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New Abstract
▪ We refined the result (on my website): For isotropic logconcave measure 𝜇 with diameter 𝐷,

𝜇 𝜕𝑆 ≳ 𝐷ି
ଵ
ଶ𝜇 𝑆 ln 1/𝜇 𝑆     for 𝜇 𝑆 ≤ 1/2

▪ Proof: combination of stochastic localization and Tr 𝑢𝐼 − Cov(𝜇) ିଶ potential.

Corollaries:

▪ Log Sobolev constant is Ω(𝐷ିଵ) and it is tight.

▪ It recovers the current best bound of KLS, thin shell, slicing constant 😄.

▪ It implies/improves the current best bound of large deviation inequality (except small ball).

At the end:

▪ Review the recent progress on sampling.

▪ Give some related open problems.

yintat.com



Cheeger Constant
▪ For any measure 𝜇, we define the Cheeger constant

𝒞ఓ = min
ఓ ௌ ஸ

ଵ
ଶ

𝜇(𝜕𝑆)

𝜇(𝑆)
.

𝒞ఓ is small if it is easy to cut 𝜇 into two.

▪ For small set 𝑆, the ratio should be ~1/Diam(𝑆), instead of a constant.

▪ For Gaussian measure 𝜇 on ℝ௡, we have
𝜇(𝜕𝑆) ≳ 𝜇 𝑆 ln (1/𝜇 𝑆 )

Why ln (1/𝜇 𝑆 )?



Log-Cheeger Constant
▪ For any measure 𝜇, we define the Log-Cheeger constant

ℒ𝐶ఓ = min
ఓ ௌ ஸ

ଵ
ଶ

𝜇(𝜕𝑆)

𝜇 𝑆 ln (1/𝜇 𝑆 )
.

ℒ𝐶ఓ < ∞ means smaller set has larger boundary ratio. 

▪ Logconcave measure can has ℒ𝐶ఓ = ∞, e.g. exponential distribution.

▪ It implies a Gaussian tail, e.g. ℙఓ 𝑋 ≥ 𝔼 𝑋 + ℒ𝐶ఓ ⋅ 𝑡 ≲ 𝑒ି௧మ/ଶ.

▪ Cheeger-like inequality [Ledoux 94]
ℒ𝐶ఓ

ଶ ≲ ℒ𝒮ఓ ≲ ℒ𝐶ఓ

where log-Sobolev ℒ𝒮ఓ is the smallest number such that for any ∫ 𝑓ଶ𝑑𝜇 = 1,

න 𝛻𝑓 𝑥 ଶ𝑑𝜇 ≥ ℒ𝒮ఓ ⋅ න 𝑓ଶ 𝑥 lnଶ 𝑓(𝑥) 𝑑𝜇



Bound for Log-Cheeger Constant?
▪ ℒ𝐶ఓ ≳ 1 for Gaussian measure 𝜇.

▪ ℒ𝐶ఓ ≳ 1/ 𝑐 for 𝑐-strongly logconcave measure 𝜇. [Bakry, Ledoux 96]
i.e. 𝑑𝜇(𝑥) = 𝑒ି௖ ௫ మ

𝑞 𝑥 𝑑𝑥 where 𝑞 is logconcave.

▪ ℒ𝐶ఓ ≳ 1/𝐷 for log-concave measure 𝜇 with diameter 𝐷. [Kannan-Lovász-Montenegro 05]

▪ ℒ𝐶ఓ ≳ 1/𝐷 for non-negative curvature manifold with diameter 𝐷. [Wang 97]

All the results above are tight.

Our result:

▪ ℒ𝐶ఓ ≳ 1/ 𝐷 for isotropic log-concave measure 𝜇 with diameter 𝐷.

This is tight also.

Highlight: this recovers many known results and the proof is just 10-20 pages.



Why diameter?
▪ Works for any isotropic-logconcave by a simply truncation.

▪ Natural workaround for exponential distribution.

Originally,
𝜇 𝜕𝑆 ≳ 𝜇 𝑆 .

Now,

𝜇 𝜕𝑆 ≳
1

𝐷
𝜇 𝑆 ln 1/𝜇 𝑆 .



Applications
(Tell me if I miss some important part or arrow)



Applications 1: Large deviation inequality
For isotropic logconcave, we have

Theorem [Paouris 06]: ℙ 𝑋 ≥ 𝑡 ≤ exp (−Ω 𝑡 ) for 𝑡 ≫ 𝑛. (tight!)

Theorem [Guedon-Milman 11]: ℙ | 𝑋 − 𝑛| ≥ 𝑡 ≤ exp (−Ω 𝑡ଷ/𝑛 ).

