...,€q4,¥s,,---,Y¥s,_4_,)- For (1+ ¢)-distortion
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A warmup lower bound
Recall X = (0, e1,...,€q4,¥s,,---,Y¥s,_4_,)- For (1+ ¢)-distortion
embedding f : X — ¢, wlog f(0) = 0 (by translating).

» Can decode X, implies nmlg(1/<) = Q(ne 2 log(c?d))
» Thus m = Q(s 2 log(c2d)/log(1/<)).

_ . —2 logn
for € not too small, this is m = Q(e |og(1/5))

» Same lower bound as [Alon '03], but very different argument.
... but not what | promised you!
> Will now show a better encoding.

remember, we are for now assuming d = n/Ig(1/¢)
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An encoding of X into O(nm) bits
Sufficed for decoding X: knowing <f(e,-), f(ysj)> for each i/, j

( p—— —_—~—
f(el)T <f(61), f(ys,)>
(o) (Fle). Flvs))
A flys) | = i
—— T P —
(o) (Flea). Fys))
» Knowing vy, ..., V,_g_1 would allow us to decode.

> In fact, suffices to know ¥; such that ||v; — Vj|| < €.
(then each entry of ¥; is < 3¢ or > 7¢ in magnitude)
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> vjeRd

Vi

J

» Let E denote the column space of A
dim(E) < m.
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fla) F(e). Flys) > Let E denote the column space of A
f(a) f@hibs) dim(E) < m.
1 fosy = v > Define K = EN(12eByq ), Vj v; € K
» K has 1—12-net in K-norm of size < 20(m)

@T @:}(ysj) » Define ¥; as closest point in this net to v;

which contains v;. O(m) bits.
> Ac RIXM = ||vj — Vj|lc < €. Done?
» Encoding needs to specify E (i.e. A).

—_~—
e

> f(ys;) € R™ Encode f(e;) using O(mlog(1/¢)) bits
For the e;: O(dmlg(1/¢)) = O(nm) bits
» v eRY » Total: O(nm) bit encoding
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QED

What about when d # n/lg(1/¢)?
(We were originally doing something a little more complicated, but
Oded Regev pointed out the following simple argument.)
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Extending to arbitrary d, n

» Suppose X C Eg,, |X| = n, is a hard set for some £ where
d" = 0©(n/log(1/¢)) (X has Q(s~2log n) lower bound).

» d > d’: we have a hard set for any d > d’ by zero-padding
vectors in X. Thus, name of the game: for fixed n, &, show
lower bound for as small a d as possible.

» d < d": For d > Ce2logn: we know (1 + ¢)-distortion
embedding f : X — (9 exists (JL upper bound).
f(X) must be hard, else if good
low-dimensional /low-distortion embedding g exists, then g o f

is a good low-distortional embedding for X (which we know
doesn't exist).



What next?
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Static approximate dot product
Two days after [Larsen, Nelson '17]

> Noga Alon: "Hi Jelani, Kasper, | wonder ... if you can get a
tight estimate for the number of possibilities for the (3)
distances among n vectors of length at most 1 ..."

» 4 later: problem solved! (for knowing up to additive ¢)

[Alon, Klartag '17]: Given X C S91, |X| = n, can create a
data structure consuming f(n, d,€) bits such that can answer
query(i,j) = (xi,xj) £ ¢ for any x;, x; € X.
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Static approximate dot product
Two days after [Larsen, Nelson '17]

> Noga Alon: "Hi Jelani, Kasper, | wonder ... if you can get a
tight estimate for the number of possibilities for the (3)
distances among n vectors of length at most 1 ..."

» 4 later: problem solved! (for knowing up to additive ¢)

[Alon, Klartag '17]: Given X C S91, |X| = n, can create a
data structure consuming f(n, d,€) bits such that can answer
query(i,j) = (xi,xj) £ ¢ for any x;, x; € X.

