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New Abstract
▪ We refined the result (on my website): For isotropic logconcave measure 𝜇 with diameter 𝐷,

𝜇 𝜕𝑆 ≳ 𝐷ି
ଵ
ଶ𝜇 𝑆 ln 1/𝜇 𝑆     for 𝜇 𝑆 ≤ 1/2

▪ Proof: combination of stochastic localization and Tr 𝑢𝐼 − Cov(𝜇) ିଶ potential.

Corollaries:

▪ Log Sobolev constant is Ω(𝐷ିଵ) and it is tight.

▪ It recovers the current best bound of KLS, thin shell, slicing constant 😄.

▪ It implies/improves the current best bound of large deviation inequality (except small ball).

At the end:

▪ Review the recent progress on sampling.

▪ Give some related open problems.

yintat.com



Cheeger Constant
▪ For any measure 𝜇, we define the Cheeger constant

𝒞ఓ = min
ఓ ௌ ஸ

ଵ
ଶ

𝜇(𝜕𝑆)

𝜇(𝑆)
.

𝒞ఓ is small if it is easy to cut 𝜇 into two.

▪ For small set 𝑆, the ratio should be ~1/Diam(𝑆), instead of a constant.

▪ For Gaussian measure 𝜇 on ℝ, we have
𝜇(𝜕𝑆) ≳ 𝜇 𝑆 ln (1/𝜇 𝑆 )

Why ln (1/𝜇 𝑆 )?



Log-Cheeger Constant
▪ For any measure 𝜇, we define the Log-Cheeger constant

ℒ𝐶ఓ = min
ఓ ௌ ஸ

ଵ
ଶ

𝜇(𝜕𝑆)

𝜇 𝑆 ln (1/𝜇 𝑆 )
.

ℒ𝐶ఓ < ∞ means smaller set has larger boundary ratio. 

▪ Logconcave measure can has ℒ𝐶ఓ = ∞, e.g. exponential distribution.

▪ It implies a Gaussian tail, e.g. ℙఓ 𝑋 ≥ 𝔼 𝑋 + ℒ𝐶ఓ ⋅ 𝑡 ≲ 𝑒ି௧మ/ଶ.

▪ Cheeger-like inequality [Ledoux 94]
ℒ𝐶ఓ

ଶ ≲ ℒ𝒮ఓ ≲ ℒ𝐶ఓ

where log-Sobolev ℒ𝒮ఓ is the smallest number such that for any ∫ 𝑓ଶ𝑑𝜇 = 1,

න 𝛻𝑓 𝑥 ଶ𝑑𝜇 ≥ ℒ𝒮ఓ ⋅ න 𝑓ଶ 𝑥 lnଶ 𝑓(𝑥) 𝑑𝜇



Bound for Log-Cheeger Constant?
▪ ℒ𝐶ఓ ≳ 1 for Gaussian measure 𝜇.

▪ ℒ𝐶ఓ ≳ 1/ 𝑐 for 𝑐-strongly logconcave measure 𝜇. [Bakry, Ledoux 96]
i.e. 𝑑𝜇(𝑥) = 𝑒ି ௫ మ

𝑞 𝑥 𝑑𝑥 where 𝑞 is logconcave.

▪ ℒ𝐶ఓ ≳ 1/𝐷 for log-concave measure 𝜇 with diameter 𝐷. [Kannan-Lovász-Montenegro 05]

▪ ℒ𝐶ఓ ≳ 1/𝐷 for non-negative curvature manifold with diameter 𝐷. [Wang 97]

All the results above are tight.

Our result:

▪ ℒ𝐶ఓ ≳ 1/ 𝐷 for isotropic log-concave measure 𝜇 with diameter 𝐷.

This is tight also.

Highlight: this recovers many known results and the proof is just 10-20 pages.



Why diameter?
▪ Works for any isotropic-logconcave by a simply truncation.

▪ Natural workaround for exponential distribution.

Originally,
𝜇 𝜕𝑆 ≳ 𝜇 𝑆 .

Now,

𝜇 𝜕𝑆 ≳
1

𝐷
𝜇 𝑆 ln 1/𝜇 𝑆 .



Applications
(Tell me if I miss some important part or arrow)



Applications 1: Large deviation inequality
For isotropic logconcave, we have

Theorem [Paouris 06]: ℙ 𝑋 ≥ 𝑡 ≤ exp (−Ω 𝑡 ) for 𝑡 ≫ 𝑛. (tight!)

