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Dimension-free concentration

Definition
We will say that a probability measure µ on (X ,d) satisfies a
dimension-free concentration inequality (CI∞2 ) iff there exists a
function α : [0,∞)→ [0,1], limt→∞ α(t) = 0 such that for all N,
all 1-Lipschitz functions f : X → R and t > 0,

µ⊗N
(
|f −Medµ⊗N f | ≥ t

)
≤ α(t)

(the distance on XN is d(x , y) =
√∑N

i=1 d(xi , yi)2).

Standard examples: uniform measure on the sphere,
Gaussian measure
By CLT, in non-trivial cases, α cannot decay faster than
some Gaussian tail.
As observed by Talagrand, if µ satisfies CI∞2 then one can
take α(t) = 2 exp(−ct) for some c > 0.



Ways to prove CI∞2

Functional inequalities: Poincaré, modified log-Sobolev
Transportation cost inequalities
Infimum convolution inequalities – dual to transportation

Common idea: Tensorization - the ineq. passes from µ to µ⊗N .

Definition
We will say that µ satisfies the Poincaré inequality iff for some
λ > 0 and all locally Lipschitz functions f : X → R

λVarµf ≤ Eµ|∇f |2

with the length of gradient

|∇f |(x) = lim sup
y→x

|f (y)− f (x)|
d(x , y)

(we set |∇f |(x) = 0 for isolated points).



Theorem (Gromov-V. Milman ’83)
If µ satisfies the Poincaré inequality then it satisfies CI∞2 with
α(t) = 2 exp(−ct)

The standard exponential distribution satisfies Poincaré so this
is optimal for large t .

Theorem (Gozlan-Roberto-Samson ’15)
If µ satisfies CI∞2 then it satisfies the Poincaré inequality.

As a consequence

CI∞2 ⇐⇒ subexp.-CI∞2 ⇐⇒ Poincaré inequality
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Theorem (Bobkov-Ledoux ’97, Bobkov-Gentil-Ledoux ’01)

If µ on Rn satisfies the Poincaré inequality then

there exist c,C s.t. for every locally Lipschitz function f
with |∇f | ≤ c,

Entµef ≤ CEµ|∇f |2ef ,

for some C,D, the measure µ satisfies the transportation
cost inequality with the quadratic-linear cost

θ(x) =

{
|x |2
2C for |x | ≤ CD,
D|x | − CD2

2 for |x | > CD,

i.e. for all measures ν on Rn,

Tθ(ν, µ) := inf
Π

∫∫
θ(x − y)Π(dx ,dy) ≤ H(ν|µ) := Eν log(

dν
dµ

),

where the infimum is taken over all couplings Π of µ and ν.



Why do we care about modified log-Sobolev or transportation
cost inequalities?

Improved concentration

For f : (Rn)N → R,

µ⊗N
(
|f − Eµ⊗N f | ≥ t

)
≤ 2 exp

(
− c min

( t2

L2
2
,

t
L1

))
where

L2 = sup
x∈RnN

|∇f (x)|, L1 = max
i=1,...,N

sup
x∈RNn

|∇i f (x)|.

Simple example: n = 1, f (x) = (x1 + . . .+ xN)/
√

N,
Poincaré:

µ⊗N(|f − Ef | ≥ t) ≤ 2 exp(−ct)

modified log-Sobolev:

µ⊗N(|f − Ef | ≥ t) ≤ 2 exp
(
− c min(t2,

√
Nt)
)
.
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m

subexp.-CI∞2
m

Poincaré inequality
m

modified log-Sobolev inequality
m

quadratic-linear transportation cost ineq.
m

two-level concentration



Getting to the topic of the talk...

Definition
We will say that a probability measure µ on Rn satisfies convex
dimension-free concentration inequality (convCI∞2 ) iff there
exists a function α : [0,∞)→ [0,1], limt→∞ α(t) = 0 such that
for all N, all 1-Lipschitz convex functions f : X → R and t > 0,

µ⊗N
(
|f −Medµ⊗N f | ≥ t

)
≤ α(t).

Theorem (Talagrand ’94)

All measures with bounded support satisfy convCI∞2

Questions:
Do we also have improved concentration?
Can we get a picture as in the "classical" case?



Why may this be interesting?