Theorem [Paouris 12]: ℙ 𝑋 ≤ 𝑡 𝑛 ≤ 𝑡ை( ௡) for 𝑡 ≪ 1.

Theorem [L-Vempala 16]: ℙ | 𝑋 − 𝑛| ≥ 𝑡 ≤ exp (−Ω(𝑡/𝑛ଵ/ସ)).



Applications 1: Large deviation inequality
Theorem [L-Vempala 2017]:

For any 1-Lipschitz 𝑔 and any isotropic logconcave 𝜇, (no diameter assumption)

ℙఓ |𝑔(𝑥) − 𝔼𝑔(𝑥)| ≥ 𝑡 ≤ exp −Ω
𝑡ଶ

𝑡 + 𝑛
.

Implies or improves previous bounds except small ball probability (still trying for small ball).

Proof: Define 𝐸௧ = {𝑥: 𝑥 ≥ 𝑛 + 𝑡} and 𝛼௧ = ln(1/𝜇 𝐸௧ ).

By the log-Cheeger constant, 
𝑑𝛼௧

𝑑𝑡
=

𝜇 𝜕𝐸௧

𝜇(𝐸௧)
≳

1

𝑛 + 𝑡
.

Solving it, gives 𝛼௧ ≳
௧మ

௧ା ௡
. 

For the Lipschitz case, consider 𝐸௧ = {𝑥: 𝑔 𝑥 ≥ 𝔼𝑔 𝑥 + 𝑡}.

(By truncating 𝜇 outside 2 𝑛 + 𝑡.)

𝜇 𝜕𝑆 ≳ 𝐷ି
ଵ
ଶ𝜇 𝑆 ln 1/𝜇 𝑆



Applications 2: Mixing time
Theorem [Jerrum-Sinclair 88]

For any ergodic Markov chain, 
Φିଵ ≲ 𝒯 ≲ Φିଶ ln 1/𝜋଴

where 𝒯 is the mixing time, 𝜋଴ is minimum stationary probability of any state and

conductance Φ = min
గ ௌ ஸଵ/ଶ

𝑄(𝑆)

𝜋 𝑆
≝ min

గ ௌ ஸଵ/ଶ

∑ ∑ 𝜋௜௜∉ௌ 𝑝௜௝௜∈ௌ

𝜋 𝑆

Theorem [Lovász-Kannan 99]

𝒯 ≲ න
1

𝑥Φ 𝑥 ଶ

ଵ/ଶ

గబ

𝑑𝑥

where conductance Φ 𝑥 = min
గ ௌ ୀ௫

ொ ௌ

గ ௌ
.

If Φ 𝑥 ≥ 𝐶 ⋅ ln(1/𝑥), then 𝒯 ≲ 𝐶ିଶ ln ln(1/𝜋଴).

[Frieze and Kannan 97] asks what is the log-Sobolev constant for isotropic logconcave.

Our original motivation



Proof by picture!



Proof of log-Cheeger constant
Let 𝑝(𝑥) be the density of the given logconcave distribution. Consider

Fix a set 𝐸 with 𝑝 𝐸 ≤ 1/2.

Goal: 𝑝(𝜕𝐸) ≳ 𝐷ିଵ/ଶ𝑝 𝐸 ln (1/𝑝 𝐸 ).

Strategy:

▪ 𝑝 𝜕𝐸 = 𝔼 𝑝௧ 𝜕𝐸 .

▪ 𝑝௧(𝜕𝐸) ≳ 𝑡ିଵ/ଶ𝑝௧ 𝐸 ln (1/𝑝௧ 𝐸 ) a.e. for any t.

▪ 𝔼 𝑝௧ 𝐸 ln (1/𝑝௧(𝐸)) ≳ 𝑝(𝐸) ln (1/𝑝(𝐸)) up to 𝑡 = 1/𝐷.

The first one follows from 𝑝௧ is a martingale.



Ito’s lemma shows

𝑝௧(𝑥) = 𝑍௧
ିଵ exp(𝑐௧

்𝑥 −
𝑡

2
𝑥 ଶ)

Namely, 𝑝௧ is strongly logconcave.

Theorem [Bakry, Ledoux 96]: For any 𝑝 𝑥 ≝ 𝑞 𝑥 exp(−
௧

ଶ
𝑥 ଶ) with logconcave 𝑞, we have

𝑝(𝜕𝐸) ≳ 𝑡ିଵ/ଶ𝑝 𝐸 ln (1/𝑝 𝐸 )

Alternative Proof: 

Apply localization lemma, it suffices to prove the case for 1 dimension.