Theorem [Guedon-Milman 11]: ℙ | 𝑋 − 𝑛| ≥ 𝑡 ≤ exp (−Ω 𝑡ଷ/𝑛 ).

Theorem [Paouris 12]: ℙ 𝑋 ≤ 𝑡 𝑛 ≤ 𝑡ை( ) for 𝑡 ≪ 1.

Theorem [L-Vempala 16]: ℙ | 𝑋 − 𝑛| ≥ 𝑡 ≤ exp (−Ω(𝑡/𝑛ଵ/ସ)).



Applications 1: Large deviation inequality
Theorem [L-Vempala 2017]:

For any 1-Lipschitz 𝑔 and any isotropic logconcave 𝜇, (no diameter assumption)

ℙఓ |𝑔(𝑥) − 𝔼𝑔(𝑥)| ≥ 𝑡 ≤ exp −Ω
𝑡ଶ

𝑡 + 𝑛
.

Implies or improves previous bounds except small ball probability (still trying for small ball).

Proof: Define 𝐸௧ = {𝑥: 𝑥 ≥ 𝑛 + 𝑡} and 𝛼௧ = ln(1/𝜇 𝐸௧ ).

By the log-Cheeger constant, 
𝑑𝛼௧

𝑑𝑡
=

𝜇 𝜕𝐸௧

𝜇(𝐸௧)
≳

1

𝑛 + 𝑡
.

Solving it, gives 𝛼௧ ≳
௧మ

௧ା 
. 

For the Lipschitz case, consider 𝐸௧ = {𝑥: 𝑔 𝑥 ≥ 𝔼𝑔 𝑥 + 𝑡}.

(By truncating 𝜇 outside 2 𝑛 + 𝑡.)

𝜇 𝜕𝑆 ≳ 𝐷ି
ଵ
ଶ𝜇 𝑆 ln 1/𝜇 𝑆



Applications 2: Mixing time
Theorem [Jerrum-Sinclair 88]

For any ergodic Markov chain, 
Φିଵ ≲ 𝒯 ≲ Φିଶ ln 1/𝜋

where 𝒯 is the mixing time, 𝜋 is minimum stationary probability of any state and

conductance Φ = min
గ ௌ ஸଵ/ଶ

𝑄(𝑆)

𝜋 𝑆
≝ min

గ ௌ ஸଵ/ଶ

∑ ∑ 𝜋∉ௌ 𝑝∈ௌ

𝜋 𝑆

Theorem [Lovász-Kannan 99]

𝒯 ≲ න
1

𝑥Φ 𝑥 ଶ

ଵ/ଶ

గబ

𝑑𝑥

where conductance Φ 𝑥 = min
గ ௌ ୀ௫

ொ ௌ

గ ௌ
.

If Φ 𝑥 ≥ 𝐶 ⋅ ln(1/𝑥), then 𝒯 ≲ 𝐶ିଶ ln ln(1/𝜋).

[Frieze and Kannan 97] asks what is the log-Sobolev constant for isotropic logconcave.

Our original motivation



Proof by picture!



Proof of log-Cheeger constant
Let 𝑝(𝑥) be the density of the given logconcave distribution. Consider

Fix a set 𝐸 with 𝑝 𝐸 ≤ 1/2.

Goal: 𝑝(𝜕𝐸) ≳ 𝐷ିଵ/ଶ𝑝 𝐸 ln (1/𝑝 𝐸 ).

Strategy:

▪ 𝑝 𝜕𝐸 = 𝔼 𝑝௧ 𝜕𝐸 .

▪ 𝑝௧(𝜕𝐸) ≳ 𝑡ିଵ/ଶ𝑝௧ 𝐸 ln (1/𝑝௧ 𝐸 ) a.e. for any t.

▪ 𝔼 𝑝௧ 𝐸 ln (1/𝑝௧(𝐸)) ≳ 𝑝(𝐸) ln (1/𝑝(𝐸)) up to 𝑡 = 1/𝐷.

The first one follows from 𝑝௧ is a martingale.



Ito’s lemma shows

𝑝௧(𝑥) = 𝑍௧
ିଵ exp(𝑐௧

்𝑥 −
𝑡

2
𝑥 ଶ)

Namely, 𝑝௧ is strongly logconcave.

Theorem [Bakry, Ledoux 96]: For any 𝑝 𝑥 ≝ 𝑞 𝑥 exp(−
௧

ଶ
𝑥 ଶ) with logconcave 𝑞, we have

𝑝(𝜕𝐸) ≳ 𝑡ିଵ/ଶ𝑝 𝐸 ln (1/𝑝 𝐸 )

Alternative Proof: 

Apply localization lemma, it suffices to prove the case for 1 dimension.

