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The Kannan-Lovasz-Simonovits Conjecture

Yin Tat Lee (U. Washington) and Santosh S. Vempala (Georgia Tech)




Thank Youl!



An exercise

Lemma. For isotropic logconcave p: IEx,y,vp(x, y)y3 < ntd
Proof.

3/2
B pBy 6 I S By (By o, 7)?)
= Eyp ||

S (Epopllxll2)’?

_ 15

Exercise. Prove a better bound.



[soperimetry

Isoperimetric Ratio/Cheeger Constant/Expansion of a function p:

Y, = min _p(aS)
P S:p(S)s% p(S)

Q.What is the Cheeger constant of the Gaussian distribution?

A.The isoperimetric ratio of a halfspace through its centroid: \/%




[soperimetry

Isoperimetric Ratio/Cheeger Constant/Expansion:

Y, = min @
OO " spwsg PO

Can be arbitrarily small...
Structured distributions?

Logconcave function: f(Ax + (1 — 1)y) = f(x)*f(y)1=4
(nonnegative function whose logarithm is concave)

Common generalization of Gaussians and indicators of convex sets.

[ —

Halfspace cuts do not have to be the minimal ones, but...



The Conjecture

Isoperimetric Ratio/Cheeger Constant/Expansion:

Y, = min _p(aS)
P spsst PS)

Logconcave function: f(Ax + (1 — 1)y) = f(x)*f(y)1~4

Conjecture: For any logconcave density in any dimension, halfspaces
minimize the isoperimetric ratio up to an absolute universal constant.



YTLT

KLS Theorem

Thm [LS, DF] p(3S) = = min(p(S), p(5°))

(special case of isoperimetry for Riemannian manifolds with nonnegative curvature)

R

A=E,((x —x)(x — %)) : covariance matrix of p
R? = E,(llx — %|*) = Tr(4) = ¥; 4;(4)

Thm. [KLS95]. For any logconcave density,
€ c D
p(35) = = min(p(S), p(5)).

(note: isotropic distribution has A =1. So,y, = \/% for isotropic p)
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YTL1 Draw D and RA2?
Yin Tat Lee, 11/14/2017



KLS Theorem and Conjecture

A = covariance matrix of p

R? = By(Ilx = 2I1?) = Tr(4) = ) 2,(4)

Cc Cc . .
Thm. [KLS95]. ¢, = T I for isotropic p.
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An algorithmic problem: Sampling

Given convex body K, generate uniform random point in K.

K specified by a “well-guaranteed” membership oracle:
» Xo,7,R:xyg +7B, € K € RB,
» An oracle that answers YES/NO to x € K?

Related problems we will see later:

» Compute the volume of K

» Minimize a convex function over K



Sampling with the ball walk

At x, pick random y from x + 6B,,,
if yisin K, go toy.

Approaches the uniform distribution over K.
Rate of convergence!
Cheeger constant of Markov chain...

. vol(0S)
Yk = i )90l GY)

Thm. [KLS97]

Y : n?
Mixing time of the ball walk from a warm start is O* (1,0_2)
K



Connections [: Geometry and Probability

The KLS conjecture has very interesting consequences,
many of which were conjectured independently and earlier.

Slicing/small ball probability
Thin shell/Central Limit theorem
Poincare/Lipschitz Concentration



The Slicing conjecture: anti-concentration

Convex body of volume one has a hyperplane section of volume at least some
constant.

\/

WL(%) 2 cvoL (O) ?
Equivalently: for any isotropic logconcave density f,
L, = f(0)Y™ =0(1).
(Paouris) Slicing implies Pr(||x||, < eyn) < (Ce)™
(Ball) KLS => Slicing
(Klartag; Bourgain) L, < n'/*



YTL2

The Thin-shell conjecture: a CLT

For X from any isotropic logconcave distribution p,

Var, (||X||2) = 0(n)

or o = B, ((|IX1] - v)") = o) =

“Most of an isotropic logconcave distribution is contained in an

annulus of constant thickness.’

KLS => thin-shell. In fact, g, S —

Yp
Thm [Eldan-Klartag]. L, < o,



Slide 14

YTL2 You never defined sigma_p and L_p
Yin Tat Lee, 11/14/2017



The Thin-shell conjecture: a CLT

X from any isotropic logconcave distribution, o(1)
2
IE<(||X|| —\/n) ) =0(1)
- 1
o < —
p wp F\

[Eldan-Klartag]. L, < sup oy,
p

CLT: Most marginals are approximately Gaussian.

