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Thank You!



An exercise

Lemma. For isotropic logconcave : 

Proof. 

Exercise. Prove a better bound. 



Isoperimetry
Isoperimetric Ratio/Cheeger Constant/Expansion of a function p:

𝜓௣ = min
ௌ:௣ ௌ ஸ

ଵ
ଶ

   
𝑝 𝜕𝑆

𝑝 𝑆

Q. What is the Cheeger constant of the Gaussian distribution?

A. The isoperimetric ratio of a halfspace through its centroid: 
ଶ

గ

In fact for any 0 < 𝑡 < 1, the subset of measure 𝑡 with minimum surface area is a halfspace! 



Isoperimetry
Isoperimetric Ratio/Cheeger Constant/Expansion:

௣
ௌ:௣ ௌ ஸ

ଵ
ଶ

Can be arbitrarily small…
Structured distributions?

Logconcave function: ఒ ଵିఒ

(nonnegative function whose logarithm is concave)  

Common generalization of Gaussians and indicators of convex sets.

Halfspace cuts do not have to be the minimal ones, but…



The Conjecture
Isoperimetric Ratio/Cheeger Constant/Expansion:

௣
ௌ:௣ ௌ ஸ

ଵ
ଶ

Logconcave function: ఒ ଵିఒ

Conjecture: For any logconcave density in any dimension, halfspaces 
minimize the isoperimetric ratio up to an absolute universal constant.



KLS Theorem
Thm [LS, DF] 

ଶ

஽
௖

(special case of isoperimetry for Riemannian manifolds with nonnegative curvature)

௣
் : covariance matrix of 

ଶ
௣

ଶ
௜௜

Thm. [KLS95]. For any logconcave density,  

௖

(note:  isotropic distribution has  ௣
௖

௡
for isotropic p)
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KLS Theorem and Conjecture

covariance matrix of 

Thm. [KLS95].   .

Conj. [KLS95].    
భ
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An algorithmic problem: Sampling

Given convex body K, generate uniform random point in K.

K specified by a “well-guaranteed” membership oracle: 
 ଴ : ଴ ௡ ௡

 An oracle that answers YES/NO to 

Related problems we will see later: 
 Compute the volume of K
 Minimize a convex function over K



Sampling with the ball walk
At , pick random from ,

if is in , go to .

Approaches the uniform distribution over K.
Rate of convergence?
Cheeger constant of Markov chain…

Thm. [KLS97]

Mixing time of the ball walk from a warm start is 
మ

಼
మ .

௄
ௌ

௩௢௟(డௌ)

୫୧୬ (௩௢௟ ௌ ,௩௢௟ ௌ೎ )



Connections I: Geometry and Probability

The KLS conjecture has very interesting consequences, 
many of which were conjectured independently and earlier.

Slicing/small ball probability
Thin shell/Central Limit theorem
Poincáre/Lipschitz Concentration



The Slicing conjecture: anti-concentration
Convex body of volume one has a hyperplane section of volume at least some 
constant.

Equivalently: for any isotropic logconcave density 

௣
ଵ/௡

(Paouris) Slicing implies ଶ
௡

(Ball) KLS => Slicing
(Klartag; Bourgain) ௣

ଵ/ସ



The Thin-shell conjecture: a CLT
For X from any isotropic logconcave distribution ,

or 

“Most of an isotropic logconcave distribution is contained in an 
annulus of constant thickness.”

KLS => thin-shell. In fact, 
೛

Thm [Eldan-Klartag].  

YTL2
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The Thin-shell conjecture: a CLT
X from any isotropic logconcave distribution,

ଶ

௣
௣

[Eldan-Klartag].  ௣
௣

௣

CLT: Most marginals are approximately Gaussian. 
For an isotropic convex body K, let ఏ

்

Then, 

Pr 𝜃 ∈ 𝑆௡ିଵ: max
௧

න 𝑔ఏ 𝑠 − න 𝛾 𝑠
௧

ିஶ

௧

ିஶ

≲ 𝛿 +
𝜓௄

𝑛
≥ 1 − 𝑛 exp −Ω 𝛿ଶ𝑛  



Progress on the thin-shell bound 

Year/Authors                                                          bound on ௣

2006/Klartag                                                             
௡

୪୭୥ ௡

2006/Fleury-Guédon-Paouris
୪୭୥୪୭୥ ௡ మ

୪୭୥భ/ల௡

2006/Klartag ଶ/ହ

2010/Fleury ଷ/଼

2011/Guédon-E. Milman ଵ/ଷ

2016/Lee-Vempala ଵ/ସ



Poincáre Conjecture 

Smooth function g
Isotropic logconcave density p
There exists a universal constant c s.t.

