

Many applications. of estimates for log-cheege (see slides) Application 1. Lage deriabon Inequality Correction Formula, $dx_{t} = d_{\mu}(\partial E_{t}) = \overline{Q_{t}}$ $d(\varepsilon_{+})$ $\sqrt{n+t}$ Application 2: Mixing time Proof ideas: g-Cheege constant p(x) = dens of log - concare why? Im $dp_{t} = (x - M_{t})^{T} dW_{t} \cdot p_{t} (x)$ mg goussian $(1+x)(1-x) \wedge (-x^2)$ How to band 1/ At 1/0p? By Ito's Lemma we know Correction: dA = ...dW + + A2dt LSn= O(Pn+ 421pl) Q Open Poincare Log-Soboler

Convergence of Hamiltonian Monte Carlo and Faster Polytope Volume Computation

Yin Tat Lee, University of Washington Santosh S. Vempala Georgia Tech

Improved Log-Sobolev Constant and Recent Progress on Polytope Sampling

Yin Tat Lee, University of Washington Santosh S. Vempala Georgia Tech

New Abstract

• We refined the result (on my website): For isotropic logconcave measure μ with diameter D,

$$\mu(\partial S) \gtrsim D^{-\frac{1}{2}}\mu(S) \sqrt{\ln(1/\mu(S))} \quad \text{for } \mu(S) \le 1/2$$

• Proof: combination of stochastic localization and $Tr(uI - Cov(\mu))^{-2}$ potential.

Corollaries:

- Log Sobolev constant is $\Omega(D^{-1})$ and it is tight.
- It implies/improves the current best bound of large deviation inequality (except small ball).
 At the end:
- Review the recent progress on sampling.
- Give some related open problems.

Cheeger Constant

• For any measure μ , we define the Cheeger constant $C_{\mu} = \min_{\mu(S) \leq \frac{1}{2}} \frac{\mu(\partial S)}{\mu(S)}.$

 C_{μ} is small if it is easy to cut μ into two.

- For small set S, the ratio should be $\sim 1/\text{Diam}(S)$, instead of a constant.
- For Gaussian measure μ on \mathbb{R}^n , we have

 $\mu(\partial S) \gtrsim \mu(S) \sqrt{\ln(1/\mu(S))}$

Why $\sqrt{\ln(1/\mu(S))}$?

Log-Cheeger Constant

• For any measure μ , we define the Log-Cheeger constant $\mathcal{L}C_{\mu} = \min_{\mu(S) \leq \frac{1}{2}} \frac{\mu(\partial S)}{\mu(S) \sqrt{\ln(1/\mu(S))}}.$

 $\mathcal{LC}_{\mu} < \infty$ means smaller set has larger boundary ratio.

- Logconcave measure can has $\mathcal{L}C_{\mu} = \infty$, e.g. exponential distribution.
- It implies a Gaussian tail, e.g. $\mathbb{P}_{\mu}(|X| \ge \mathbb{E}|X| + \mathcal{L}C_{\mu} \cdot t) \le e^{-t^2/2}$.
- Cheeger-like inequality

$$\mathcal{L}C^2_\mu \lesssim \mathcal{L}S_\mu \lesssim \mathcal{L}C_\mu$$

where log-Sobolev \mathcal{LS}_{μ} is the smallest number such that for any $\int f^2 d\mu = 1$, $\int |\nabla f(x)|^2 d\mu \ge \mathcal{LS}_{\mu} \cdot \int f^2(x) \ln^2 f(x) d\mu$ [Ledoux 94]

P(x)

Bound for Log-Cheeger Constant?

