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Dimension-free concentration

Definition

We will say that a probability measure 1. on (X, d) satisfies a
dimension-free concentration inequality (CI3°) iff there exists a
function a:: [0, 00) — [0, 1], lim;—o a(t) = O such that for all N,
all 1-Lipschitz functions f: X — R and't > 0,

H®N(|f — Med,on f| > t) < oft)

(the distance on XN is d(x,y) = \/ SN, d(xi, yi)2).

@ Standard examples: uniform measure on the sphere,
Gaussian measure

@ By CLT, in non-trivial cases, « cannot decay faster than
some Gaussian tail.

@ As observed by Talagrand, if ;. satisfies C/;° then one can
take a(t) = 2 exp(—ct) for some ¢ > 0.




Ways to prove CI*

@ Functional inequalities: Poincaré, modified log-Sobolev
@ Transportation cost inequalities
@ Infimum convolution inequalities — dual to transportation

Common idea: Tensorization - the ineq. passes from . to u®N.
Definition

We will say that . satisfies the Poincaré inequality iff for some
A > 0 and all locally Lipschitz functions f: X — R

AVar,f < E,|Vf[?

with the length of gradient

_ f(y) = f(X)]
IVEl(x) = |”;‘ng T dxy)

(we set |Vf|(x) = 0 for isolated points).




Theorem (Gromov-V. Milman ’83)

If 11 satisfies the Poincareé inequality then it satisfies CI3° with
a(t) = 2exp(—ct)

The standard exponential distribution satisfies Poincaré so this
is optimal for large t.



Theorem (Gromov-V. Milman ’83)

If 11 satisfies the Poincareé inequality then it satisfies CI3° with
a(t) = 2exp(—ct)

The standard exponential distribution satisfies Poincaré so this
is optimal for large t.

Theorem (Gozlan-Roberto-Samson ’15)

If 11 satisfies Cl3° then it satisfies the Poincaré inequality.

As a consequence

Cl3° <= subexp.-Cl° <= Poincaré inequality



Theorem (Bobkov-Ledoux ‘97, Bobkov-Gentil-Ledoux '01)
If u on R" satisfies the Poincaré inequality then

@ there exist ¢, C s.t. for every locally Lipschitz function f
with |Vf| < c,
Ent,e’ < CE,|Vf|?€,

@ for some C, D, the measure 1. satisfies the transportation
cost inequality with the quadratic-linear cost

5() = Lk ~ for|x| < CD,
D|x| — €2~ for|x| > CD,
i.e. for all measures v on R",
@

Tolv, ) i=inf [ [ 00— y)n(ee, o) < Hvl) i= B log(G).

where the infimum is taken over all couplings I of u and v.




Why do we care about modified log-Sobolev or transportation
cost inequalities?

Improved concentration
Forf: (RN = R,

M®N<‘f—EM®Nf] > t) < 2exp ( — cmin (%22 1__t1>)
2

where

Ly = sup |Vf(x)|, Ly = max sup |V,f(x)|.

XER™W i=1,.,N xRN




Why do we care about modified log-Sobolev or transportation
cost inequalities?

Improved concentration
Forf: (RN = R,

sy s3en(-eom(ly )
2

where

Ly = sup |Vf(x)|, Ly = max sup |V,f(x)|.

XER"N 121,---,N XE]RN”

Simple example: n =1, f(x) = (x; + ... + xn)/VN,
@ Poincaré:

p®N(|f —Ef| > t) < 2exp(—ct)
@ modified log-Sobolev:

PEN(f —Ef] > 1) < 2exp ( — cmin(£?, mt)).



dimension-free concentration CI5°

)

subexp.-Cl3°

)

Poincaré inequality

)

modified log-Sobolev inequality

)

quadratic-linear transportation cost ineq.

)

two-level concentration



Getting to the topic of the talk...

Definition

We will say that a probability measure 1. on R" satisfies convex
dimension-free concentration inequality (convCI3°) iff there
exists a function a:: [0, 00) — [0, 1], lim;—, a(t) = 0 such that
for all N, all 1-Lipschitz convex functions f: X — R andt > 0,

M®N<]f — Med o f| > t) < aft).

\

Theorem (Talagrand '94)
All measures with bounded support satisfy convCI3°

Questions:
@ Do we also have improved concentration?
@ Can we get a picture as in the "classical" case?