Restricting concentration to convex functions allows for
significant weakening of assumptions, while still
encompassing many important functions (e.g. norms)
Relation with concentration for polynomials (Marton,
Meckes-Szarek, Vu-Wang, A.)
New arguments or modifications of existing ones needed,
since convexity is not preserved under basic operations
Investigating convex functions sometimes gives new
insight into the classical theory (Gozlan-Roberto-Samson,
Gozlan-Roberto-Samson-Shu-Tetali, Shu-Strzelecki).



Questions:
Do we also have improved concentration?
Can we get a picture as in the "classical" case?

An annoying complication:
We have to deal with upper and lower tails separately.

Theorem (Bobkov-Götze ’99, Gozlan-Roberto-Samson ’15)

A measure µ on Rn satisfies convCI∞2 iff it satisfies the
Poincaré inequality for all convex functions.

Theorem (Gozlan-Roberto-Samson ’15)
Dimension free convex concentration from above

µ⊗N(f ≥ Medµ⊗N f + t) ≤ α(t)

implies subexponential convex concentration from above and
implies the convex Poincaré inequality.



Weak transportation inequalities

Definition (Gozlan-Roberto-Samson-Tetali ’14)

For a convex cost function θ : Rn → R and two probability
measures µ, ν on Rn with finite first moments define the weak
transportation cost T (ν|µ) as

T (ν|µ) = inf
Π

∫
θ(x −

∫
ypx (dy))dµ(x),

where the infimum is taken over all couplings Π of µand ν and
px is the conditional distribution given by

Π(dxdy) = px (dy)µ(dx).

In probabilistic notation

T (ν|µ) = inf
X∼µ,Y∼ν

Eθ(X − E(Y |X )).



Notation:

P1(Rn) – set of probability measures on Rn with finite first
moment

Definition (Gozlan-Roberto-Samson-Tetali ’14)

We will say that µ ∈ P1(Rn) satisfies

T
+
θ if for all ν ∈ P1(Rn),

T θ(ν|µ) ≤ H(ν|µ)

T
−
θ if for all ν ∈ P1(Rn),

T θ(µ|ν) ≤ H(ν|µ)

T θ if it satisfies both T
+
θ and T

−
θ .



For measures on the real line by combining results by
Bobkov-Götze, Gozlan-Roberto-Samson,
Gozlan-Roberto-Samson-Tetali,
Feldheim-Marsiglietti-Nayar-Wang, Strzelecki-A.,
Gozlan-Roberto-Samson-Shu-Tetali one obtains

dimension-free convCI∞2
m

subexp.-convCI∞2
m

convex Poincaré inequality
m

modified log-Sobolev ineq. for convex and concave functions
m

T θ with θ quadratic-linear
m

Two-level concentration for convex functions

Remark: Many of the proofs rather indirect, based on the
characterization of the convex Poincaré inequality on the line
due to Bobkov-Götze
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Theorem (Strzelecki-A. ’17)

The above picture holds for measures on Rn.

More specifically we proved that the convex Poincaré inequality
implies modified log-Sobolev inequalities for convex and
concave functions, which in turn imply T θ



Theorem (Strzelecki-A. ’17)

Let µ be a probability measure on Rn which satisfying the
convex Poincaré inequality

λVarf ≤ Eµ|∇f |2

for all convex functions f : Rn → R. Then for some c,C,D,
µ satisfies the modified log-Sobolev inequality

Entµef ≤ CE|∇f |2ef

for all convex or concave functions f with |∇f | ≤ c,
µ satisfies the weak transportation inequality T θ:

T θ(ν|µ),T θ(µ|ν) ≤ H(ν|µ)

where

θ(x) =

{
|x |2
2C for |x | ≤ CD,
D|x | − CD2

2 for |x | > CD.



However...

For concave functions in the modified log-Sobolev
inequality and for the inequality T

+
θ the constants we get

depend not only on λ from the convex Poincaré inequality,
but also on some quantiles of the measure µ, which may
be dimension dependent.
This is not the case for convex functions and the inequality
T
−
θ .

One can remove the dependence on quantiles if the
following question has affirmative answer

Question
Let µ be a probability measure on Rn satisfying the convex
Poincaré inequality with constant λ. Does there exist a constant
c(λ) such that for all convex functions f : Rn → R and all t > 0,

µ(f ≤ Eµf − t) ≤ 2 exp(−c(λ)t)?
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A few words about the proof

To prove modified log-Sobolev inequalities we modify the
argument by Bobkov-Ledoux from the classical case.
WLOG we can assume that Med f = 0.