- $\mathcal{L}C_{\mu} \gtrsim 1$ for Gaussian measure μ .
- $\mathcal{L}C_{\mu} \gtrsim 1/\sqrt{c}$ for *c*-strongly logconcave measure μ . i.e. $d\mu(x) = e^{-c||x||^2}q(x)dx$ where *q* is logconcave. [Bakry, Ledoux 96]
- $\mathcal{LC}_{\mu} \gtrsim 1/D$ for log-concave measure μ with diameter D. [Kannan-Lovász-Montenegro 05]
- $\mathcal{L}C_{\mu} \gtrsim 1/D$ for non-negative curvature manifold with diameter *D*. [Wang 97]

All the results above are tight.

Our result:

• $\mathcal{L}C_{\mu} \gtrsim 1/\sqrt{D}$ for **isotropic** log-concave measure μ with diameter *D*.

This is tight also.

Highlight: this recovers many known results and the proof is just 10-20 pages.

Why diameter?

- Works for any isotropic-logconcave by a simply truncation.
- Natural workaround for exponential distribution.

Applications

(Tell me if I miss some important part or arrow)

Applications 1: Large deviation inequality

For isotropic logconcave, we have

Theorem [Paouris 06]: $\mathbb{P}(|X| \ge t) \le \exp(-\Omega(t))$ for $t \gg \sqrt{n}$. (tight!) Theorem [Guedon-Milman 11]: $\mathbb{P}(||X| - \sqrt{n}| \ge t) \le \exp(-\Omega(t^3/n))$. Theorem [Paouris 12]: $\mathbb{P}(|X| \le t\sqrt{n}) \le t^{O(\sqrt{n})}$ for $t \ll 1$. Theorem [L-Vempala 16]: $\mathbb{P}(||X| - \sqrt{n}| \ge t) \le \exp(-\Omega(t/n^{1/4}))$.

Applications 1: Large deviation inequality

Theorem [L-Vempala 2017]:

For any 1-Lipschitz g and any isotropic logconcave μ , (no diameter assumption) $\mathbb{P}_{\mu}(|g(x) - \mathbb{E}g(x)| \ge t) \le \exp\left(-\Omega\left(\frac{t^2}{t + \sqrt{n}}\right)\right).$

Implies or improves previous bounds except small ball probability (still trying for small ball).

Proof: Define $E_t = \{x : ||x|| \ge \sqrt{n} + t\}$ and $\alpha_t = \ln(1/\mu(E_t))$.

By the log-Cheeger constant,

$$\frac{d\alpha_t}{dt} = \frac{\mu(\partial E_t)}{\mu(E_t)} \gtrsim \frac{1}{\sqrt{\sqrt{n+t}}}.$$
 (By truncating μ outside $2\sqrt{n} + t.$)

 $\mu(\partial S) \gtrsim D^{-\frac{1}{2}}\mu(S) \sqrt{\ln(1/\mu(S))}$

Solving it, gives $\alpha_t \gtrsim \frac{t^2}{t+\sqrt{n}}$.

For the Lipschitz case, consider $E_t = \{x: g(x) \ge \mathbb{E}g(x) + t\}.$

Applications 2: Mixing time

Theorem [Jerrum-Sinclair 88]

For any ergodic Markov chain,

$$\Phi^{-1} \lesssim \mathcal{T} \lesssim \Phi^{-2} \ln(1/\pi_0)$$

where \mathcal{T} is the mixing time, π_0 is minimum stationary probability of any state and

conductance $\Phi = \min_{\pi(S) \le 1/2} \frac{Q(S)}{\pi(S)} \stackrel{\text{def}}{=} \min_{\pi(S) \le 1/2} \frac{\sum_{i \in S} \sum_{i \notin S} \pi_i p_{ij}}{\pi(S)}$

Theorem [Lovász-Kannan 99]

$$\mathcal{T} \lesssim \int_{\pi_0}^{1/2} \frac{1}{x \Phi(x)^2} dx$$

where conductance $\Phi(x) = \min_{\pi(S)=x} \frac{Q(S)}{\pi(S)}$.

If $\Phi(x) \ge C \cdot \sqrt{\ln(1/x)}$, then $\mathcal{T} \lesssim C^{-2} \ln \ln(1/\pi_0)$.