Thm. [Mazja,Cheeger; Buser; Ledoux]    



Lipschitz concentration
Lipschitz function g on the sphere
Levy’s classical concentration: 

೙షభ
మ

Thm.[Gromov-Milman] L-Lipschitz function g in , 
isotropic logconcave density p,

೛

Thm. [E. Milman] Concentration KLS.



Entropy gaps and jumps

. How random is a distribution?
[Shannon-Stam]  Entropy gap: equality only for Gaussian

[Ball, Nguyen] Entropy gap jump. 



Connections: Geometry and Probability
Slicing conjecture:

Thin-Shell conjecture:

Poincáre conjecture:     ೛
మ

೛

Generalized Levy concentration:
Lipschitz with , 

KLS conjecture implies all:        
೛ ೛



Connections: Algorithms
Sampling
Optimization
Volume Computation/Integration
Learning

What is the complexity of computational problems as the 
dimension grows?

Dimension = number of variables

Typically, size of input is a function of the dimension.



Computational model
Well-guaranteed Membership oracle:
Compact set K is given by 
a membership oracle: answers YES/NO to “
a point ଴

Numbers r, R s.t. ଴
௡ ௡

Well-guaranteed Function oracle
An oracle that returns for any ௡

A point ଴ with ଴

Numbers r, R s.t. 

଴
௡

௙
ଵ

଼
and ଶ

௙

ଶ



Problem 1: Sampling

Input: function f: , specified by an 
oracle, a point x, error parameter . 

Output:  A point y from a distribution within distance 
of distribution with density proportional to f.

Examples:  



Sampling metabolic networks

Given a metabolic network on metabolites 
and reactions.
Find mass conserving flow with bounds :

Many possible ’s, which one to pick?
 Sample over all possible values of !

Dimension: 5000-100,000. 

𝑣ସ

𝑣ଷ

𝑣ଵ

𝑣ଶ

𝑣ହ



Analysis of metabolic networks

Sampling enables an unbiased study of all feasible metabolic 
flows

 Could optimize with respect to an objective function, but it is 
unclear if the human body acts like this

Can also compute the volume of the space!
 Price et al. (2004) analyze the human red blood cell metabolic 

network (dim=11)
 They observe the volume of diseased patient’s networks is 

significantly lower.



How to Sample?

Ball walk:
At x,  
-pick random y from 
-if y is in K, go to y

Hit-and-Run:
At x, 
-pick a random chord L through x
-go to a random point y on L



Markov chains
State space K , next step distribution ௨ associated with each point u in K.
Stationary distribution Q,  ergodic “flow” defined as

௨
஺

For a stationary distribution, we have
Conductance:

௨஺

Thm. [LS93] ௧: distribution after t steps

஺⊂௄

଴
்௏ ௧

ଶ ௧

ொబ

଴
்௏ ௧

ଶ ௧



Conductance
Consider an arbitrary measurable subset S.

Need to show that the escape probability from S is large.

(Smoothness of 1-step distribution) Points that do not cross over are far from 
each other i.e., nearby points have large overlap in 1-step distributions

(Isoperimetry) Large subsets have large boundaries



Convergence of ball walk

Theorem [KLS97]. The ball walk applied to an isotropic 
logconcave density p, from a warm start, converges in 

మ

೛
మ steps.  

“Cheeger constant of this Markov chain is determined by 
Cheeger constant of its stationary distribution”



Problem 2: Optimization

Input: function f: specified by an oracle, 
point x, error parameter . 

Output: point y such that  

Examples:  



Optimization from membership
Sampling suggests a conceptually very simple algorithm.



Simulated Annealing [Kalai-V.04]

To optimize consider a sequence 
with more and more concentrated near the optimum.

೔

Corresponding distributions: 

೔

೔

೔

Lemma. 
೟

.

So going up to suffices to obtain an approximation.



