

The Kannan-Lovász-Simonovits Conjecture

Yin Tat Lee (U. Washington) and Santosh S. Vempala (Georgia Tech)

Thank You!

 \blacktriangleright

An exercise

Lemma. For isotropic logconcave $p: \mathbb{E}_{x,y \sim p} \langle x, y \rangle^3 \lesssim n^{1.5}$ Proof.

$$
\mathbb{E}_{x \sim p} \mathbb{E}_{y \sim p} |\langle x, y \rangle|^3 \leq \mathbb{E}_{x \sim p} (\mathbb{E}_{y \sim p} \langle x, y \rangle^2)^{3/2}
$$

= $\mathbb{E}_{x \sim p} ||x||^3$
 $\leq (\mathbb{E}_{x \sim p} ||x||^2)^{3/2}$
= $n^{1.5}$.

Exercise. Prove a better bound.

Isoperimetry

Isoperimetric Ratio/Cheeger Constant/Expansion of a function p:

$$
\psi_p = \min_{S: p(S) \le \frac{1}{2}} \frac{p(\partial S)}{p(S)}
$$

Q. What is the Cheeger constant of the Gaussian distribution?

A. The isoperimetric ratio of a halfspace through its centroid: $\sqrt{\frac{2}{\pi}}$

In fact for any $0 < t < 1$, the subset of measure t with minimum surface area is a halfspace!

Isoperimetry

Isoperimetric Ratio/Cheeger Constant/Expansion:

$$
\psi_p = \min_{S: p(S) \le \frac{1}{2}} \frac{p(\partial S)}{p(S)}
$$

Can be arbitrarily small… Structured distributions?

Logconcave function: $f(\lambda x + (1 - \lambda)y) \geq f(x)^{\lambda} f(y)^{1 - \lambda}$ (nonnegative function whose logarithm is concave)

Common generalization of Gaussians and indicators of convex sets.

Halfspace cuts do not have to be the minimal ones, but...

The Conjecture

Isoperimetric Ratio/Cheeger Constant/Expansion:

$$
\begin{aligned}\n\mathcal{L} \\
\text{er Constant/Expansion:} \\
\psi_p &= \min_{S: p(S) \le \frac{1}{2}} \frac{p(\partial S)}{p(S)} \\
x + (1 - \lambda)y) &\ge f(x)^{\lambda} f(y)^{1 - \lambda}\n\end{aligned}
$$

Logconcave function: $f(\lambda x + (1 - \lambda)y) \geq f(x)^{\lambda} f(y)^{1 - \lambda}$

Conjecture: For any logconcave density in any dimension, halfspaces minimize the isoperimetric ratio up to an absolute universal constant.

KLS Theorem

KLS Theorem
\nThm [LS, DF]
$$
p(\partial S) \ge \frac{2}{D} \min(p(S), p(S^c))
$$

\n(special case of isoperimetry for Riemannian manifolds with nonnegative curvature)
\n
$$
A = \mathbb{E}_{\mathbf{x}} \left((x - \bar{x})(x - \bar{x})^T \right) : covariance matrix of n
$$

$$
A = \mathbb{E}_p((x - \bar{x})(x - \bar{x})^T) : \text{covariance matrix of } p
$$

$$
R^2 = \mathbb{E}_p(||x - \bar{x}||^2) = Tr(A) = \sum_i \lambda_i(A)
$$

Thm. [KLS95]. For any logconcave density,

$$
p(\partial S) \ge \frac{c}{R} \min(p(S), p(S^c))
$$

(note: isotropic distribution has $A=I$. So, $\psi_p\geq \frac{c}{\sqrt{n}}$ for isotropic p) \overline{n} . So we see that \overline{r} for isotropic p)

Slide 7

YTL1 Draw D and R^{^2?} Yin Tat Lee, 11/14/2017

Outline

- Original Motivation
- **Connections**
	- ▶ Probability and Geometry
	- Algorithms

Techniques

- **Localization**
- **Stochastic Localization**

Some open problems

An algorithmic problem: Sampling

Given convex body K, generate uniform random point in K.

K specified by a "well-guaranteed" membership oracle:

- $x_0, r, R: x_0 + rB_n \subseteq K \subseteq RB_n$
- An oracle that answers YES/NO to $x \in K$?

Related problems we will see later:

- ▶ Compute the volume of K
- **Minimize a convex function over K**

Sampling with the ball walk

At x, pick random y from $x + \delta B_n$, if y is in K , go to y .