For an isotropic convex body K, let gg(s) = vol(K N {x:xT6 = s})
Then,

S8+ 1/)_\/;}) >1—nexp (—Q((Szn))

t t
Pr <{9 € S"‘l:mtax j_oo go(s) — j_ooy(s)




Progress on the thin-shell bound

Year/Authors bound on g,
2006/Klartag -

logn

, : (loglog n)?

2006/Fleury-Guedon-Paouris Jn——r— ogl/en
2006/Klartag n2/5
2010/Fleury n3/8
201 1/Guédon-E. Milman nl/3
2016/Lee-Vempala nl/4



Poincare Conjecture

Smooth function g
Isotropic logconcave density p

There exists a universal constant c s.t.

E,(lIVgll?) .
Var,(g)

Vg: ¢, =inf

Thm. [Mazja,Cheeger; Buser; Ledoux] {, = ;



Lipschitz concentration

Lipschitz function g on the sphere
Levy’s classical concentration:

Pr(‘g(x) — Esn—l(g)‘ > t) < 2e~ct’n

Thm.[Gromov-Milman] L-Lipschitz function g in R",
isotropic logconcave density p,

Pr(lg(x) —E(g)l > L-t) < e~ Mt¥p)

Thm. [E. Milman] Concentration = KLS.



Entropy gaps and jumps

Ent(X) = —E(logp(x)). How random is a distribution?
[Shannon-Stam] Entropy gap: equality only for Gaussian

Y
) > Ent(X)

X+
X, Y ~p: Ent NG

[Ball, Nguyen] Entropy gap jump.X,Y ~p, Z ~ N(O,I)

Ent (X\;%Y> — Ent(X) = ¢3(Ent(Z) — Ent(X))



Connections: Geometry and Probability

Slicing conjecture: L, = p(0)Y/" = 0(1)

Thin-Shell conjecture: g, = IE(||x|| — \/ﬁ)z =0(1)

- : . Ep(llvgll?
Poincare conjecture:  {,, = inf vl )

= (1
g Varp(g) ()

Generalized Levy concentration:
Lipschitz f with Ef = 0, P(f(x) > t) = exp(—Q(t)).




Connections: Algorithms

Sampling

Optimization

Volume Computation/Integration
Learning

What is the complexity of computational problems as the
dimension grows!

Dimension = number of variables

Typically, size of input is a function of the dimension.



Computational model

Well-guaranteed Membership oracle:
Compact set K is given by

a membership oracle: answers YES/NO to “x € K?7"
a point xo € K

Numbers r,R s.t. xo +rB™" € K € RB"

Well-guaranteed Function oracle

An oracle that returns f(x) for any x € R"
A point x, with f(xg) = B
Numbers r, R s.t.



Problem 1: Sampling

Input: function f: R® - R,, | f < oo, specified by an
oracle, a point X, error parameter €.

Output: A point y from a distribution within distance ¢
of distribution with density proportional to f.

Examples: f(x) = 1x(x), f(x) = e‘a“x”lK(x)




Sampling metabolic networks

Given a metabolic network S € R™*™ on m metabolites
and n reactions.

Find mass conserving flow v € R™ with bounds [,u € R":

Sv=>b &

[<v<u v, ©

O &

Many possible v’s, which one to pick? " @

» Sample over all possible values of v!

Dimension: 5000-100,000.



Analysis of metabolic networks

Sampling enables an unbiased study of all feasible metabolic
flows

» Could optimize with respect to an objective function, but it is
unclear if the human body acts like this

Can also compute the volume of the space!

» Price et al. (2004) analyze the human red blood cell metabolic
network (dim=11)

» They observe the volume of diseased patient’s networks is
significantly lower.



How to Sample?

Ball walk:

At X,
-pick random y from x + 0B, ‘ g

-ifyisin K,gotoy

Hit-and-Run:

At X, L
-pick a random chord L through x

-go to a random pointy on L



Markov chains

State space K, next step distribution P, (. ) associated with each point u in K.
Stationary distribution Q, ergodic “flow” defined as

B (4) = j PL(K\A)AQ ()
A

For a stationary distribution, we have ®(4) = ®(K\A)
Conductance:

J, Pa(K\A)YAQ (u)
min Q(4), Q(K\A)

¢(A) = ¢ = inf p(4)

Thm. [LS93] Q;: distribution after t steps

QoA ¢\
M = sup 0 dry(Q: Q) < \W<1 ——)

M 2\
=50 (2D a0z s [1(1-2) v




Conductance

Consider an arbitrary measurable subset S.