Ask your student to prove the 1 dim problem.



Let 𝑔௧ = 𝑝௧(𝐸). Ito’s lemma shows

For expectation, it suffices to upper bound 𝑑 𝑔௧ ௧.

Note that 𝑑𝑔௧ = ∫ 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

, 𝑑𝑊௧ ,   𝑑 𝑔௧ ௧ = ∫ 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

ଶ

ଶ

𝑑𝑡.

Since 𝑑 𝑔௧ ௧ ≲ 𝑔௧
ଶ lnଶ(1/𝑔௧) 𝑑𝑡, 2nd term ~𝑔௧ lnଵ.ହ(1/𝑔௧) 𝑑𝑡

Since 𝑑 𝑔௧ ௧ ≲ 𝑔௧
ଶ𝐷ଶ𝑑𝑡, 2nd term ~𝐷ଶ𝑔௧/ ln.ହ(1/𝑔௧) 𝑑𝑡

Combining both cases, we are good up to 𝑡 ≤ 1/𝐷.

(good for 𝑡 ≤
ଵ

୪୬ (ଵ/)
)

(good for 𝑡 ≤
୪୬ (ଵ/)

మ )

QED

(Next Slide)

𝜇௧ is the mean of 𝑝௧.



Recall 𝑑 𝑔௧ ௧ = ∫ 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

ଶ

ଶ

𝑑𝑡.

Note that

(If the body is 𝜓ଶ, one may get better bound…)

If 𝐴௧  = 𝑂(1), then we can take 𝑘 = ln (1/𝑔௧).

𝜇௧ is the mean of 𝑝௧.
𝐴௧ is the covariance of 𝑝௧.



How to bound ?
By Ito’s Lemma, we know that 

𝑑𝐴௧ = ⋯ 𝑑𝑊௧.

Each step, we are adding a mean 0 random matrix into 𝐴௧.

Simplest way: Apply standard matrix concentration result such as matrix Chernoff bound.

This gives 𝐴௧  = 𝑂(1) for 𝑡 ≲
ଵ

୪୬ ()
. But we need 𝑡~1/ 𝑛.

Underlying Chernoff bound, it used the potential Tr(𝑒୪୬  ⋅).

The extra ln 𝑛 makes the derivative of the potential too large.

If ⋯ is a random diagonal matrix, ln 𝑛 term is unavoidable.

But, 𝑑𝐴௧ more like a random Gaussian matrix.



BSS potential
Ideally, one would like to track 𝜆୫ୟ୶(𝐴௧) instead. (Again not nice).

[Batson Spielman Srivastava 08] shows one can use the potential 𝑢௧ where
Tr 𝑢௧𝐼 − 𝐴௧

ିଵ = 𝑛.

𝑢௧ is an approximate maximum eigenvalue of 𝐴௧.

They used that for constructing graph sparsifier. Later on, it is used on 

▪ Analyze empirical covariance matrix [Srivastava 11]

▪ Online learning [Audibert-Bubeck 13]

▪ Even faster graph sparsifier [AllenZhu-Orecchia 15, L-Sun 17]

▪ ⋯.

Once we know the potential, the rest follows from calculation on 𝑑𝑢௧.



Open problem
For isotropic logconcave 𝜇, we know

▪ 𝜓ଶ(𝜇) ≲
ଵ

ℒ𝒮ഋ
where 𝜓ଶ(𝜇) is the 𝜓ଶ constant of 𝜇.

▪ 𝒫ఓ ≲ ℒ𝒮ఓ where 𝒫ఓ is the Poincare constant of 𝜇.

Question: is it true that

ℒ𝒮ఓ = Θ 𝒫ఓ +
1

𝜓ଶ 𝜇
?

(Maybe too optimistic?)



Recent Progress on 
Sampling



Sampling Problem
Problem: sample a point from the uniform distribution on a given convex set K.

▪ Oracle setting: membership oracle of 𝐾.

▪ Polytope setting: 𝐾 = {𝐴𝑥 ≥ 𝑏}.

Why: 

▪ Lying at the heart of optimization theory

▪ Understand the model

▪ Compute volume, center of gravity, covariance matrix, diameter, …

▪ Robust optimization, Bandit problem, …

▪ Provide a window to learn about convex sets!



Biased view: Mother of many easy problems
Problem is easy iff it can be written as a “convex” problem.

Here are increasingly difficult convex problems:

𝑓 is convex function.

One ultimate goal of the field: Solve all of them in 𝑛ଶ time! 