Approaches the uniform distribution over K. Rate of convergence? Sampling with the ball walk
At x, pick random y from $x + \delta B_n$,
if y is in K, go to y.
Approaches the uniform distribution over K.
Rate of convergence?
Cheeger constant of Markov chain...
 $\psi_K = \min_{\substack{vol(GS) \ \text{mod}(S) \ \text{mod}(S) \ \$

$$
\psi_K = \min_{S} \frac{vol(\partial S)}{\min(vol(S), vol(S^c))}
$$

Thm. [KLS97]

Mixing time of the ball walk from a warm start is O^* $\left(\frac{n}{\mu^2}\right)$ 2λ K / $K = \frac{\min \min (vol(S), vol(S^c))}{\min (vol(S), vol(S^c))}$
arm start is $O^*\left(\frac{n^2}{n^2}\right)$.

Connections I: Geometry and Probability

The KLS conjecture has very interesting consequences, many of which were conjectured independently and earlier.

Slicing/small ball probability Thin shell/Central Limit theorem Poincáre/Lipschitz Concentration

The Slicing conjecture: anti-concentration

Convex body of volume one has a hyperplane section of volume at least some constant.

Equivalently: for any isotropic logconcave density f ,

$$
L_p = f(0)^{1/n} = O(1).
$$

(Paouris) Slicing implies $Pr(||x||_2 \le \epsilon \sqrt{n}) \le (C\epsilon)^n$ \boldsymbol{n} (Ball) KLS => Slicing (Klartag; Bourgain) $L_p\lesssim n^{1/4}$

The Thin-shell conjecture: a CLT

The Thin-shell conjecture: a CLT
\nFor X from any isotropic logconcave distribution *p*,
\n
$$
Var_p(||X||^2) = O(n)
$$
\nor
$$
\sigma_p^2 = \mathbb{E}_p((||X|| - \sqrt{n})^2) = O(1)
$$
\n"Most of an isotropic logconcave distribution is contained in an
\nannulus of constant thickness."
\nKLS => thin-shell. In fact, $\sigma_p \leq \frac{1}{\psi_p}$
\nThm [Eldan-Klartag]. $L_p \leq \sigma_p$

"Most of an isotropic logconcave distribution is contained in an annulus of constant thickness."

KLS => thin-shell. In fact, $\sigma_p \lesssim \frac{1}{\psi_n}$ $p \sim$ Slide 14

YTL2 You never defined sigma_p and L_p

Yin Tat Lee, 11/14/2017

The Thin-shell conjecture: a CLT

X from any isotropic logconcave distribution,

$$
E\left(\left(\left|\left|X\right|\right|-\sqrt{n}\right)^{2}\right)=O(1)
$$
\n
$$
\sigma_{p} \lesssim \frac{1}{\psi_{p}}
$$

[Eldan-Klartag]. $L_p \lesssim \sup \sigma_p$ p and p a $p \sim$

CLT: Most marginals are approximately Gaussian.

For an isotropic convex body K, let $g_{\theta}(s) = vol(K \cap \{x : x^T \theta = s\})$ Then, $\sigma_p \leq \frac{1}{\psi_p}$

n-Klartag]. $L_p \leq \sup_p \sigma_p$

Most marginals are approximately Gaussian.

n isotropic convex body K, let $g_\theta(s) = vol(K \cap$
 $\Pr\left(\left\{\theta \in S^{n-1}: \max_{t} \left| \int_{-\infty}^t g_\theta(s) - \int_{-\infty}^t \gamma(s) \right| \leq \delta + \frac{\psi_K}{\sqrt{n}}\right\}\right) \geq 1 - n$

$$
\Pr\left(\left\{\theta \in S^{n-1}: \max_{t} \left| \int_{-\infty}^{t} g_{\theta}(s) - \int_{-\infty}^{t} \gamma(s) \right| \lesssim \delta + \frac{\psi_K}{\sqrt{n}}\right\}\right) \ge 1 - n \exp\left(-\Omega(\delta^2 n)\right)
$$

Progress on the thin-shell bound

 \blacktriangleright

Poincáre Conjecture

Smooth function g

Isotropic logconcave density p

There exists a universal constant c s.t.

$$
\forall g: \ \zeta_p = \inf \frac{\mathbb{E}_p \left(\| \nabla g \|^2 \right)}{Var_p(g)} \ge c
$$

Thm. [Mazja, Cheeger; Buser; Ledoux] $\zeta_p \approx \psi_p^2$

Lipschitz concentration

Lipschitz function g on the sphere Levy's classical concentration:

$$
\Pr(|g(x) - \mathbb{E}_{S^{n-1}}(g)| \ge t) \le 2e^{-ct^2n}
$$

Thm. [Gromov-Milman] L-Lipschitz function g in R^n , isotropic logconcave density p,

$$
\Pr_{p}(|g(x) - \mathbb{E}(g)| > L \cdot t) \leq e^{-\Omega(t\psi_p)}
$$

Thm. [E. Milman] Concentration \Rightarrow KLS.