[Frieze and Kannan 97] asks what is the log-Sobolev constant for isotropic logconcave.

Proof by picture!

Stochastic Localization

Proof of log-Cheeger constant

Let p(x) be the density of the given logconcave distribution. Consider

$$dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x).$$

Fix a set *E* with $p(E) \leq 1/2$.

Goal: $p(\partial E) \gtrsim D^{-1/2} p(E) \sqrt{\ln(1/p(E))}$.

Strategy:

- $p(\partial E) = \mathbb{E} p_t(\partial E).$
- $p_t(\partial E) \gtrsim t^{-1/2} p_t(E) \sqrt{\ln(1/p_t(E))}$ a.e. for any t.
- $\mathbb{E} p_t(E)\sqrt{\ln(1/p_t(E))} \gtrsim p(E)\sqrt{\ln(1/p(E))}$ up to t = 1/D.

The first one follows from p_t is a martingale.

$p_t(\partial E) \gtrsim t^{-1/2} p_t(E) \sqrt{\ln(1/p_t(E))}$

$$dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x).$$

Ito's lemma shows

$$p_t(x) = Z_t^{-1} \exp(c_t^T x - \frac{t}{2} ||x||^2)$$

Namely, p_t is strongly logconcave.

Theorem [Bakry, Ledoux 96]: For any $p(x) \stackrel{\text{def}}{=} q(x) \exp(-\frac{t}{2} ||x||^2)$ with logconcave q, we have $p(\partial E) \gtrsim t^{-1/2} p(E) \sqrt{\ln(1/p(E))}$

Alternative Proof:

Apply localization lemma, it suffices to prove the case for 1 dimension.

Ask your student to prove the 1 dim problem.

$$dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x).$$

μ_t is the mean of p_t .

For any stochastic process $dX_t = \mu_t dt + \sigma_t dW_t$, we have that

(good for $t \leq \frac{\ln(1/g_t)}{n^2}$)

$$dg_t \sqrt{\log \frac{e}{g_t}} = \frac{2\log \frac{e}{g_t} - 1}{2\sqrt{\log \frac{e}{g_t}}} dg_t - \frac{2\log \frac{e}{g_t} + 1}{8g_t \log^{\frac{3}{2}} \frac{e}{g_t}} d[g_t]_t.$$

For expectation, it suffices to upper bound $d[g_t]_t$.

Let $g_t = p_t(E)$. Ito's lemma shows

 $\mathbb{E} p_t(E) \sqrt{\ln(1/p_t(E))} \gtrsim p(E) \sqrt{\ln(1/p(E))}$

Note that
$$dg_t = \left\langle \int_E (x - \mu_t) p_t(x) dx, dW_t \right\rangle$$
, $d[g_t]_t = \left\| \int_E (x - \mu_t) p_t(x) dx \right\|_2^2 dt$.

(Next Slide) Since $d[g_t]_t \leq g_t^2 \ln^2(1/g_t) dt$, 2nd term $\sim g_t \ln^{1.5}(1/g_t) dt$ (good for $t \leq \frac{1}{\ln(1/g_t)}$)

Since $d[g_t]_t \leq g_t^2 D^2 dt$, 2nd term $\sim D^2 g_t / \ln^{0.5}(1/g_t) dt$ Combining both cases, we are good up to $t \leq 1/D$.

QED

 μ_t is the mean of p_t . A_t is the covariance of p_t .

$$d[g_t]_t \lesssim g_t^2 \ln^2(1/g_t) dt$$

Recall $d[g_t]_t = \left\| \int_E (x - \mu_t) p_t(x) dx \right\|_2^2 dt.$

Note that

$$\begin{split} \left\| \int_{E} (x - \mu_{t}) p_{t}(x) dx \right\|_{2} &= \max_{\|\zeta\|_{2} = 1} \int_{E} (x - \mu_{t})^{T} \zeta \cdot p_{t}(x) dx \\ &\leq \max_{\|\zeta\|_{2} = 1} \left(\int_{E} \left| (x - \mu_{t})^{T} \zeta \right|^{k} \cdot p_{t}(x) dx \right)^{\frac{1}{k}} \left(\int_{E} p_{t}(x) dx \right)^{1 - \frac{1}{k}} \\ &\leq 2k \left\| A_{t} \right\|_{\operatorname{op}}^{1/2} \cdot g_{t}^{1 - \frac{1}{k}} \end{split}$$

(If the body is ψ_2 , one may get better bound...)