Sampling problem on polytopes
Input: a polytope 𝐾 = {𝐴𝑥 ≥ 𝑏} where 𝑚 is # of constraints, 𝑛 is # of variables.

Output: sample a point from the uniform distribution on K.

Iterations Time/Iter

[Lovász-Vempala 03] Ball walk 𝑛ସ 𝑚𝑛

[Kannan-Narayanan 09] Dikin walk 𝑚𝑛 𝑚𝑛ଵ.ଷ଼ (matrix multiplication)

[L-Vempala 16] Geodesic walk 𝑚𝑛.ହ 𝑚𝑛ଵ.ଷ଼ (matrix multiplication)

[L-Vempala 17] Hamiltonian walk 𝑚𝑛. 𝑚𝑛ଵ.ଷ଼ (matrix multiplication)

Ben’s experiment: Coordinate Hit-and-Run 𝑛ଶ 𝑚

Hamiltonian walk 1 Solve 𝑂෨(1) linear system

Without extra assumption, there is some information lower bound?



How does nature mix particles?
Brownian Motion.

It works for sampling on ℝ.

However, convex set has boundary .

Option 1) Reflect it when you hit the boundary.

However, it need tiny step for discretization. 



How does the nature mixes particle?
Brownian Motion.

It works for sampling on ℝ.

However, convex set has boundary .

Option 2) Remove the boundary by blowing up.

However, this requires explicit polytopes.



Hessian manifold: a subset of ℝ with 
inner product defined by 𝑢, 𝑣  = 𝑢்𝛻ଶ𝜙 𝑝 𝑣.

For polytope 𝑎
்𝑥 ≥ 𝑏 ∀𝑖 , we use the log barrier function

𝜙 𝑥 =  log(
1

𝑠 𝑥
)



ୀଵ

▪ 𝑠 𝑥 = 𝑎
்𝑥 − 𝑏 is the distance from 𝑥 to constraint 𝑖

▪ 𝑝 blows up when 𝑥 close to boundary

▪ Our walk is slower when it is close to boundary.

▪ To make sure it converges to uniform, we add appropriate amount of drift.

Hessian manifold



Our algorithm
▪ Run the drifted Brownian Motion on the Hessian manifold.

(The drift is given by −
ଵ

ଶ
𝛻 ln det 𝑔 (𝑥) so that the stationary distribution is uniform).

We do a piecewise approximation as follows

▪ Sample 𝑥ᇱ 𝑡 from Gaussian vector on 𝑇௫(௧)ℳ.

▪ Solve the equation 𝐷௧
డ௫

డ௧
= −

ଵ

ଶ
𝛻 ln det 𝑔 (𝑥).

The flow 𝐷௧
డ௫

డ௧
= −

ଵ

ଶ
𝛻 ln det 𝑔 𝑥 preserves volume and is symmetric.

Do not require the Metropolis filter step.

It is like the generalization of hit-and-run on manifold.



(Theoretical) Implementation

To solve 𝐷௧
డ௫

డ௧
= −

ଵ

ଶ
𝛻 ln det 𝑔 𝑥 ,

we show that the solution can be approximated by 𝑂෨(1) order polynomials.

[L-Vempala 16] Consider the ODE 𝑦ᇱ = 𝑓 𝑡, 𝑦(𝑡) with 𝑦 0 = 𝑦.

▪ 𝐿𝑖𝑝 𝑓 ≤ 0.001

▪ There is a degree 𝑑 poly 𝑝 such that 𝑝ᇱ − 𝑓ᇱ ≤ 𝜀. 

Then, we can find a 𝑦 such that 𝑦 − 𝑦 1 = 𝑂(𝜀) in time

𝑂(𝑑logଶ 𝑑𝜀ିଵ ) with 𝑂(𝑑log 𝑑𝜀ିଵ ) evaluations of 𝑓.

Remark: No need to compute 𝑓′!

In general, the runtime is 𝑂෨(𝑛𝑑Lipை(ଵ)(𝑓)) instead for 𝑛 variables ODE.



Convergence Theorem
[L-Vempala 17]: For log barrier, the ham walk mixes in 𝑂෨ 𝑚𝑛. steps.

[L-Vempala 17]: For log barrier on 0,1 , it mixes in 𝑂෨(1) steps. 

All previous algorithm such as ball-walk, hit-and-run and Dikin walk 

takes Ω(𝑛) steps for 0,1 .

Open Problem: What is the best metric to use that is still computable?

Open Problem: What is the corresponding KLS conjecture on manifold setting?