Why may this be interesting?

@ Restricting concentration to convex functions allows for
significant weakening of assumptions, while still
encompassing many important functions (e.g. norms)

@ Relation with concentration for polynomials (Marton,
Meckes-Szarek, Vu-Wang, A.)

@ New arguments or modifications of existing ones needed,
since convexity is not preserved under basic operations

@ Investigating convex functions sometimes gives new

insight into the classical theory (Gozlan-Roberto-Samson,
Gozlan-Roberto-Samson-Shu-Tetali, Shu-Strzelecki).



Questions:
@ Do we also have improved concentration?
@ Can we get a picture as in the "classical" case?

An annoying complication:
We have to deal with upper and lower tails separately.

Theorem (Bobkov-Gétze '99, Gozlan-Roberto-Samson ’15)

A measure 1. on R" satisfies convCIls® iff it satisfies the
Poincaré inequality for all convex functions.

Theorem (Gozlan-Roberto-Samson ’15)
Dimension free convex concentration from above

pN(f > Med on £+ 1) < oft)

implies subexponential convex concentration from above and
implies the convex Poincaré inequality.




Weak transportation inequalities

Definition (Gozlan-Roberto-Samson-Tetali ’14)

For a convex cost function 6: R" — R and two probability
measures u, v on Rj with finite first moments define the weak
transportation cost T (v|u) as

T(vln) = inf [ 00~ [ ypu(ay)du(x)

where the infimum is taken over all couplings N of uand v and
px Is the conditional distribution given by

M(dxdy) = px(dy)u(dx).

In probabilistic notation

T(lw) =, inf | E6X ~E(Y|X))




P1(R™) — set of probability measures on R” with finite first
moment

Definition (Gozlan-Roberto-Samson-Tetali ’14)
We will say that u € P1(R") satisfies
o T, ifforallv € Py(R"),

To(v|p) < H(v|pm)
e T, ifforallv € Py(R"),
To(ulv) < H(v|uw)

e Ty ifit satisfies both T, and T, .




For measures on the real line by combining results by
Bobkov-Gotze, Gozlan-Roberto-Samson,
Gozlan-Roberto-Samson-Tetali,
Feldheim-Marsiglietti-Nayar-Wang,  Strzelecki-A.,
Gozlan-Roberto-Samson-Shu-Tetali one obtains

dimension-free convCIgO

)

subexp.-convCI3°

)

convex Poincaré inequality

)

modified log-Sobolev ineq. for convex and concave functions

)

T with 6 quadratic-linear

Two-level concentration for convex functions

Remark: Many of the proofs rather indirect, based on the
characterization of the convex Poincaré inequality on the line
due to Bobkov-Gotze



dimension-free convClé>O

)

subexp.-convCI3°

)

convex Poincaré inequality

)

modified log-Sobolev ineq. for convex and concave functions

)

T with 6 quadratic-linear

)

Two-level concentration for convex functions

Theorem (Strzelecki-A. ’17)
The above picture holds for measures on R".

More specifically we proved that the convex Poincaré inequality
implies modified log-Sobolev inequalities for convex and
concave functions, which in turn imply T



Theorem (Strzelecki-A. ’17)

Let i be a probability measure on R" which satisfying the
convex Poincaré inequality

AVarf < E,|Vf[?

for all convex functions f: R" — R. Then for some ¢, C, D,
@ . satisfies the modified log-Sobolev inequality

Ent, e’ < CE|Vf|2e!

for all convex or concave functions f with |Vf| < c,
@ . satisfies the weak transportation inequality Tg:

To(v|p), To(ulv) < H(v|w)

where

L for |x| < CD,
G(X) = CcD?
D|x| — %5~ for|x| > CD.




However...

@ For concave functions in the modified log-Sobolev
inequality and for the inequality 7; the constants we get
depend not only on A from the convex Poincaré inequality,
but also on some quantiles of the measure x, which may
be dimension dependent.

@ This is not the case for convex functions and the inequality
T,.

@ One can remove the dependence on quantiles if the
following question has affirmative answer



However...

@ For concave functions in the modified log-Sobolev
inequality and for the inequality 7; the constants we get
depend not only on A from the convex Poincaré inequality,
but also on some quantiles of the measure x, which may
be dimension dependent.

