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Convergence of Hamiltonian Monte
Carlo and Faster Polytope Volume
Computation

Yin Tat Lee, Santosh S. Vempala
University of Washington Georgia Tech




Imgroved Log-Sobolev Constant
an
Recent Progress on Polytope Sampling

Yin Tat Lee, Santosh S. Vempala
University of Washington Georgia Tech




Selected Publications yintat.com

« Yin Tat Lee, Santosh S. Vempala
N ew A bst ra ct Eldan's Stochastic Localization and the KLS Hyperplane Conjecture: An Improved L
Proving that -Lipschi tion on isotropic logconcave distribution cor

(short versiol) (refined bound)

= We refined the result (on my website): For isotropic logconcave measure li with diameter D,
1
u(os) = D_EM(S)\/ln(l/u(S)) for u(S) <1/2

= Proof: combination of stochastic localization and Tr(ul — Cov(u)) 2 potential.

Corollaries:

= Log Sobolev constantis Q(D~1) and it is tight.

= It recovers the current best bound of KLS, thin shell, slicing constant .

= [t implies/improves the current best bound of large deviation inequality (except small ball).
At the end:

= Review the recent progress on sampling.

= Give some related open problems.




Cheeger Constant

= For any measure u, we define the Cheeger constant

N 1(9S)

min

u(S)s5 M(S ) }A(bQ
¢, is small if it is easy to cut u into two. M

= For small set S, the ratio should be ~1/Diam(S), instead of a constant.

= For Gaussian measure u on R™, we have

u(0S) = u(S$)y/In(1/u(S))

Why /In(1/u(85))?




Log-Cheeger Constant

= For any measure u, we define the Log-Cheeger constant
1(05)
LC,

= min .
u($)=2 1($)y/In(1/u($))

LC, < o means smaller set has larger boundary ratio.

P(x)

= Logconcave measure can has LC, = o, e.g. exponential distribution. \

Sy
- Itimplies a Gaussian tail, e.g. P, (|1X| = E|X| + LC, - t) S e t?/2,

= Cheeger-like inequality [Ledoux 94]
LCF S LS, S LC,

where log-Sobolev LS, is the smallest number such that for any [ f?du =1,

[Irreordn > 25, | £ £y du




Bound for Log-Cheeger Constant?

= LC, = 1 for Gaussian measure pu.

= LC, = 1/+/c for c-strongly logconcave measure p. [Bakry, Ledoux 96]
i.e. du(x) = e~“I*I*g(x)dx where q is logconcave.

= LC, = 1/D for log-concave measure u with diameter D. [Kannan-Lovasz-Montenegro 05]
= LC, = 1/D for non-negative curvature manifold with diameter D. [Wang 97]
All the results above are tight.

Our result:

- LC, = 1/4/D for isotropic log-concave measure u with diameter D.

This is tight also.

Highlight: this recovers many known results and the proof is just 10-20 pages.




Why diameter?

= Works for any isotropic-logconcave by a simply truncation.

= Natural workaround for exponential distribution.

P(x)

I Originally,
\ u(9S) = u(s).
'u. —D NOW,

e K(@S) 2 —=4(S) [In(1/u(S)).
)

.\/ %S
A _ JD




Applications

(Tell me if | miss some important part or arrow)

—

Log Cheeger

2

Lipschitz Concentration -<—)

Cheeger (KLS)

v

v A

Large Deviation for ||x|| —>

Thin Shell

»| Entropy Jump

W2 body

2

Central Limit Theorem

—>

Slicing

Reverse Brunn-Minkowski




Applications 1: Large deviation inequality
For isotropic logconcave, we have

Theorem [Paouris 06]: P(|X| = t) < exp(—Q(t)) for t > /n. (tight!)
Theorem [Guedon-Milman 11]: P(||X| — vn| = t) < exp(—Q(t3/n)).
Theorem [Paouris 12]: P(|X| < tyn) < t°0™ for t « 1.

Theorem [L-Vempala 16]: P(||X| — V| = t) < exp(—Q(t/n!/*)).
Pro




Applications 1: Large deviation inequality *@ 77 #®"/)

Theorem [L-Vempala 2017]:

For any 1-Lipschitz g and any isotropic logconcave u, (no diameter assumption)

2
Py(lg(x) —Eg(x)| = t) < exp —ﬂ< : ))

t++n

Implies or improves previous bounds except small ball probability (still trying for small ball).

Proof: Define E; = {x:||x|| = vn + t} and a; = In(1/u(E.)).

By the log-Cheeger constant,
da | u(9E) - 1

dt  u(E) /—\/ﬁ+ N (By truncating p outside 2/n + t.)

