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Motivation

We consider adjacency matrices of random d-regular directed graphs (digraphs) on n
vertices, which can be also seen as bipartive graphs (bigraphs).

Thus, we deal with a
set of n× n matrices M = {µij} with 0/1-entries and such that every row and every
column has exactly d ones and with uniform probability on this set. In the case of
undirected graphs, matrices are additionally symmetric. We assume 3 ≤ d ≤ n/2.

Conjecture (e.g., Vu, survey, 2008; Frieze and Vu, ICM talks 2014)
Such a random matrix is non-singular with high probability (that is Pr→ 1 with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask
the same question in the general setting as well (Cook, 2014).

Remark 1. If d = 1 the matrix is a permutation matrix, hence invertible.

Remark 2. If d = 2 the conjecture fails (see e.g., Vu, Cook).

Remark 3. The cases d = d0 and d = n− d0 are essentially the same (by
interchanging zeros and ones).
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Results

Theorem (Cook, 2014)
The conjecture holds for d � ln2 n with probability 1− 1/dc.

Remark 1. d � ln2 n means d/ ln2 n→∞ as n→∞.

Remark 2. Erdos–Renyi model: A random graph G, whose edges appear with
probability pn. Adjacency matrix: entries are independent 0/1 Bernoulli random
variables. “In average” the sums of entries in each column and each rows equals pnn.
Thus it is natural to assume that this model (with pn = d/n) behaves similarly to
regular digraphs.

Basak, Rudelson (2015): Indeed, a random matrix in this model is non-singular with
high probability if d � ln n (if d ≤ ln n then there is a zero row with prob. ≥ 1/2).

Behavior of directed graphs is different for small d – no zero rows.

Theorem (LLTTP, 2015)
The conjecture holds for C ≤ d ≤ n/ ln2 n with probability 1− C ln3 d/

√
d.
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Quantitative estimates

Can we estimate the smallest singular number sn(M) from below?

Such bounds are interesting by itself and have many applications in several areas –
Geometric Functional Analysis, Compressed Sensing, Computer Science, and others.
They also play an essential role in establishing the circular law.
Huge amount of results for matrices with independent entries or with independent
rows.
Sparse matrices are very important in statistics, neural network, electrical engineering,
wireless communications, and in many other fields. In standard iid model we refer to
recent works by Tao–Vu, Götze–A.Tikhomirov, Wood, Basak–Rudelson.
However our model is completely different as there are many dependencies.

Theorem (BR, 2015)
In Erdos–Renyi model with pn = d/n one has

P

(
sn(M) ≥ εcn,d

√
d

n

)
≥ 1− ε− e−d,

where cn,d = exp
(
− c ln(n/d)

ln d

)
.
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Theorem (Cook, 2016)
Let d > lnc n. Let M be d-regular random square matrix. Then

P
(

sn(M) ≥ n−c0 ln n/ ln d
)
≥ 1− lnc n/

√
d.

Moreover, the circular law holds.

Theorem (LLTTY, 2017)
Let C < d < n/ log2 n. Then

P
(
sn(M) ≥ 1/n6) ≥ 1− ln2 d/

√
d.
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Ideas of the proof, preliminary steps

First, we eliminate many “bad” events, that occur with very small probability, namely:

1. Matrices with large zero minors:
there are large I, J ⊂ [n] such that µij = 0 whenever i ∈ I, j ∈ J.

2. Matrices with overlapping pairs of rows:
there are two rows such that intersection of their supports is larger than εd.

3. Matrices with a set of overlapping columns:
there exist k columns such that cardinality of union of their supports is ≤ (1− ε)dk.
(Of course, 2 is a partial case of 3 with k = 2.)
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