5

Need to show that the escape probability from S is large.

(Smoothness of |-step distribution) Points that do not cross over are far from
each other i.e., nearby points have large overlap in |-step distributions

(Isoperimetry) Large subsets have large boundaries



Convergence of ball walk

Theorem [KLS97].The ball walk applied to an isotropic
logconcave density p, from a warm start, converges in

2
0" (Z;—z%> steps.

“Cheeger constant of this Markov chain is determined by
Cheeger constant of its stationary distribution”



Problem 2: Optimization

Input: function f: R — R specified by an oracle,

point X, error parameter € .

Output: point y such that

f(y) 2 maxf —e

Examples: maxc-xs.t.Ax = b, min“xl‘ s.t.x € K.



Optimization from membership




Simulated Annealing [Kalai-V.04]

To optimize f consider a sequence fy, f1, f2, )
with f; more and more concentrated near the optimum.

ﬁ(x) — e_ti (C,.'X,')

Corresponding distributions:
e—ti(c,x)

Py, (x) = fK e—ti{c.X) dy

. n
Lemma. Ep (c-x) < minc-x + —

: n_ o . L
So goingup to t = . suffices to obtain an € approximation.



Volume Computation

Given a measurable, compact set K in n-dimensional space and
€ > 0, find a number A such that:

(1 —€¢)volume(K) < A4 < (1+ €) volume(K)

K is given by
apointxg € K,s.t. xo + B, €K € RB,

a membership oracle: answers YES/NO to “x € K? "




Randomized Volume /Integration

[DFK89]. Polytime randomized algorithm that estimates
volume to within relative error (1 + €) with probability at

o 1 1
least 1 — & in time poly(n,z, log (E))'

[Applegate-K91]. Polytime randomized algorithm to
estimate integral of any (Lipshitz) logconcave function.



Progress on Volume Computation

Power New aspects

Dyer-Frieze-Kannan 89 23 everything
Lovasz-Simonovits 90 |16 localization

Applegate-K 90 10 logconcave integration

L 90 10 ball walk

DF 91 8 error analysis

LS 93 7 multiple improvements
KLS 97 5 speedy walk, isotropy
LV 03,04 4 annealing, isoperimetry
LV 06 4 integration, local analysis
Cousins-V. |5 (well-rounded) 3 Gaussian cooling



Does it work?

[Cousins-V.13] Matlab implementation of a new algorithm
» “volume computation matlab”

» https://volumecomputation.wordpress.com/

» Incorporated into the COBRA toolbox for Systems Biology
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Localization

ldea: Reduce inequalities in high dimension to inequalities in
one dimension.



[soperimetry via localization

2d(S4,S ;
p(S3) = 225252 in p(5)), p(Sy)

Write as 2 inequalities: p(S1) < p(S3), p(S3) =Y - p(Sy) /2
Let g(x) = f(x)(15,(x) — 15, (%)), h(x) = f)(@ - 15, (x) — 15, (x))
Then,need toshow: [ g > 0= [ h < 0.

Suppose not, i.e., 35;,5,,53: [ g=0,f/ h > 0.

|dea:
No such counterexample in one dimension

If such a counterexample exists in some dimension, then it also exists in |
dimension.



Localization Lemma [LS, KLS]

Lemma. Let g, h: R™ = R be integrable, lower semi-

continuous functions. Suppose | g, | h > 0.Then, there
exists an interval [a, b] € R™ and a linear function

£:10,1] - R, s.t.
1
] g(1=0a+th)(@®)"1dt >0
0

1
j h((1 —t)a+th)e(t)" 1 dt > 0.
0




Localization lemma

Find a bisecting halfspace for one function

Show support of limit of bisections is an interval or a
point.
The limit function has a concave profile

Reduce to linear cross-sectional profile.

[Fradelizi-Guedon] Extremal characterization and
generalization to multiple inequalities.



[soperimetry via localization

vol(S;) < vol(S,) = vol(S3) = Y vol(S;)

gx) =15,(x) — 15 (x), h(x) =9 1g, (x) — 1, (x)
Need to show: [ g > 0= [ h < 0.
Suppose not, i.e., for some partition, [ g = 0, [ h > 0.