2

t+yn’
For the Lipschitz case, consider E; = {x: g(x) = Eg(x) + t}.

Solving it, gives a; =




Our original motivation
Applications 2: Mixing time
Theorem [Jerrum-Sinclair 88]

For any ergodic Markov chain,
P 1<sT <SP ?In(1/my)

where T is the mixing time, m,, is minimum stationary probability of any state and
Q) ,, . XiesigsTiDij
conductance® = min —— ¥ min
n($)<1/2m(S)  mw(S)<1/2 (S)

1/2 1
T < d
L x®P(x)? x

Theorem [Lovasz-Kannan 99]

where conductance ®(x) = min @.
(S)=x 1(S)

If ®(x) = C-./In(1/x),then T < C~?Inln(1/m,).

[Frieze and Kannan 97] asks what is the log-Sobolev constant for isotropic logconcave.




Proof by picture!

Stochastic
Localization




Proof of log-Cheeger constant

Let p(x) be the density of the given logconcave distribution. Consider
dpe(x) = (x — pe)TdWy - pe(x).

Fix a set E with p(E) < 1/2.

Goal: p(0E) = D™Y/2p(E)\/In(1/p(E)).

Strategy:

- p(0E) = E p.(9E).

« p:(0E) = t™/?p,(E)\/In(1/p:(E)) a.e. for any t.

* Ep(E)yIn(1/p(E)) 2 p(E){In(1/p(E)) uptot =1/D.

The first one follows from p; is a martingale.




p:(0E) 2 tV2p,(E)y/In(1/p(E)) dpy(x) = (2 — pe)TdWy - py(2).
Ito’s lemma shows t
pe(x) = Z¢ " exp(ee x — 5 IIxII)

Namely, p; is strongly logconcave.

Theorem [Bakry, Ledoux 96]: For any p(x) & q(x)exp(—% |x||?) with logconcave g, we have
p(3E) 2 t™2p(E)/In(1/p(E))

Alternative Proof:
Apply localization lemma, it suffices to prove the case for 1 dimension.

Ask your student to prove the 1 dim problem.




dpe(z) = (z — H-t)Tdﬁ'rt - pe(z).
E pe(E)VIn(1/p.(E)) 2 p(E)yIn(1/p(E)) o

Le‘t gt - pt (E) . Ito’s Iemma ShOWS For any stochastic process dX; = pdt + oydWy, we have that

2
df (z:) = df (e + 01d W) + Lt K

[ Zlog—— 2log £ + 1 da? 2
IU"T — gt = gfg d[gt]t-
t SQt IDgQ e

For expectation, it suffices to upper bound d[gt]t-

2
Note that dg, = (f, (x = u)pc(dx, W), dlge], = upe()dx| .
2
(Next Slide) )
Since d[g;]; < g2 In?(1/g,) dt, 2nd term ~g, In'5(1/g,) dt (good for t < —-r=)
In(1/g0)
Since d[g,], S g?D%dt, 2nd term ~D2g,/In%5(1/g,) dt (good for t < —--)

Combining both cases, we are gooduptot < 1/D.
QED




U is the mean of p;.

d[gt]t < th 11’12(1/gt) dt A, is the covariance of p,.

2

g (= ppe(x)dx|| dt.
2

Recall d[g;]; =

Note that

= max /(1—,(;,5} C-pylx)dx

o lclla=1

3 1-%
max (/ ‘ T —,ut £ pt( da ) (f pt{‘r)d:r)
||C||2:1 E

< 2k || Agl|el? - g F

f(l — pig)pe(x)de
E

(If the body is ¥,, one may get better bound...)

If [[A¢llop = O(1), then we can take k = In(1/g;).




How to bound ||4,[,,?

By Ito’'s Lemma, we know that
dAt — e th

Each step, we are adding a mean 0 random matrix into A;.

Simplest way: Apply standard matrix concentration result such as matrix Chernoff bound.

1
vnln(n)’

This gives [|4¢ll,, = 0(1) for t < But we need t~1/+/n.

Underlying Chernoff bound, it used the potential Tr(e™™)4r).

The extra In(n) makes the derivative of the potential too large.

If --- is a random diagonal matrix, In(n) term is unavoidable.

But, dA; more like a random Gaussian matrix.




BSS potential

|deally, one would like to track 4,,,x(A4;) instead. (Again not nice).

[Batson Spielman Srivastava 08] shows one can use the potential u; where
Tr (ud — A~ =n.

u; is an approximate maximum eigenvalue of A;.

They used that for constructing graph sparsifier. Later on, it is used on
= Analyze empirical covariance matrix [Srivastava 11]

= Online learning [Audibert-Bubeck 13]

= Even faster graph sparsifier [AllenZhu-Orecchia 15, L-Sun 17]

Once we know the potential, the rest follows from calculation on du;.