Entropy gaps and jumps

 $Ent(X) = -E(\log p(x))$. How random is a distribution? [Shannon-Stam] Entropy gap: equality only for Gaussian $X, Y \sim p:$ Ent $\left(\frac{X+Y}{\sqrt{2}}\right) \ge \text{Ent}(X)$

[Ball, Nguyen] Entropy gap jump. X, $Y \sim p$, $Z \sim N(0, I)$

$$
Ent\left(\frac{X+Y}{\sqrt{2}}\right) - Ent(X) \gtrsim \psi_p^2\big(Ent(Z) - Ent(X)\big)
$$

Connections: Geometry and Probability

Slicing conjecture: $L_p = p(0)^{1/n} = O(1)$

$$
\mathsf{thin\text{-}Shell\ conjecture:}\quad \sigma_p = \mathbb{E}\big(\|x\| - \sqrt{n}\big)^2 = O(1)
$$

Poincáre conjecture:
$$
\zeta_p = \inf_g \frac{\mathbb{E}_p(\|\nabla g\|^2)}{\text{Var}_p(g)} = \Omega(1)
$$

Generalized Levy concentration: Lipschitz f with $\mathbb{E}f = 0$, $\mathbb{P}(f(x) > t) = \exp(-\Omega(t)).$

KLS conjecture implies all:

$$
L_p \lesssim \sigma_p \lesssim \frac{1}{\sqrt{\zeta_p}} \approx \frac{1}{\psi_p}
$$

Connections: Algorithms

Sampling **Optimization** Volume Computation/Integration Learning

What is the complexity of computational problems as the dimension grows?

Dimension = number of variables

Typically, size of input is a function of the dimension.

Computational model

Well-guaranteed Membership oracle: Compact set K is given by a membership oracle: answers YES/NO to " $x \in K$?" a point $x_0 \in K$ Numbers r, R s.t. $x_0 + rB^n \subseteq K \subseteq RB^n$

Well-guaranteed Function oracle An oracle that returns $f(x)$ for any $x \in R^n$ A point x_0 with $f(x_0) \ge \beta$ Numbers r, R s.t.

$$
x_0 + rB^n \subset L_f\left(\frac{1}{8}\right)
$$
 and $R^2 = \mathbb{E}_f\left(\left|\left|X - \overline{X}\right|\right|^2\right)$

K

$$
\color{blue}\blacktriangleright
$$

Problem 1: Sampling

Input: function f: $R^n \to R_+$, $\int f < \infty$, specified by an

oracle, a point x, error parameter ε .
Output: A point y from a distribution within distance ε of distribution with density proportional to f.

Examples:
$$
f(x) = 1_K(x)
$$
, $f(x) = e^{-a||x||}1_K(x)$

Sampling metabolic networks

Given a metabolic network $S \in \mathbb{R}^{m \times n}$ on m metabolites and n reactions.

Find mass conserving flow $v \in \mathbb{R}^n$ with bounds $l, u \in \mathbb{R}^n$:

 $Sv = b$ $l \leq v \leq u$

Many possible v 's, which one to pick?

Sample over all possible values of $v!$

Dimension: 5000-100,000.

Analysis of metabolic networks

Sampling enables an unbiased study of all feasible metabolic flows

▶ Could optimize with respect to an objective function, but it is unclear if the human body acts like this

Can also compute the volume of the space!

- Price et al. (2004) analyze the human red blood cell metabolic network (dim=11)
- **They observe the volume of diseased patient's networks is** significantly lower.

How to Sample?

Ball walk: At x, -pick random y from $x + \delta B_n$ -if y is in K, go to y

Hit-and-Run: At x, -pick a random chord L through x -go to a random point y on L

Markov chains

State space K, next step distribution $P_u(.)$ associated with each point u in K. Stationary distribution Q, ergodic "flow" defined as

$$
\Phi(A) = \int_A P_u(K \backslash A) dQ(u)
$$

For a stationary distribution, we have $\Phi(A) = \Phi(K \backslash A)$ Conductance:

$$
\phi(A) = \frac{\int_A P_u(K \setminus A) dQ(u)}{\min Q(A), \ Q(K \setminus A)} \qquad \phi = \inf \phi(A)
$$

Thm. [LS93] Q_t : distribution after t steps

$$
M = \sup_{A \subset K} \frac{Q_0(A)}{Q(A)} \colon d_{TV}(Q_t, Q) \le \sqrt{M} \left(1 - \frac{\phi^2}{2}\right)^t
$$

$$
M = E_{Q_0}\left(\frac{Q_0(x)}{Q(x)}\right): d_{TV}(Q_t, Q) \le \epsilon + \sqrt{\frac{M}{\epsilon}} \left(1 - \frac{\phi^2}{2}\right)^t \ \forall \epsilon > 0
$$

Conductance

Consider an arbitrary measurable subset S.

Need to show that the escape probability from S is large.