Lemma

If µ satisfies the convex Poincaré ineq. and f is convex, then

Eµ(f −Med f )2 ≤ 2
λ
Eµ|∇f |2.

Lemma
Assume that f is convex, Medµ f = 0, |∇f | ≤ c(λ). Then

Eµf 2ef ≤ C(λ)E|∇f |2ef ,

Eµf 2 ≤ C(λ)E|∇f |2ef .



Lemma
Assume that f is convex, Medµ f = 0, |∇f | ≤ c(λ). Then

Eµf 2ef ≤ C(λ)E|∇f |2ef ,

Eµf 2 ≤ C(λ)E|∇f |2ef .

Denote F (t) = Ef 2etf .

Entef ≤ E(fef − ef + 1)

= E
∫ 1

0
tf 2etf dt =

∫ 1

0
tF (t)dt

≤
∫ 1

0
t(1− t)F (0) + t2F (1)dt =

1
6

F (0) +
1
3

F (1).

We use the lemma to estimate the right-hand side.



For concave functions one proves

Lemma
Assume that f is concave, Medµ f = 0, |∇f | ≤ c. Then

Ef 2ef 1{f≥0} ≤ C(λ, µ)E|∇f |2ef

Ef 2 ≤ C(λ)E|∇f |2ef .

As before, for F (t) = Ef 2etf we have

Entef ≤ 1
6

F (0) +
1
3

F (1).

Moreover
F (1) ≤ F (0) + Ef 2ef 1{f≥0},

so one can use the lemma.



To pass from log-Sobolev to transportation one uses the dual
form of the latter.

Lemma (Gozlan-Roberto-Samson-Tetali ’14)

Qt f (x) := infy∈Rn
{

f (y) + tθ
(x − y

t

)}
.

Then
(i) µ satisfies T

+
θ iff for all convex, Lipschitz f : Rn → R,

bounded from below,

exp
(∫

Rn
Q1fdµ

)∫
Rn

e−f dµ ≤ 1;

(ii) µ satisfies T
−
θ iff for all convex, Lipschitz f : Rn → R,

bounded from below,

∫
Rn

exp(Q1f )dµ exp
(
−
∫
Rn

fdµ
)
≤ 1.



For T
−
θ , following the ideas of Bobkov-Gentil-Ledoux one

combines the Hamilton-Jacobi equation

d
dt

Qt f (x) + θ∗(|∇xQt f (x)|) = 0

with the modified log-Sobolev inequality in order to show
that the function

F (t) =
1
t

logEµetQt f

is non-increasing. Thus

EµeQ1f = F (1) ≤ lim inf
t→0

F (t) ≤ Eµf ,

which proves the dual form of T
−
.

For T
+

– a similar argument



Final remarks

Weak transportation inequalities T θ on the line have been
characterized by Gozlan-Roberto-Samson-Shu-Tetali. It
turns out that µ satisfies the usual strong transportation
inequality iff it satisfies the weak one and the Poincaré
inequality (for all locally Lipschitz functions)
Similarly, Shu-Strzelecki showed that the modified
log-Sobolev inequality for convex functions on the line is in
fact equivalent to T θ. In particular, one has the corollary for
a large class of cost functions:

Corollary (Shu-Strzelecki ’16)
A probability measure on the line satisfies the strong
transportation inequality Tθ iff it satisfies the Poincaré inequality
for all functions and the modified log-Sobolev inequality for
convex functions.

Question: Does this hold in higher dimensions? Again,
the proofs for the line go through explicit characterizations.



Concentration for convex Lipschitz functions can be extended
to general convex function. Here is a special case.

Proposition (Strzelecki-A. ’17)
Assume that a probability measure µ on R satisfies the convex
Poincaré inequality. Then for any convex function f : RN → R
and any p ≥ 1,(

Eµ⊗N

∣∣∣ (f −Medµ⊗N f )+√
p|∇f |2 + p|∇f |∞

∣∣∣p)1/p
≤ C(λ)

and(
Eµ⊗N (f−Medµ⊗N f )p

−

)1/p
≤ C(λ)(

√
pEµ⊗N |∇f |2+pEµ⊗N |∇i f |∞).

In the Gaussian case interesting strengthened estimates for
lower tails of convex functions were proved recently by
Paouris-Valettas. For self-bounded empirical processes similar
ineq. obtained by de la Peña-Klass-Lai. Non-Lipschitz convex
functions were also considered by Bobkov-Nayar-Tetali.



Thank you