Open problem

For isotropic logconcave u, we know

* P(u) S L—;ﬂ where ¥, (u) is the 1, constant of u.

- P, s LS, where P, is the Poincare constant of p.

Question: is it true that

1
LS, =0 (PM + tpz(u)> ?

(Maybe too optimistic?)




Recent Progress on
Sampling




Sampling Problem

Problem: sample a point from the uniform distribution on a given convex set K.
= Oracle setting: membership oracle of K.

= Polytope setting: K = {Ax > b}.

Why:

= Lying at the heart of optimization theory

= Understand the model

= Compute volume, center of gravity, covariance matrix, diameter, ...
= Robust optimization, Bandit problem, ...

= Provide a window to learn about convex sets!




Biased view: Mother of many easy problems

Events | Fall 2017
Problem is easy iff it can be written as a “convex” problem. Gradient Descent: The Mother of All Algorithms?

Dec. 11, 2017 4:00 pm — 5:00 pm

Here are increasingly difficult convex problems:

Speaker: Aleksander Madry (MIT)

Location: Banatao Auditorium, Sutardja D{ éx.
‘0 cM-P '
J ] >

s 1
A e \) Zm?n(j?x Mmint6e) (a_r/e e—-f(«)
Kzb

/ /
Cfo\ ” ’ lL' L, é‘cMorJ [ q,’ L"“O”‘J’i(f“éﬁ 1§ ' LU VA Sl- \bm‘v..(,l 0s

f is convex function.

One ultimate goal of the field: Solve all of them in n? time!




Without extra assumption, there is some information lower bound?

Sampling problem on polytopes

Input: a polytope K = {Ax = b} where m is # of constraints, n is # of variables.

Output: sample a point from the uniform distribution on K.

lterations Time/lter
[Lovasz-Vempala 03] Ball walk n* mn
[Kannan-Narayanan 09] Dikin walk mn mn-38 (matrix multiplication)
[L-Vempala 16] Geodesic walk mn%7° mn-38 (matrix multiplication)
[L-Vempala 17] Hamiltonian walk mn?-66 mn-38 (matrix multiplication)
Ben'’s experiment: Coordinate Hit-and-Run  n? m

Hamiltonian walk 1 Solve 0(1) linear system




How does nature mix particles?

Brownian Motion.

It works for sampling on R".

However, convex set has boundary ®.

Option 1) Reflect it when you hit the boundary.

However, it need tiny step for discretization.




How does the nature mixes particle?

Brownian Motion.

It works for sampling on R".
However, convex set has boundary ®.

Option 2) Remove the boundary by blowing up.

However, this requires explicit polytopes.




Hessian manifold

Hessian manifold: a subset of R™ with
inner product defined by (u, v), = u" V¢ (p)v.

For polytope {aiTx > b; Vi}, we use the log barrriner function
1
xX) = lo
60) = ) 108 )
=1
T

= 5;(x) = a; x — b; is the distance from x to constraint i

= p blows up when x close to boundary

= QOur walk is slower when it is close to boundary.

= To make sure it converges to uniform, we add appropriate amount of drift.




Our algorithm

= Run the drifted Brownian Motion on the Hessian manifold.

(The drift is given by — % VIndet g (x) so that the stationary distribution is uniform).

We do a piecewise approximation as follows

= Sample x'(t) from Gaussian vector on T, M.

= Solve the equation D; % = — % Vindetg (x).

The flow D; % = — % VIndet g (x) preserves volume and is symmetric.

Do not require the Metropolis filter step.

It is like the generalization of hit-and-run on manifold.




(Theoretical) Implementation

To solve Dt% = —%Vlndetg (x),

we show that the solution can be approximated by 0(1) order polynomials.

[L-Vempala 16] Consider the ODE y’ = f(t, y(t)) with y(0) = y,. 7

- Lip(f) < 0.001

= There is a degree d poly p such that |p’ — f'| < «.

Then, we can find a y such that |y — y(1)| = 0(¢) in time

0(dlog?(de™1)) with 0(dlog(de™1)) evaluations of f.
Remark: No need to compute f'!

In general, the runtime is 0 (ndLip°™® (f)) instead for n variables ODE.




Convergence Theorem

[L-Vempala 17]: For log barrier, the ham walk mixes in 0(mn°¢%) steps.

[L-Vempala 17]: For log barrier on [0,1]™, it mixes in 0(1) steps. ©

All previous algorithm such as ball-walk, hit-and-run and Dikin walk

takes Q(n) steps for [0,1]".
Open Problem: What is the best metric to use that is still computable?

Open Problem: What is the corresponding KLS conjecture on manifold setting?