Applying localization,

1 1
j g((1=a+th)e(®)"dt >0, J h((1 —t)a +th)£(t)" 1 dt > 0.
0 0

let Z;, ={t € [01]: (1 —t)a+th € S;}, F(t) = f((1 — )a + th)£()* L.
Then this means that
leF < fzz F, but fz3 F <y le F, a |-d counterexample must exist.



One-dimensional isoperimetry

For any logconcave function:

2d(S+, S
sz (12)minjF,jF
53 D Sl SZ

Suffices to show it for partition of into 3 intervals.

-
M,

Without factor of 2, follows from unimodality!
Therefore, same isoperimetric ratio holds in R".




Localization: many applications

Many other isoperimetric inequalities

E.g. the KLS conjecture holds for a Gaussian restricted by any
logconcave function.

t
Thm. For a density h proportional to e_EHx”zf(x) for any

logconcave function f, we have ¢, = Vt.

Analysis of [Cousins-V.2015] algorithm:

Thm. Volume of a well-rounded convex body (B € K S 0(y/n))
can be computed in 0*(n3) steps!

Carbery-Wright anti-concentration of polynomials



Stochastic localization

Goal: Lower bound on expansion of subset S of measure -.

|dea: Apply hyperplane bisections randomly. Show measures of
sets remain close to original. Prove isoperimetry for (hopefully)
simpler distribution.

(I tried this for years, still think it might work ©)
(I also think there will be world peace, and | will stop eating junk food tomorrow)

Meanwhile, Eldan: Apply infinitesimal linear reweighting in
random direction to maintain expected value of density at each
point.

[Eldan2012] used this to prove that the thin-shell conjecture
implies the KLS constant up to a logn factor.



Eldan's Stochastic Localization

The process starts with py(x) = p(x) and maintains a
density p; at time t with mean u, = E, (x).

The infinitesimal change is
dpe(x) = (x — pe) " dW; - pe(x)
where dW; is an infinitesimal Gaussian (Wiener process).

We can imagine this discretely as
Pern(0) = pe () (1 + VR(x — u)™W, )
where W, ~ N (O, ) is a standard Gaussian.



Stochastic localization apps

Thm [Eldan|2]. Let o(n) = sup g,,. Then,
p

~ logn
P o(n)

Thm [LeeV16]. For any logconcave density p with covariance A:
1

=
l/)P ~ TT(A2)1/4

For isotropic logconcave p, ), = n~1/4,

Thm [LeeV17]. Log-Sobolev constant of isotropic logconcave p
with support of diameter D is [|*KnexttalkX|]. This bound is tight.



The KLS constant




Proof Strategy

Suffices to prove the theorem for p;:
Y, = Q(y,) for “large” T.

p: has large Cheeger constant:
Yp. NT



Why does pr have good expansion?

Localization

Stochastic localization

But’s let’s see it for real...
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2

mergence of Gaussian factor

dp(x) = (x — Ht)Tth - pe(x)
We will see that:

1
dlogp.(x) = (x — p)"dW, — 5 llx — uell*dt

ldzf(X

) 2
_ dxzt ofdt

166 lemma: dX, = pedt + o dW, = df(X,) = L2 gx, +

This is by Taylor expansion and noting that (dW,)? = dt.
Applying this,
2
dp () 1(llx = el - pe(x))
pe(x) 2 pe(x)?
T 1 2
= (x — ug)" dW; _E”x — uell*dt

dlogp:(x) = dt

1
= x" (uedt + dW,) — > Ix]I?dt + g(t)

where the last term does not depend on x.
Therefore,



KLS is easy for Gaussianic distribution

Thm [Bakry-Ledoux96, also Bobkov2000, Cousins-V. 2013 by localization]

For a den5|ty h proportional to e I f (x) for any logconcave function f, we

have l/)p = +/t.

Proof.
Apply localization lemma.

The resulting statement in |-d is implied by the following Brascamp-Lieb
inequality: the variance of a density given by a Gaussian times a logconcave
function (in one dimension) is at most the variance of the Gaussian.

Recall that p;(x) o e* Ter—3lxll?

Hence, ¥, = Q(Vt).

p(x) has such a Gaussian part!



How long can we go?

p¢ is a martingale: dp,(x) = (x — u)TdW, - p.(x)

Let A; be the covariance of p;.
For any measurable subset E,

d T
dtjpt(x)dx - j(x — )" dWype (x)dx = <j (x — ,Ut)Pt(x)dx> dW;

Hence, the measure of E (or any subset) is also a martingale.