Ask your student to prove the 1 dim problem.



Let 𝑔௧ = 𝑝௧(𝐸). Ito’s lemma shows

For expectation, it suffices to upper bound 𝑑 𝑔௧ ௧.

Note that 𝑑𝑔௧ = ∫ 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

, 𝑑𝑊௧ ,   𝑑 𝑔௧ ௧ = ∫ 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

ଶ

ଶ

𝑑𝑡.

Since 𝑑 𝑔௧ ௧ ≲ 𝑔௧
ଶ lnଶ(1/𝑔௧) 𝑑𝑡, 2nd term ~𝑔௧ lnଵ.ହ(1/𝑔௧) 𝑑𝑡

Since 𝑑 𝑔௧ ௧ ≲ 𝑔௧
ଶ𝐷ଶ𝑑𝑡, 2nd term ~𝐷ଶ𝑔௧/ ln଴.ହ(1/𝑔௧) 𝑑𝑡

Combining both cases, we are good up to 𝑡 ≤ 1/𝐷.

(good for 𝑡 ≤
ଵ

୪୬ (ଵ/௚೟)
)

(good for 𝑡 ≤
୪୬ (ଵ/௚೟)

஽మ )

QED

(Next Slide)

𝜇௧ is the mean of 𝑝௧.



Recall 𝑑 𝑔௧ ௧ = ∫ 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

ଶ

ଶ

𝑑𝑡.

Note that

(If the body is 𝜓ଶ, one may get better bound…)

If 𝐴௧ ௢௣ = 𝑂(1), then we can take 𝑘 = ln (1/𝑔௧).

𝜇௧ is the mean of 𝑝௧.
𝐴௧ is the covariance of 𝑝௧.



How to bound ?
By Ito’s Lemma, we know that 

𝑑𝐴௧ = ⋯ 𝑑𝑊௧.

Each step, we are adding a mean 0 random matrix into 𝐴௧.

Simplest way: Apply standard matrix concentration result such as matrix Chernoff bound.

This gives 𝐴௧ ௢௣ = 𝑂(1) for 𝑡 ≲
ଵ

௡୪୬ (௡)
. But we need 𝑡~1/ 𝑛.

Underlying Chernoff bound, it used the potential Tr(𝑒୪୬ ௡ ⋅஺೟).

The extra ln 𝑛 makes the derivative of the potential too large.

If ⋯ is a random diagonal matrix, ln 𝑛 term is unavoidable.

But, 𝑑𝐴௧ more like a random Gaussian matrix.



BSS potential
Ideally, one would like to track 𝜆୫ୟ୶(𝐴௧) instead. (Again not nice).

[Batson Spielman Srivastava 08] shows one can use the potential 𝑢௧ where
Tr 𝑢௧𝐼 − 𝐴௧

ିଵ = 𝑛.

𝑢௧ is an approximate maximum eigenvalue of 𝐴௧.

They used that for constructing graph sparsifier. Later on, it is used on 

▪ Analyze empirical covariance matrix [Srivastava 11]

▪ Online learning [Audibert-Bubeck 13]

▪ Even faster graph sparsifier [AllenZhu-Orecchia 15, L-Sun 17]

▪ ⋯.

Once we know the potential, the rest follows from calculation on 𝑑𝑢௧.



Open problem
For isotropic logconcave 𝜇, we know

▪ 𝜓ଶ(𝜇) ≲
ଵ

ℒ𝒮ഋ
where 𝜓ଶ(𝜇) is the 𝜓ଶ constant of 𝜇.

▪ 𝒫ఓ ≲ ℒ𝒮ఓ where 𝒫ఓ is the Poincare constant of 𝜇.

Question: is it true that

ℒ𝒮ఓ = Θ 𝒫ఓ +
1

𝜓ଶ 𝜇
?

(Maybe too optimistic?)



Recent Progress on 
Sampling



Sampling Problem
Problem: sample a point from the uniform distribution on a given convex set K.

▪ Oracle setting: membership oracle of 𝐾.

▪ Polytope setting: 𝐾 = {𝐴𝑥 ≥ 𝑏}.

Why: 

▪ Lying at the heart of optimization theory

▪ Understand the model

▪ Compute volume, center of gravity, covariance matrix, diameter, …

▪ Robust optimization, Bandit problem, …

▪ Provide a window to learn about convex sets!



Biased view: Mother of many easy problems
Problem is easy iff it can be written as a “convex” problem.

Here are increasingly difficult convex problems:

𝑓 is convex function.

One ultimate goal of the field: Solve all of them in 𝑛ଶ time! 