(Smoothness of 1-step distribution) Points that do not cross over are far from each other i.e., nearby points have large overlap in 1-step distributions

(Isoperimetry) Large subsets have large boundaries

Convergence of ball walk

Theorem [KLS97]. The ball walk applied to an isotropic logconcave density p, from a warm start, converges in 2) and $\sum_{i=1}^{n} a_i$ \bar{p} / \bar{p} $\frac{1}{2}$ steps. Theorem [KLS97]. The ball walk applied to an isotropic
logconcave density p, from a warm start, converges in
 $O^*\left(\frac{n^2}{\psi_p^2}\right)$ steps.
"Cheeger constant of this Markov chain is determined by
Cheeger constant of its stat Theorem [KLS97].The ball walk applied to an is
logconcave density p, from a warm start, conver
 $O^*\left(\frac{n^2}{\psi_p^2}\right)$ steps.
"Cheeger constant of this Markov chain is deter
Cheeger constant of its stationary distribution"

Problem 2: Optimization

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .
Output: point y such that

 $f(y) \geq \max f - \epsilon$

Examples: max $c \cdot x$ s.t. $Ax \ge b$, min $||x||$ s.t. $x \in K$.

Optimization from membership

Sampling suggests a conceptually very simple algorithm.

Simulated Annealing [Kalai-V.04]

To optimize f consider a sequence $f_0, f_1, f_2, ...,$ with f_i more and more concentrated near the optimum. $f_i(x) = e^{-t_i \langle c, x \rangle}$

Corresponding distributions:

$$
P_{t_i}(x) = \frac{e^{-t_i \langle c, x \rangle}}{\int_K e^{-t_i \langle c, x \rangle} dx}
$$

Lemma. $E_{P_t}(c \cdot x) \leq \min c \cdot x + \frac{n}{t}$.

So going up to $t=\frac{n}{\epsilon}$ suffices to obtain an ϵ approximation.

Volume Computation

Given a measurable, compact set K in n-dimensional space and $\epsilon > 0$, find a number A such that:

$$
(1 - \epsilon) \text{ volume}(K) \le A \le (1 + \epsilon) \text{ volume}(K)
$$

K is given by

a point $x_0 \in K$, s.t. $x_0 + B_n \subseteq K \subseteq RB_n$

a membership oracle: answers YES/NO to " $x \in K$?"

Randomized Volume/Integration

[DFK89]. Polytime randomized algorithm that estimates volume to within relative error $(1 + \epsilon)$ with probability at least $1 - \delta$ in time poly(n, $\frac{1}{\epsilon}$, log $\left(\frac{1}{\delta}\right)$).

[Applegate-K91]. Polytime randomized algorithm to estimate integral of any (Lipshitz) logconcave function.

Progress on Volume Computation

Does it work?

[Cousins-V.13] Matlab implementation of a new algorithm

- "volume computation matlab"
- https://volumecomputation.wordpress.com/
- Incorporated into the COBRA toolbox for Systems Biology

Outline

- Original Motivation
- **Connections**
	- ▶ Probability and Geometry
	- Algorithms

Techniques

- **Localization**
- ▶ Stochastic Localization

Some open problems

Localization

Idea: Reduce inequalities in high dimension to inequalities in one dimension.

Isoperimetry via localization $3) \leq \frac{1}{p}$ min $p(x)$ $2d(S_1,S_2)$ min n(C) n(C) \overline{D} min $p(s_1), p(s_2)$

Write as 2 inequalities: $p(S_1) \leq p(S_2)$, $p(S_3) \geq \psi \cdot p(S_1)$

Let
$$
g(x) = f(x)(1_{S_2}(x) - 1_{S_1}(x))
$$
, $h(x) = f(x)(\psi \cdot 1_{S_1}(x) - 1_{S_3}(x))$

Then, need to show: $\int g \ge 0 \Rightarrow \int h \le 0$.

Suppose not, i.e., $\exists S_1, S_2, S_3$: $\int g \ge 0$, $\int h > 0$.

Idea:

- 1. No such counterexample in one dimension
- 2. If such a counterexample exists in some dimension, then it also exists in 1 dimension.

Localization Lemma [LS, KLS]

Lemma. Let $g, h: R^n \to R$ be integrable, lower semicontinuous functions. Suppose $\int g$, $\int h > 0$. Then, there exists an interval $[a, b] \subset R^n$ and a linear function $\ell: [0,1] \to R_+$ s.t.
 $\int_0^1 g((1-t)a + tb) \ell(t)^{n-1} dt > 0$
 $\int_0^1 h((1-t)a + tb) \ell(t)^{n-1} dt > 0.$

Localization lemma

 $g, h: R^n \to R$, $\int g, \int h > 0$.

- 1. Find a bisecting halfspace for one function
- 2. Show support of limit of bisections is an interval or a point.
- 3. The limit function has a concave profile
- 4. Reduce to linear cross-sectional profile.

[Fradelizi-Guédon] Extremal characterization and generalization to multiple inequalities.