2
d
rer <% Lpt(X)dx) - E(x — ue)pe(x)dx
||<||2<1 (f( —u)'g- zz)t(ac)dx)2
||(|| <1f (( _:ut) () Pt (X)dx
= 1 4¢llop

As long as |[A;]lop is bounded, any set is approximately preserved.



Suffices to bound Y for p;

Thm [E. Milman09] To bound ) it suffices to consider subsets of measure 5.

Suppose f()TllAtllo dt < 0.01 with constant probability.

Since Epr = pg, we have that

@ = 2Epr(0S)

p(S)
> 2y, E(min pr(S), pr(5°))

29, (1 3
> — —
e Pr<4<pT(S)<4>

= Q(‘l’pr) = (‘/T)

Need to keep the spectral norm of covariance small for as long as possible...



Bounding [[4|[,p

Back where we started?!

The stochastic process will give us some control.
We use the potential ¢, = TrAZ.

We will see that Tr4? < 2¢, when t S 1/,/¢, with high
probability.

Therefore, if T < 0.001/,/$o, we have [ [l4;]lopdt < 0.01.

This gives 1, = VT = (Trd2) /"

» For isotropic p, this is Y, < n~1/4,



Bounding the largest eigenvalue

Let’s Ito it!
dope = 2E(x — pe)"Ae(x — pe) (x — )" dW, — 2TrAZdt + E((x — )" (v — ue))3dt
= Stdt —+ v{th

Lemma. For a logconcave density p,
E (JlxI1%) < @R)*E(lIxlI2)"?
E|(x - )" (v - Wl s (Tra?)
IEG — ) (x — T ACGx — | < 14117 - Tra?

3/2

Using this, 16;] < qbf/z and ||v¢]| S ¢f/4

Therefore, dop; < qbf/zdt + qbf”th



Bounding the largest eigenvalue

After Itoing,
do, s ¢ dt + ¢;/*dw,

Or
3/2

e .
So ¢y < 2¢ fort < 1/,\/Pg
And for T = c/\/ ¢y, we get:

[ 1A, dt < [\ dt < J2¢, - T < 0.01.
So the measure of the subset stays balanced up to time T = c/\/cﬁTO and the lower bound on expansion
is
Q(VT) = (Traz) ™"
(This is = n~1/* for isotropic p.)



An improved concentration inequality

Thm. [Paouris2006]. For an isotropic logconcave p,
Pr(llx]| —vn>c-t) <e™t
Best possible when t = \/n.
3
[Guédon-E. Milman]: RHS is exp(— min(=, t)).

: . t?
[Lee-V.2017] RHS is exp(— mln(\/—ﬁ, t))

Thm. For any isotropic logconcave p, and any Lipschitz function g,
t2
Pr(lg(x) — gl >c-t) <2e t+Vn
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Deterministic Polytope Volume

Can we estimate the volume of an explicit polytope in
deterministic polynomial time!?

Ax <D




Lower bound for Sampling

KLS says complexity of sampling from a warm start is n?.
Is this the best possible!?



Faster isotropy and sampling

Isotropic transformation/rounding is the bottleneck for faster general
volume computation/sampling.

Candidate algorithm:

Repeat:

1.Estimate the covariance of the standard Gaussian density restricted to
the current convex body.

2.If the covariance has eigenvalues smaller than some constant, apply a
transformation to make it identity.

T [

Conjecture [Cousins-V.]. This algorithm terminates in O(log n) iterations with
a well-rounded body.




Faster isotropy and sampling

Per-step arithmetic complexity: n“.

Coordinate Hit-and-Run. Could be faster by a factor of n in
the per-step complexity.

But is it rapidly mixing? n3?!



Manifold KLS

Thm. [Lee-V.2017] Let K be a convex body and ¢o: K — R be a
convex function with a convex Hessian. Let d be the distance in
the Riemannian metric defined by the Hessian. Then, for any
partition of K into subsets S5, S5, S3,

e —CZQb(.X') dx

S3 =
= vad(S4,S
min fSl €_a¢(x)dX,fSZ e—aP(x) dy \/_ ( 1 2)

In other words, this Gibbs distribution satisfies a manifold KLS!

@ (x) = ||x||* and Euclidean metric d is the special case of KLS
for a Gaussian restricted to a convex body.

What are further generalizations!?



Needle decompositions

Used by [Bobkov]; also [Chandrasekaran-Dadush-V.]
Apply hyperplane cuts to get a needle decomposition
Maintain relative measure of subset S.

Show that a positive fraction of needles have bounded
variance.

Conclude KLS!