Volume Computation
Given a measurable, compact set K in n-dimensional space and 

, find a number A such that:

K is given by 

a point , s.t.  

a membership oracle: answers YES/NO to “



Randomized Volume/Integration

[DFK89]. Polytime randomized algorithm that estimates 
volume to within relative error with probability at 

least in time poly(n, ). 

[Applegate-K91]. Polytime randomized algorithm to 
estimate integral of any (Lipshitz) logconcave function.



Progress on Volume Computation
Power New aspects

Dyer-Frieze-Kannan 89 23 everything

Lovász-Simonovits 90 16 localization 

Applegate-K 90 10 logconcave integration

L 90                            10 ball walk

DF 91                       8 error analysis

LS 93  7 multiple improvements

KLS 97 5 speedy walk, isotropy

LV 03,04    4          annealing, isoperimetry

LV 06 4          integration, local analysis

Cousins-V. 15 (well-rounded) 3 Gaussian cooling



Does it work?

[Cousins-V.13]  Matlab implementation of a new algorithm
 “volume computation matlab”
 https://volumecomputation.wordpress.com/
 Incorporated into the COBRA toolbox for Systems Biology
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Localization

Idea: Reduce inequalities in high dimension to inequalities in 
one dimension.



Isoperimetry via localization

ଷ
ଶௗ ௌభ,ௌమ

஽ ଵ ଶ

Write as 2 inequalities: ଵ ଶ ଷ ଵ

Let  ௌమ ௌభ ௌభ ௌయ

Then, need to show: 

Suppose not, i.e., ଵ ଶ ଷ

Idea:  
1. No such counterexample in one dimension
2. If such a counterexample exists in some dimension, then it also exists in 1 

dimension. 



Localization Lemma [LS, KLS]

Lemma. Let be integrable, lower semi-
continuous functions. Suppose Then, there 
exists an interval and a linear function 

s.t. 



Localization lemma

,   

1. Find a bisecting halfspace for one function
2. Show support of limit of bisections is an interval or a 

point. 
3. The limit function has a concave profile
4. Reduce to linear cross-sectional profile.

[Fradelizi-Guédon] Extremal characterization and 
generalization to multiple inequalities.



Isoperimetry via localization

ଵ ଶ ଷ ଵ

మ భ భ య

Need to show: 

Suppose not, i.e., for some partition, 

Applying localization, 
௡ିଵ

ଵ

଴

௡ିଵ
ଵ

଴

Let ௜ ௜
௡ିଵ

Then this means that

௓మ௓భ
but 

௓భ௓య
a 1-d counterexample must exist.



One-dimensional isoperimetry
For any logconcave function:

య భ మ

Suffices to show it for partition of into 3 intervals.

Without factor of 2, follows from unimodality!
Therefore, same isoperimetric ratio holds in 



Localization: many applications
Many other isoperimetric inequalities
E.g. the KLS conjecture holds for a Gaussian restricted by any 
logconcave function.

Thm. For a density h proportional to 
೟

మ
మ

for any 
logconcave function f, we have .

Analysis of [Cousins-V.2015] algorithm:  
Thm.  Volume of a well-rounded convex body ( ) 
can be computed in steps!

Carbery-Wright anti-concentration of polynomials



Stochastic localization
Goal: Lower bound on expansion of subset S of measure ½. 
Idea:  Apply hyperplane bisections randomly. Show measures of 
sets remain close to original. Prove isoperimetry for (hopefully) 
simpler distribution.

(I tried this for years, still think it might work )
(I also think there will be world peace, and I will stop eating junk food tomorrow)

Meanwhile, Eldan:  Apply infinitesimal linear reweighting in 
random direction to maintain expected value of density at each 
point. 

[Eldan2012] used this to prove that the thin-shell conjecture 
implies the KLS constant up to a logn factor.



Eldan's Stochastic Localization

The process starts with and maintains a 
density at time t with mean 

೟
.  

The infinitesimal change is 

where is an infinitesimal Gaussian (Wiener process).

We can imagine this discretely as

where is a standard Gaussian.



Stochastic localization apps
Thm [Eldan12]. Let 

Thm [LeeV16]. For any logconcave density p with covariance A:

For isotropic logconcave p,   .

Thm [LeeV17]. Log-Sobolev constant of isotropic logconcave p 
with support of diameter D is . This bound is tight.