Isoperimetry via localization

 $vol(S_1) \le vol(S_2) \Rightarrow vol(S_3) \ge \psi vol(S_1)$

 $g(x) = 1_{S_2}(x) - 1_{S_1}(x),$ $h(x) = \psi 1_{S_1}(x) - 1_{S_2}(x)$ Need to show: $\int g \ge 0 \Rightarrow \int h \le 0$.

Suppose not, i.e., for some partition, $\int g \ge 0$, $\int h > 0$.

Applying localization,

$$
\int_0^1 g\big((1-t)a + tb\big)\ell(t)^{n-1} \, dt > 0, \int_0^1 h\big((1-t)a + tb\big)\ell(t)^{n-1} \, dt > 0.
$$

Let $Z_i = \{t \in [0,1]: (1-t)a + tb \in S_i\}$, $F(t) = f((1-t)a + tb) \ell(t)^{n-1}$. Then this means that

 $\int_{Z_1} F \leq \int_{Z_2} F$, but $\int_{Z_3} F < \psi \, \int_{Z_1} F$, a l-d counterexample must exist.

One-dimensional isoperimetry

For any logconcave function:

$$
\int_{S_3} F \ge \frac{2d(S_1, S_2)}{D} \min \int_{S_1} F \, , \int_{S_2} F
$$

Suffices to show it for partition of into 3 intervals.

Without factor of 2, follows from unimodality! Therefore, same isoperimetric ratio holds in R^n .

Localization: many applications

Many other isoperimetric inequalities E.g. the KLS conjecture holds for a Gaussian restricted by any logconcave function.

Thm. For a density h proportional to $e^{\frac{-1}{2} \|x\|^2}f$ t_{HozH2} 2^{max} f $f(x)$ for any $\frac{2}{3}$ for any logconcave function f, we have $\psi_n \gtrsim \sqrt{t}$.

Analysis of [Cousins-V.2015] algorithm: Thm. Volume of a well-rounded convex body $(B \subseteq K \subseteq \tilde{O}(\sqrt{n}))$ can be computed in $O^*(n^3)$ steps!

Carbery-Wright anti-concentration of polynomials

Stochastic localization

Goal: Lower bound on expansion of subset S of measure ½. Idea: Apply hyperplane bisections randomly. Show measures of sets remain close to original. Prove isoperimetry for (hopefully) simpler distribution.

(I tried this for years, still think it might work \circledcirc) (I also think there will be world peace, and I will stop eating junk food tomorrow)

Meanwhile, Eldan: Apply infinitesimal linear reweighting in random direction to maintain expected value of density at each point. (I tried this for years, still think it might work \circledcirc)

(I also think there will be world peace, and I will stop eating junk food tomorrow)

Meanwhile, Eldan: Apply infinitesimal linear reweighting in

random directio

[Eldan2012] used this to prove that the thin-shell conjecture

Eldan's Stochastic Localization

The process starts with $p_0(x) = p(x)$ and maintains a density p_t at time t with mean $\mu_t = E_{p_t}(x)$.
The infinitesimal change is

$$
dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x)
$$

where dW_t is an infinitesimal Gaussian (Wiener process).

We can imagine this discretely as $p_{t+h}(x) = p_t(x) (1 + \sqrt{h}(x - \mu_t)^T W_t)$

where $W_t \sim N(0, I)$ is a standard Gaussian.

Stochastic localization apps

Thm [Eldan12]. Let $\sigma(n) = \sup \sigma_n$. Then, $\psi_p \gtrsim \frac{\log n}{\sigma(n)}$

Thm [LeeV16]. For any logconcave density p with covariance A: $\psi_p \gtrsim \frac{1}{Tr(A^2)^{1/4}}$

For isotropic logconcave p, $\psi_p \gtrsim n^{-1/4}$.

Thm [LeeV17]. Log-Sobolev constant of isotropic logconcave p with support of diameter D is . This bound is tight. The KLS constant

KLS theorem.

The KLS constant
\nKLS theorem.
\n
$$
\psi_p \ge \frac{1}{Tr(A)^{1/2}} = \frac{1}{\left(\sum_i \lambda_i(A)\right)^{1/2}}
$$
\nLeeV theorem.
\n
$$
\psi_p \ge \frac{1}{Tr(A^2)^{1/4}} = \frac{1}{\left(\sum_i \lambda_i(A)\right)^{1/4}}
$$

$$
\psi_p \gtrsim \frac{1}{Tr(A^2)^{1/4}} = \frac{1}{\left(\sum_i \lambda_i(A)^2\right)^{1/4}}
$$

KLS conjecture.

$$
\psi_p \gtrsim \frac{1}{\|A\|_{op}^{1/2}} = \frac{1}{\lambda_1(A)^{1/2}}
$$

Proof Strategy

 p_t is a martingale:

$$
E p_t = p_0
$$

Suffices to prove the theorem for p_t :

 $_{T}$) for "large" T.

 p_t has large Cheeger constant: $\psi_{p_T} \gtrsim \sqrt{T}$

Why does p_T have good expansion?