If $||A_t||_{op} = O(1)$, then we can take $k = \ln(1/g_t)$.

How to bound $||A_t||_{op}$?

By Ito's Lemma, we know that

 $dA_t = \cdots dW_t.$

Each step, we are adding a mean 0 random matrix into A_t .

Simplest way: Apply standard matrix concentration result such as matrix Chernoff bound.

This gives $||A_t||_{op} = O(1)$ for $t \leq \frac{1}{\sqrt{n}\ln(n)}$. But we need $t \sim 1/\sqrt{n}$.

Underlying Chernoff bound, it used the potential $Tr(e^{\ln(n)\cdot A_t})$.

The extra $\ln(n)$ makes the derivative of the potential too large.

If \cdots is a random diagonal matrix, $\ln(n)$ term is unavoidable.

But, dA_t more like a random Gaussian matrix.

BSS potential

Ideally, one would like to track $\lambda_{\max}(A_t)$ instead. (Again not nice).

[Batson Spielman Srivastava 08] shows one can use the potential u_t where $\operatorname{Tr} (u_t I - A_t)^{-1} = n$.

 u_t is an approximate maximum eigenvalue of A_t .

They used that for constructing graph sparsifier. Later on, it is used on

- Analyze empirical covariance matrix [Srivastava 11]
- Online learning [Audibert-Bubeck 13]
- Even faster graph sparsifier [AllenZhu-Orecchia 15, L-Sun 17]

• •••

Once we know the potential, the rest follows from calculation on du_t .

Open problem

For isotropic logconcave μ , we know

• $\psi_2(\mu) \lesssim \frac{1}{\mathcal{LS}_{\mu}}$ where $\psi_2(\mu)$ is the ψ_2 constant of μ .

• $\mathcal{P}_{\mu} \leq \mathcal{LS}_{\mu}$ where \mathcal{P}_{μ} is the Poincare constant of μ .

Question: is it true that

$$\mathcal{LS}_{\mu} = \Theta\left(\mathcal{P}_{\mu} + \frac{1}{\psi_{2}(\mu)}\right)?$$

(Maybe too optimistic?)

Recent Progress on Sampling

Sampling Problem

Problem: sample a point from the uniform distribution on a given convex set K.

- Oracle setting: membership oracle of *K*.
- Polytope setting: $K = \{Ax \ge b\}.$

Why:

- Lying at the heart of optimization theory
- Understand the model
- Compute volume, center of gravity, covariance matrix, diameter, ...
- Robust optimization, Bandit problem, …
- Provide a window to learn about convex sets!

Biased view: Mother of many easy problems

Problem is easy iff it o	Gradient Descent: The Mother of All Algorithms?		
Here are increasingly	difficult convex problen	ns:	Dec. 11, 2017 4:00 pm – 5:00 pm Speaker: Aleksander Mądry (MIT) Location: Banatao Auditorium, Sutardja Da Haro upplex: Ty
Ax=b	Minc [*] x Axzb	Minf(x)	Sample en (x)
N ^{2.58} Gall 14'	N ^{2.5} L-Sidford 14	NS L-Stoffarid-Wong 15	N ⁶ Lovász-Vempula OS

Evente | Fell 2017

f is convex function.

One ultimate goal of the field: Solve all of them in n^2 time!

Without extra assumption, there is some information lower bound? Sampling problem on polytopes

Input: a polytope $K = \{Ax \ge b\}$ where *m* is # of constraints, *n* is # of variables.