The KLS constant
KLS theorem.  

LeeV theorem. 

KLS conjecture.



Proof Strategy

is a martingale:
௧ ଴

Suffices to prove the theorem for : 

೅
for “large” .

has large Cheeger constant:

೅



Why does have good expansion?

Localization

Stochastic localization

But’s let’s see it for real…



What is happening?



Really?



Emergence of Gaussian factor

𝑑𝑝௧ 𝑥 = 𝑥 − 𝜇௧
்𝑑𝑊௧ ⋅ 𝑝௧ 𝑥

We will see that: 

𝑑 log 𝑝௧ 𝑥  = 𝑥 − 𝜇௧
்𝑑𝑊௧ −

1

2
𝑥 − 𝜇௧

ଶ𝑑𝑡

Itô’s lemma: 𝑑𝑋௧ = 𝜇௧𝑑𝑡 + 𝜎௧𝑑𝑊௧ ⇒   𝑑𝑓 𝑋௧ =
ௗ௙ ௑೟

ௗ௑
𝑑𝑋௧ +

ଵ

ଶ

ௗమ௙ ௑೟

ௗ௫మ 𝜎௧
ଶ𝑑𝑡

This is by Taylor expansion and noting that 𝑑𝑊௧
ଶ = 𝑑𝑡.

Applying this, 

𝑑 log 𝑝௧ 𝑥  =
𝑑𝑝௧ 𝑥

𝑝௧ 𝑥
−

1

2

𝑥 − 𝜇௧ ⋅ 𝑝௧ 𝑥
ଶ

𝑝௧ 𝑥 ଶ
𝑑𝑡

                   = 𝑥 − 𝜇௧
்𝑑𝑊௧ −

1

2
𝑥 − 𝜇௧

ଶ𝑑𝑡

                             = 𝑥் 𝜇௧𝑑𝑡 + 𝑑𝑊௧ −
1

2
𝑥 ଶ𝑑𝑡 + 𝑔(𝑡)

where the last term does not depend on x. 
Therefore, 

𝑝௧ 𝑥 ∝ 𝑒௫೅௖೟ି
௧
ଶ

௫ మ

𝑝 𝑥     for   𝑑𝑐௧ = 𝜇௧𝑑𝑡 + 𝑑𝑊௧



KLS is easy for Gaussianic distribution

Thm [Bakry-Ledoux96, also Bobkov2000, Cousins-V. 2013 by localization]

For a density h proportional to ି
೟

మ
௫ మ

for any logconcave function f, we 
have ௣ .

Proof.
Apply localization lemma.
The resulting statement in 1-d is implied by the following Brascamp-Lieb 
inequality:  the variance of a density given by a Gaussian times a logconcave 
function (in one dimension) is at most the variance of the Gaussian.  

Recall that ௧
௫೅௖೟ି

೟

మ
௫ మ

has such a Gaussian part! 
Hence,  ௣೟



How long can we go?
𝑝௧ is a martingale:  𝑑𝑝௧ 𝑥 = 𝑥 − 𝜇௧

்𝑑𝑊௧ ⋅ 𝑝௧ 𝑥

Let 𝐴௧ be the covariance of 𝑝௧.

For any measurable subset E,  
𝑑

𝑑𝑡
න 𝑝௧ 𝑥 𝑑𝑥

ா

= න 𝑥 − 𝜇௧
்𝑑𝑊௧𝑝௧ 𝑥 𝑑𝑥

ா

= න 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

்

𝑑𝑊௧

Hence, the measure of E (or any subset) is also a martingale. 

𝑉𝑎𝑟
𝑑

𝑑𝑡
න 𝑝௧ 𝑥 𝑑𝑥

ா

= න 𝑥 − 𝜇௧ 𝑝௧ 𝑥 𝑑𝑥
ா

ଶ

ଶ

≤ max
఍ మஸଵ

∫ 𝑥 − 𝜇௧
்𝜁 ⋅  𝑝௧ 𝑥 𝑑𝑥

ா

ଶ

≤ max
఍ మஸଵ

∫ 𝑥 − 𝜇௧
்𝜁

ଶ
⋅  𝑝௧ 𝑥 𝑑𝑥

ா

= 𝐴௧ ௢௣

As long as 𝐴௧ ௢௣ is bounded, any set is approximately preserved. 