Localization

Stochastic localization

But's let's see it for real…

What is happening?

Really?

 \blacktriangleright

Emergence of Gaussian factor Emergence of Gaussian factor
 $dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x)$

We will see that:
 $d \log p_t(x) = (x - \mu_t)^T dW_t - \frac{1}{2} ||x - \mu_t||^2 dt$

Itô's lemma: $dX_t = \mu_t dt + \sigma_t dW_t \Rightarrow df(X_t) = \frac{df(X_t)}{dx} dX_t + \frac{1}{2} \frac{d^2 f(X_t)}{dx^2} \sigma_t^2 dt$

This is by Taylor expans

$$
dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x)
$$

We will see that:

$$
d \log p_t(x) = (x - \mu_t)^T dW_t - \frac{1}{2} ||x - \mu_t||^2 dt
$$

 $df(X_t)$ _{dV} $1 d^2 f(X_t)$ _{$\tau^2 d^2$} $\frac{f(X_t)}{dx}dX_t + \frac{1}{2}\frac{d^2f(X_t)}{dx^2}\sigma_t^2dt$ 2 dx^2 club $d^2f(X_t)$ $\sigma^2 dt$ $\frac{df(X_t)}{dx^2} \sigma_t^2 dt$

This is by Taylor expansion and noting that $(dW_t)^2 = dt.$ Applying this,

$$
d \log p_t(x) = \frac{dp_t(x)}{p_t(x)} - \frac{1}{2} \frac{(||x - \mu_t|| \cdot p_t(x))^{2}}{p_t(x)^{2}} dt
$$

= $(x - \mu_t)^T dW_t - \frac{1}{2} ||x - \mu_t||^{2} dt$
= $x^T (\mu_t dt + dW_t) - \frac{1}{2} ||x||^{2} dt + g(t)$

where the last term does not depend on x.

Therefore,

$$
p_t(x) \propto e^{x^T c_t - \frac{t}{2} ||x||^2} p(x) \quad \text{for} \quad dc_t = \mu_t dt + dW_t
$$

KLS is easy for Gaussianic distribution

KLS is easy for Gaussianic distribution
Thm [Bakry-Ledoux96, also Bobkov2000, Cousins-V. 2013 by localization]
For a density h proportional to $e^{-\frac{t}{2}||x||^2}f(x)$ for any logconcave function f, we
have $\psi_p \gtrsim \sqrt{t}$. For a density h proportional to $e^{-\frac{t}{2}\|x\|^2}f(x)$ for any logconcave $\frac{t}{2}||x||^2 f(x)$ for any logconcav for any logconcave function f, we have $\psi_p \gtrsim \sqrt{t}$.

Proof.

Apply localization lemma.

The resulting statement in 1-d is implied by the following Brascamp-Lieb inequality: the variance of a density given by a Gaussian times a logconcave function (in one dimension) is at most the variance of the Gaussian.

Recall that $p_t(x) \propto e^{x^2 c_t - \frac{1}{2}||x||}$ $x^T c_t - \frac{t}{2} \|x\|^2 n(x)$ has such a Gaussiz $\frac{t}{2} \|x\|^2$ $p(x)$ has such a Gaussi: has such a Gaussian part! Hence, $\psi_{p_t} = \Omega(\sqrt{t})$.

How long can we go?

 p_t is a martingale: $dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x)$

Let A_t be the covariance of p_t . . For any measurable subset E,

longale:
$$
dp_t(x) = (x - \mu_t)^T dW_t \cdot p_t(x)
$$

\nle covariance of p_t .
\nisurable subset E,
\n
$$
\frac{d}{dt} \int_E p_t(x) dx = \int_E (x - \mu_t)^T dW_t p_t(x) dx = \left(\int_E (x - \mu_t) p_t(x) dx \right)^T dW_t
$$
\nmeasure of E (or any subset) is also a martingale.

Hence, the measure of E (or any subset) is also a martingale.

How long can we go?\n
$$
p_{t} \text{ is a martingale: } dp_{t}(x) = (x - \mu_{t})^{T} dW_{t} \cdot p_{t}(x)
$$
\nLet A_{t} be the covariance of p_{t} .
\nFor any measurable subset E,
\n
$$
\frac{d}{dt} \int_{E} p_{t}(x) dx = \int_{E} (x - \mu_{t})^{T} dW_{t} p_{t}(x) dx = \left(\int_{E} (x - \mu_{t}) p_{t}(x) dx \right)^{T} dW_{t}
$$
\nHence, the measure of E (or any subset) is also a martingale.
\n
$$
Var \left(\frac{d}{dt} \int_{E} p_{t}(x) dx \right) = \left\| \int_{E} (x - \mu_{t}) p_{t}(x) dx \right\|_{2}^{2}
$$
\n
$$
\leq \max_{\|V\|_{2} \leq 1} \left(\int_{E} (x - \mu_{t})^{T} \cdot p_{t}(x) dx \right)^{2}
$$
\n
$$
\leq \max_{\|V\|_{2} \leq 1} \int_{E} ((x - \mu_{t})^{T} \cdot p_{t}(x) dx)
$$
\n
$$
= \|A_{t}\|_{op}
$$
\nAs long as $||A_{t}||_{op}$ is bounded, any set is approximately preserved.