@ This is not the case for convex functions and the inequality
T,.

@ One can remove the dependence on quantiles if the
following question has affirmative answer

Let i be a probability measure on R" satisfying the convex
Poincaré inequality with constant \. Does there exist a constant
c()) such that for all convex functions f: R” — R and all t > 0,

p(f <ELf—1) <2exp(—c(N)E)?




A few words about the proof

@ To prove modified log-Sobolev inequalities we modify the
argument by Bobkov-Ledoux from the classical case.

@ WLOG we can assume that Med f = 0.

If u satisfies the convex Poincaré ineq. and f is convex, then

2
E,(f — Med f)? < XE#WﬂQ.

Assume that f is convex, Med,, f = 0, [Vf| < ¢()). Then

E.fPe’ < C(\E|VF?2e,
E.f2 < C(\E|Vf|2e .




Assume that f is convex, Med,, f = 0, [Vf| < ¢()). Then

E.f2e’ < CO\E|V2e,
E.f2 < C(\E|Vf|2e .

Denote F(t) = Ef?el’ .
Ente’ < E(fe’ — e + 1)

1 1
:E/ tf2e”dt:/ tF(t)dt
0

0
1 1

1
< [ 11 =0F(©)+ BR(A = 5F(0)+ 5F ().

We use the lemma to estimate the right-hand side.



For concave functions one proves

Assume that f is concave, Med,, f = 0, |Vf| < c¢. Then

Ef2e" (r50; < C(\, w)E|V 2!
Ef? < C\E|VT[?e.

As before, for F(t) = Ef2e!” we have

F(0) + %F(1).

o =

Ente <

Moreover
F(1) < F(0) + Ef?e"1 150y,

so one can use the lemma.



To pass from log-Sobolev to transportation one uses the dual
form of the latter.

Lemma (Gozlan-Roberto-Samson-Tetali *14)

Qif(x) := infycgn{ F(y) + t0<x - y) 1y

Then

() u satisfies 7}; iff for all convex, Lipschitz f: R" — R,
bounded from below,

exp(/RnQ1fdu) /Rnefdué 1;

(i) u satisfies T, iff for all convex, Lipschitz f: R" — R,
bounded from below,

/nexp(Q1f)duexp(—/Rn fdu) <.




@ For T, , following the ideas of Bobkov-Gentil-Ledoux one
combines the Hamilton-Jacobi equation

thtf(x) + 0*(|VxQif(x)]) =0

with the modified log-Sobolev inequality in order to show
that the function

1
F(t) = N IogE“ethf

is non-increasing. Thus

E,e%" = F(1) < liminf F(t) < E,f,

t—0

which proves the dual form of T .
@ For T' — a similar argument



Final remarks

@ Weak transportation inequalities T4 on the line have been
characterized by Gozlan-Roberto-Samson-Shu-Tetali. It
turns out that . satisfies the usual strong transportation
inequality iff it satisfies the weak one and the Poincaré
inequality (for all locally Lipschitz functions)

@ Similarly, Shu-Strzelecki showed that the modified
log-Sobolev inequality for convex functions on the line is in
fact equivalent to T,. In particular, one has the corollary for
a large class of cost functions:

Corollary (Shu-Strzelecki '16)

A probability measure on the line satisfies the strong
transportation inequality Ty iff it satisfies the Poincaré inequality
for all functions and the modified log-Sobolev inequality for
convex functions.

@ Question: Does this hold in higher dimensions? Again,
the proofs for the line go through explicit characterizations.



Concentration for convex Lipschitz functions can be extended
to general convex function. Here is a special case.

Proposition (Strzelecki-A. '17)

Assume that a probability measure 1. on R satisfies the convex
Poincaré inequality. Then for any convex function f: RN — R
andanyp > 1,

(f — Med on f)+
VIV 2 + PIV los

‘p>1/P <c)

(Eu®N

and

1/p
(B, on(F—Med,en )" < CON(VPE,en|V1lo+PE,on|Vif|sc).

In the Gaussian case interesting strengthened estimates for
lower tails of convex functions were proved recently by
Paouris-Valettas. For self-bounded empirical processes similar
ineq. obtained by de la Pefa-Klass-Lai. Non-Lipschitz convex
functions were also considered by Bobkov-Nayar-Tetali.



Thank you