Suffices to bound for 

Thm [E. Milman09] To bound it suffices to consider subsets of measure ½. 

Suppose ௧ ௢
்

଴
with constant probability.

Since ் ଴, we have that

்

௣೅ ் ்
௖

௣೅
்

௣೅

Need to keep the spectral norm of covariance small for as long as possible…



Bounding 
Back where we started?!

The stochastic process will give us some control.  
We use the potential .  

We will see that when with high 
probability.

Therefore, if , we have  .

This gives 
 For isotropic p, this is ௣

ିଵ/ସ.



Bounding the largest eigenvalue
௧ ௧

ଶ

Let’s Itô it!

௧ ௧
்

௧ ௧ ௧
்

௧ ௧
ଷ

௧
்

௧
ଷ

௧ ௧
்

௧

Lemma. For a logconcave density p,
• ௞ ௞ ଶ ௞/ଶ

• ் ଷ ଶ ଷ/ଶ

• ்
௢௣
ଵ/ଶ ଶ

Using this, ௧ ௧
ଷ/ଶ and  ௧ ௧

ହ/ସ

Therefore, ௧ ௧
ଷ/ଶ

௧
ହ/ସ

௧



Bounding the largest eigenvalue
𝜙௧ = T𝑟𝐴௧

ଶ

After Itôing,

𝑑𝜙௧ ≲ 𝜙௧
ଷ/ଶ

𝑑𝑡 + 𝜙௧
ହ/ସ

𝑑𝑊௧

Or 

𝜙௧ ≲ 𝜙௧
ଷ/ଶ

𝑡 + 𝜙௧
ହ/ସ

𝑡

So 𝜙௧ ≤ 2𝜙଴ for 𝑡 ≲ 1/ 𝜙଴

And for 𝑇 = 𝑐/ 𝜙଴, we get:

∫ 𝐴௧ ௢ 𝑑𝑡
்

଴
≤ ∫ 𝜙௧

்

଴
𝑑𝑡 ≤ 2𝜙଴ ⋅ 𝑇 ≤ 0.01.

So the measure of the subset stays balanced up to time 𝑇 = 𝑐/ 𝜙଴ and the lower bound on expansion 
is 

Ω 𝑇 ≳ T𝑟𝐴ଶ ିଵ/ସ

(This is ≳ 𝑛ିଵ/ସ for isotropic p.)



An improved concentration inequality
Thm. [Paouris2006]. For an isotropic logconcave p,

Best possible when .

[Guédon-E. Milman]: RHS is 
య

. 

[Lee-V. 2017] RHS is 
మ

Thm. For any isotropic logconcave p, and any Lipschitz function g, 
మ
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Deterministic Polytope Volume

Can we estimate the volume of an explicit polytope in 
deterministic polynomial time?



Lower bound for Sampling

KLS says complexity of sampling from a warm start is 
Is this the best possible?



Faster isotropy and sampling
Isotropic transformation/rounding is the bottleneck for faster general 
volume computation/sampling.

Candidate algorithm:

Repeat: 
1.Estimate the covariance of the standard Gaussian density restricted to 
the current convex body. 
2.If the covariance has eigenvalues smaller than some constant, apply a 
transformation to make it identity. 

Conjecture [Cousins-V.]. This algorithm terminates in O(log n) iterations with 
a well-rounded body. 



Faster isotropy and sampling

Per-step arithmetic complexity: . 

Coordinate Hit-and-Run. Could be faster by a factor of n in 
the per-step complexity. 

But is it rapidly mixing? n^3?!



Manifold KLS
Thm. [Lee-V. 2017] Let K be a convex body and be a 
convex function with a convex Hessian. Let d be the distance in 
the Riemannian metric defined by the Hessian. Then, for any 
partition of K into subsets , 

య

భ మ

In other words, this Gibbs distribution satisfies a manifold KLS!
and Euclidean metric d is the special case of KLS 

for a Gaussian restricted to a convex body.

What are further generalizations?



Needle decompositions

Used by [Bobkov]; also [Chandrasekaran-Dadush-V.]
Apply hyperplane cuts to get a needle decomposition
Maintain relative measure of subset S.
Show that a positive fraction of needles have bounded 
variance.

Conclude KLS! 