» Here f(n, d, ) is a bound they prove optimal for this problem

nlsozgn’ Iofznédgn
f(n,d,e) = { ndlog(2 + '%7), logn < d < '°&"
nd log(1/¢), 1<d<logn

» First case for d, upper bound for this data structural problem
achieved earlier by [Kushilevitz, Ostrovsky, Rabani '98]



Static approximate dot product

[Alon, Klartag '17]: Given X C S971, |X| = n, can create a
data structure consuming f(n, d, ) bits such that can answer
query(i,j) = (xi,x;) + O(e) for any x;, x; € X.
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» Proof also via encoding argument.
Essentially the problem is equivalent to the following: let G be
the set of all n x n Gram matrices of rank d and diagonal
entries < 1. What is the logarithm of the size of the smallest
e-net of G under entrywise f,.-norm?

Encode X as name of closest net point to its Gram matrix.
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Static approximate dot product

[Alon, Klartag '17]: Given X C S971, |X| = n, can create a
data structure consuming f(n, d, ) bits such that can answer
query(i,j) = (xi,x;) + O(e) for any x;, x; € X.

» Proof also via encoding argument.
Essentially the problem is equivalent to the following: let G be
the set of all n x n Gram matrices of rank d and diagonal
entries < 1. What is the logarithm of the size of the smallest
e-net of G under entrywise {,,-norm?
Encode X as name of closest net point to its Gram matrix.

» Also implies optimal JL lower bound!
f(n,n,2ec) < f(n, m,¢) if low-distortion embedding into ¢3
existed (first embed points then build data structure)

» But [AK'17] gave upper bound on f(n, m, &), so m can't be
too small lest their lower bound on f(n, n,2¢) be violated.



Static approximate dot product

[Alon, Klartag '17]: Given X C S9~1, |X| = n, can create a
data structure consuming f(n, d,€) bits such that can answer
query(i,j) = (xi,x;) + O(e) for any x;, x; € X.

» OPEN:

» dynamic approx. dot product with fast update/query?
» approximate distance query with relative 1 + ¢ error?
(see [Indyk, Wagner '17]; potential gap of Ig(1/¢) remains)



And yet there’s more
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(i.e. JL is suboptimal for & approaching 1/4/n)



» Conjecture: ([Larsen, Nelson '17]) If s(n, d,¢) is the optimal
m for distortion 1 4 ¢ for n-point subsets of Kg, then
s(n,d,e) = ©(min{n, d,e 2 log(2 + =2n)}) for all &, n, d.

(i.e. JL is suboptimal for & approaching 1/4/n)

» [Alon, Klartag '17]: some progress toward conjecture. Proved

lower bound. As for upper bound ...



» Conjecture: ([Larsen, Nelson '17]) If s(n, d,¢) is the optimal
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» Conjecture: ([Larsen, Nelson '17]) If s(n, d,¢) is the optimal
m for distortion 1 4 ¢ for n-point subsets of Kg, then
s(n,d,e) = ©(min{n, d,e 2 log(2 + =2n)}) for all &, n, d.

(i.e. JL is suboptimal for & approaching 1/4/n)

» [Alon, Klartag '17]: some progress toward conjecture. Proved
lower bound. As for upper bound ...
for bipartite version of problem with x1,...,Xn, y1,...,yn Of
unit norm, can show there exist ai,...,ap, b1,..., b, € R™
for m = O(e 2 log(2 + £2n)) with

Vi j |0 yp) — (i by) | < e
» [Alon, Klartag '17] positive result on bipartite problem makes

use of low M*-estimate [Pajor, Tomczak-Jaegermann '86] and
Khatri-Sidak lemma [Khatri '67], [Sidak '67].



More open problems



Open problems

» Improved upper bound for constructing incoherent vectors?

Maybe [Alon '03] sharp and Gilbert-Varshamov bound
always suboptimal!?

» Instance-wise optimality for /> dimensionality reduction?
What's the right m in terms of X itself? Bicriteria results?
» JL map that can be applied to x in time O(m + ||x]|o)?
|| - llo denotes support size
» Explicit DJL distribution with seed length O(log %)?

» Rasmus Pagh: Las Vegas algorithm for computing a JL map
for set of n points faster than repeated random projections
then checking?