Sampling problem on polytopes
Input: a polytope 𝐾 = {𝐴𝑥 ≥ 𝑏} where 𝑚 is # of constraints, 𝑛 is # of variables.

Output: sample a point from the uniform distribution on K.

Iterations Time/Iter

[Lovász-Vempala 03] Ball walk 𝑛ସ 𝑚𝑛

[Kannan-Narayanan 09] Dikin walk 𝑚𝑛 𝑚𝑛ଵ.ଷ଼ (matrix multiplication)

[L-Vempala 16] Geodesic walk 𝑚𝑛଴.଻ହ 𝑚𝑛ଵ.ଷ଼ (matrix multiplication)

[L-Vempala 17] Hamiltonian walk 𝑚𝑛଴.଺଺ 𝑚𝑛ଵ.ଷ଼ (matrix multiplication)

Ben’s experiment: Coordinate Hit-and-Run 𝑛ଶ 𝑚

Hamiltonian walk 1 Solve 𝑂෨(1) linear system

Without extra assumption, there is some information lower bound?



How does nature mix particles?
Brownian Motion.

It works for sampling on ℝ௡.

However, convex set has boundary .

Option 1) Reflect it when you hit the boundary.

However, it need tiny step for discretization. 



How does the nature mixes particle?
Brownian Motion.

It works for sampling on ℝ௡.

However, convex set has boundary .

Option 2) Remove the boundary by blowing up.

However, this requires explicit polytopes.



Hessian manifold: a subset of ℝ௡ with 
inner product defined by 𝑢, 𝑣 ௣ = 𝑢்𝛻ଶ𝜙 𝑝 𝑣.

For polytope 𝑎௜
்𝑥 ≥ 𝑏௜ ∀𝑖 , we use the log barrier function

𝜙 𝑥 = ෍ log(
1

𝑠௜ 𝑥
)

௠

௜ୀଵ

▪ 𝑠௜ 𝑥 = 𝑎௜
்𝑥 − 𝑏௜ is the distance from 𝑥 to constraint 𝑖

▪ 𝑝 blows up when 𝑥 close to boundary

▪ Our walk is slower when it is close to boundary.

▪ To make sure it converges to uniform, we add appropriate amount of drift.

Hessian manifold



Our algorithm
▪ Run the drifted Brownian Motion on the Hessian manifold.

(The drift is given by −
ଵ

ଶ
𝛻 ln det 𝑔 (𝑥) so that the stationary distribution is uniform).

We do a piecewise approximation as follows

▪ Sample 𝑥ᇱ 𝑡 from Gaussian vector on 𝑇௫(௧)ℳ.

▪ Solve the equation 𝐷௧
డ௫

డ௧
= −

ଵ

ଶ
𝛻 ln det 𝑔 (𝑥).

The flow 𝐷௧
డ௫

డ௧
= −

ଵ

ଶ
𝛻 ln det 𝑔 𝑥 preserves volume and is symmetric.

Do not require the Metropolis filter step.

It is like the generalization of hit-and-run on manifold.



(Theoretical) Implementation

To solve 𝐷௧
డ௫

డ௧
= −

ଵ

ଶ
𝛻 ln det 𝑔 𝑥 ,

we show that the solution can be approximated by 𝑂෨(1) order polynomials.

[L-Vempala 16] Consider the ODE 𝑦ᇱ = 𝑓 𝑡, 𝑦(𝑡) with 𝑦 0 = 𝑦଴.

▪ 𝐿𝑖𝑝 𝑓 ≤ 0.001

▪ There is a degree 𝑑 poly 𝑝 such that 𝑝ᇱ − 𝑓ᇱ ≤ 𝜀. 

Then, we can find a 𝑦 such that 𝑦 − 𝑦 1 = 𝑂(𝜀) in time

𝑂(𝑑logଶ 𝑑𝜀ିଵ ) with 𝑂(𝑑log 𝑑𝜀ିଵ ) evaluations of 𝑓.

Remark: No need to compute 𝑓′!

In general, the runtime is 𝑂෨(𝑛𝑑Lipை(ଵ)(𝑓)) instead for 𝑛 variables ODE.



Convergence Theorem
[L-Vempala 17]: For log barrier, the ham walk mixes in 𝑂෨ 𝑚𝑛଴.଺଺ steps.

[L-Vempala 17]: For log barrier on 0,1 ௡, it mixes in 𝑂෨(1) steps. 

All previous algorithm such as ball-walk, hit-and-run and Dikin walk 

takes Ω(𝑛) steps for 0,1 ௡.

Open Problem: What is the best metric to use that is still computable?

Open Problem: What is the corresponding KLS conjecture on manifold setting?