Output: sample a point from the uniform distribution on K.

		Iterations	lime/iter
[Lovász-Vempala 03]	Ball walk	n^4	mn
[Kannan-Narayanan 09]	Dikin walk	mn	mn ^{1.38} (matrix multiplication)
[L-Vempala 16]	Geodesic walk	$mn^{0.75}$	mn ^{1.38} (matrix multiplication)
[L-Vempala 17]	Hamiltonian walk	mn ^{0.66}	<i>mn</i> ^{1.38} (matrix multiplication)
Ben's experiment:	Coordinate Hit-and-Run	n^2	m
	Hamiltonian walk	1	Solve $\tilde{O}(1)$ linear system

How does nature mix particles?

Brownian Motion.

It works for sampling on \mathbb{R}^n .

However, convex set has boundary \otimes .

Option 1) Reflect it when you hit the boundary. However, it need tiny step for discretization.

How does the nature mixes particle?

Brownian Motion.

It works for sampling on \mathbb{R}^n .

However, convex set has boundary \otimes .

Option 2) Remove the boundary by blowing up.

However, this requires explicit polytopes.

Hessian manifold

Hessian manifold: a subset of \mathbb{R}^n with inner product defined by $\langle u, v \rangle_p = u^T \nabla^2 \phi(p) v$.

For polytope $\{a_i^T x \ge b_i \forall i\}$, we use the log barrier function

$$\phi(x) = \sum_{i=1}^{\infty} \log(\frac{1}{s_i(x)})$$

- $s_i(x) = a_i^T x b_i$ is the distance from x to constraint i
- *p* blows up when *x* close to boundary
- Our walk is slower when it is close to boundary.
- To make sure it converges to uniform, we add appropriate amount of drift.

Our algorithm

Run the drifted Brownian Motion on the Hessian manifold.

(The drift is given by $-\frac{1}{2}\nabla \ln \det g(x)$ so that the stationary distribution is uniform).

We do a piecewise approximation as follows

- Sample x'(t) from Gaussian vector on $T_{x(t)}\mathcal{M}$.
- Solve the equation $D_t \frac{\partial x}{\partial t} = -\frac{1}{2} \nabla \ln \det g(x)$.

The flow $D_t \frac{\partial x}{\partial t} = -\frac{1}{2} \nabla \ln \det g(x)$ preserves volume and is symmetric.

Do not require the Metropolis filter step.

It is like the generalization of hit-and-run on manifold.

(Theoretical) Implementation

To solve $D_t \frac{\partial x}{\partial t} = -\frac{1}{2} \nabla \ln \det g(x)$,

we show that the solution can be approximated by $\tilde{O}(1)$ order polynomials.

[L-Vempala 16] Consider the ODE y' = f(t, y(t)) with $y(0) = y_0$.

- $Lip(f) \le 0.001$
- There is a degree *d* poly *p* such that $|p' f'| \le \varepsilon$.

Then, we can find a *y* such that $|y - y(1)| = O(\varepsilon)$ in time

 $O(d\log^2(d\varepsilon^{-1}))$ with $O(d\log(d\varepsilon^{-1}))$ evaluations of f.

Remark: No need to compute f'!

In general, the runtime is $\tilde{O}(nd\operatorname{Lip}^{O(1)}(f))$ instead for *n* variables ODE.

Convergence Theorem

[L-Vempala 17]: For log barrier, the ham walk mixes in $\tilde{O}(mn^{0.66})$ steps.

[L-Vempala 17]: For log barrier on $[0,1]^n$, it mixes in $\tilde{O}(1)$ steps. \bigcirc

All previous algorithm such as ball-walk, hit-and-run and Dikin walk

takes $\Omega(n)$ steps for $[0,1]^n$.

Open Problem: What is the best metric to use that is still computable?

Open Problem: What is the corresponding KLS conjecture on manifold setting?