Suffices to bound ψ for p_t Suffices to bound $\boldsymbol{\psi}$ for p_t
 $d_{p_t(x)} = (x - \mu_t)^T dW_t \cdot p_t(x)$

Thm [E. Milman09] To bound ψ it suffices to consider subsets of measure ½.

Suppose $\int_0^T ||A_t||_o \ dt \leq 0.01$ with constant probability. **Suffices to bound** ψ **for** p_t

Thm [E. Milman09] To bound ψ it suffices to consider subsets

Suppose $\int_0^T ||A_t||_o \ dt \le 0.01$ with constant probability.

Since $\mathbb{E}p_T = p_0$, we have that $p(\partial S) = 2\mathbb{E}p_0(\partial S)$

 $\int_0^T\lVert A_t\rVert_o\,\,\,dt\leq 0.01$ with constant probability.

Since $E p_T = p_0$, we have that

$$
\frac{p(\partial S)}{p(S)} = 2\mathbb{E}p_T(\partial S)
$$

\n
$$
\geq 2\psi_{p_T}\mathbb{E}(\min p_T(S), p_T(S^c))
$$

\n
$$
\geq \frac{2\psi_{p_T}}{4}\Pr\left(\frac{1}{4} < p_T(S) < \frac{3}{4}\right)
$$

\n
$$
= \Omega(\psi_{p_T}) = \Omega(\sqrt{T}).
$$

Need to keep the spectral norm of covariance small for as long as possible…

Bounding $||A_t||_{op}$

Back where we started?!

The stochastic process will give us some control.

We use the potential $\phi_t = Tr A_t^2$.
We will see that $Tr A_t^2 \le 2\phi_0$ when $t \le 1/\sqrt{\phi_0}$ with high probability.

Therefore, if $T \leq 0.001/\sqrt{\phi_0}$, we have $\int_0^T ||A_t||_{op} dt \leq 0.01$.

This gives $\psi_p \gtrsim \sqrt{T} \gtrsim (\text{Tr} A^2)^{-1/4}$. \blacktriangleright For isotropic p, this is $\psi_p\gtrsim n^{-1/4}.$

Bounding the largest eigenvalue $\phi_t = Tr A_t^2$ $2 \left(\frac{1}{2} \right)$ Bounding the largest eiger
 $\phi_t = \text{Tr} A_t^2$

Let's Itô it!
 $d\phi_t = 2E(x - \mu_t)^T A_t (x - \mu_t)(x - \mu_t)^T dW_t - 2\text{Tr} A_t^T dW_t$

$$
d\phi_t = 2E(x - \mu_t)^T A_t (x - \mu_t)(x - \mu_t)^T dW_t - 2Tr A_t^3 dt + E((x - \mu_t)^T (y - \mu_t))^3 dt
$$

= $\delta_t dt + v_t^T dW_t$

Lemma. For a logconcave density p,

• $\mathbb{E}(|x||^k) \le (2k)^k \mathbb{E}(|x||^2)^{k/2}$

$$
\cdot \quad \mathbb{E} \left[(x - \mu)^T (y - \mu) \right]^3 \lesssim \left(\text{Tr} A^2 \right)^{3/2}
$$

• $\|\mathbb{E}(x-\mu)(x-\mu)^T A(x-\mu)\| \lesssim \|A\|_{op}^{1/2} \cdot Tr A^2$ $^{1/2}$. Tr 4

Using this, $|\delta_t| \lesssim \phi_t^{3/2}$ and $\|v_t\| \lesssim \phi_t^{5/4}$

Therefore, $d\phi_t \lesssim \phi_t^{3/2}dt + \phi_t^{5/4}dW_t$ t uvr t $5/4$ $_{d14}$ ௧

Bounding the largest eigenvalue Bounding the largest eigenval
 $\phi_t = \text{Tr} A_t^2$

After Itôing,
 $d\phi_t \lesssim \phi_t^{3/2} dt + \phi_t^{5/4} dW_t$

Or
 $\phi_t \lesssim \phi_t^{3/2} t + \phi_t^{5/4} \sqrt{t}$

So $\phi_t \leq 2\phi_0$ for $t \lesssim 1/\sqrt{\phi_0}$

And for $T = c/\sqrt{\phi_0}$, we get:

 $\phi_t = Tr A_t^2$ $2 \left(\frac{1}{2} \right)$

After Itôing,

 $d\phi_t \lesssim \phi_t^{3/2} dt + \phi_t^{5/4} dW_t$

Or

$$
\phi_t \lesssim \phi_t^{3/2} t + \phi_t^{5/4} \sqrt{t}
$$

And for $T = c/\sqrt{\phi_0}$, we get:

$$
\int_0^T \|A_t\|_o \ dt \le \int_0^T \sqrt{\phi_t} \ dt \le \sqrt{2\phi_0} \cdot T \le 0.01.
$$

 $\theta_t = \text{Tr} A_t^2$

 $\phi_t = \text{Tr} A_t^2$

 $d\phi_t \le \phi_t^{3/2} dt + \phi_t^{5/4} dW_t$
 $\phi_t \le \phi_t^{3/2} t + \phi_t^{5/4} \sqrt{t}$

 ϕ_0 for $t \le 1/\sqrt{\phi_0}$
 $\phi_0 = c/\sqrt{\phi_0}$, we get:
 $\int_0^T ||A_t||_0 dt \le \int_0^T \sqrt{\phi_t} dt \le \sqrt{2\phi_0} \cdot T \le 0.01$.

 $\int_0^T ||A$ $\frac{1}{2} \le \phi_t^{3/2} dt + \phi_t^{5/4} dW_t$
 $\le \phi_t^{3/2} t + \phi_t^{5/4} \sqrt{t}$
 $\le \phi_t^{3/2} t + \phi_t^{5/4} \sqrt{t}$
 \cdot
 \cdot
 $\int_0^T \sqrt{\phi_t} dt \le \sqrt{2\phi_0} \cdot T \le 0.01.$

t stays balanced up to time $T = c/\sqrt{\phi_0}$ and the lower bound on expansion So the measure of the subset stays balanced up to time $T = c/\surd\phi_0$ and the lower bound on expansion is

$$
\Omega\left(\sqrt{T}\right) \gtrsim \left({\rm Tr} A^2\right)^{-1/4}
$$

(This is $\gtrsim n^{-1/4}$ for isotropic p.)

An improved concentration inequality

Thm. [Paouris2006]. For an isotropic logconcave p,

$$
\Pr(||x|| - \sqrt{n} > c \cdot t) \le e^{-t}
$$

Best possible when $t \geq \sqrt{n}$. [Guédon-E. Milman]: RHS is $\exp(-\text{m})$ $3¹$ [Guédon-E. Milman]: RHS is $\exp(-\min(\frac{t}{n}, t)).$
[Lee-V. 2017] RHS is $\exp(-\min(\frac{t^2}{n}, t))$

[Lee-V. 2017] RHS is $\exp(-\min(\frac{t^2}{\sqrt{n}}, t))$

Thm. For any isotropic logconcave p, and any Lipschitz function g, $Pr(|g(x) - \bar{g}| > c \cdot t) \leq 2e^{-\frac{t^2}{t + \sqrt{n}}}$

Outline

- Original Motivation
- **Connections**
	- ▶ Probability and Geometry
	- Algorithms
- **Techniques**
	- **Localization**
	- **Stochastic Localization**
- Some open problems

Deterministic Polytope Volume

Can we estimate the volume of an explicit polytope in deterministic polynomial time?

Lower bound for Sampling

KLS says complexity of sampling from a warm start is n^2 . Is this the best possible?

Faster isotropy and sampling

Isotropic transformation/rounding is the bottleneck for faster general volume computation/sampling.

Candidate algorithm:

Repeat:

1.Estimate the covariance of the standard Gaussian density restricted to the current convex body.

2.If the covariance has eigenvalues smaller than some constant, apply a transformation to make it identity.

a well-rounded body.

Faster isotropy and sampling

Per-step arithmetic complexity: n^2 .
Coordinate Hit-and-Run. Could be faster by a factor of n in the per-step complexity.

But is it rapidly mixing? n^3?!

Manifold KLS

Thm. [Lee-V. 2017] Let K be a convex body and $\phi: K \to R$ be a convex function with a convex Hessian. Let d be the distance in the Riemannian metric defined by the Hessian. Then, for any partition of K into subsets S_1 , S_2 , S_3 ,

$$
\frac{\int_{S_3} e^{-\alpha \phi(x)} dx}{\min \int_{S_1} e^{-\alpha \phi(x)} dx, \int_{S_2} e^{-\alpha \phi(x)} dx} \gtrsim \sqrt{\alpha} d(S_1, S_2)
$$

In other words, this Gibbs distribution satisfies a manifold KLS! $\phi(x) = ||x||^2$ and Euclidean metric d is the special case of KLS for a Gaussian restricted to a convex body.

What are further generalizations?

Needle decompositions

Used by [Bobkov]; also [Chandrasekaran-Dadush-V.] Apply hyperplane cuts to get a needle decomposition Maintain relative measure of subset S.

Show that a positive fraction of needles have bounded variance.

Conclude KLS!

