
Abstract

:

We introduce a new model of a realization space of a polytope that arises as the positive part of a real variety. The variety is determined by the slack ideal of the polytope, a saturated determinantal ideal of a sparse generic matrix that encodes the combinatorics of the polytope. The slack ideal offers a uniform computational framework for several classical questions about polytopes such as rational realizability, projectively uniqueness, non-prescribability of faces, and realizability of combinatorial polytopes. The simplest slack ideals are toric. We identify the toric ideals that arise from projectively unique polytopes. New and classical examples illuminate the relationships between projective uniqueness and toric slack ideals.

The Slack Realization Space of a Polytope

Rekha R Thomas

University of Washington
joint work with:
João Gouveia (U Coimbra)
Antonio Macchia (U Bari)
Amy Wiebe (U Washington)

$P \subset \mathbf{R}^{d} \quad d$-polytope

combinatorics of P :
vertices: $v_{1}, v_{2}, v_{3}, v_{4}$
facets: $\quad\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$,
$\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{4}\right\}$
$P \subset \mathbf{R}^{d} \quad d$-polytope

combinatorics of P : vertices: $v_{1}, v_{2}, v_{3}, v_{4}$
facets: $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$, $\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{4}\right\}$
combinatorial equivalence:
$Q \stackrel{\text { c }}{=} P \leftrightarrow P \& Q$ have the same vertex-facet incidences
$P \subset \mathbf{R}^{d} \quad d$-polytope

combinatorics of P :
vertices: $v_{1}, v_{2}, v_{3}, v_{4}$
facets: $\quad\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$,
$\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{4}\right\}$
combinatorial equivalence:
$Q \stackrel{\mathrm{c}}{=} P \quad \leftrightarrow \quad P \& Q$ have the same vertex-facet incidences

All quadrilaterals are combinatorially equivalent to a square

$P \subset \mathbf{R}^{d} \quad d$-polytope

affine equivalence: $\quad Q \stackrel{a}{=} P \Leftrightarrow Q=\psi(P), \quad \psi(x)=A x+b$
preserves parallel lines,
e.g. scaling, rotation, reflection, trans/ation
$P \subset \mathbf{R}^{d} \quad d$-polytope

affine equivalence: $\quad Q \stackrel{a}{=} P \Leftrightarrow Q=\psi(P), \quad \psi(x)=A x+b$
preserves parallel lines,
e.g. scaling, rotation, reflection, translation

Parallelograms are affinely equivalent to a square
$P \subset \mathbf{R}^{d} \quad d$-polytope

combinatorics of P :
vertices: $v_{1}, v_{2}, v_{3}, v_{4}$
facets: $\quad\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$, $\left\{v_{3}, v_{4}\right\},\left\{v_{1}, v_{4}\right\}$
projective equivalence:
$Q \stackrel{p}{=} P \Leftrightarrow Q=\phi(P), \quad \phi(x)=\frac{A x+b}{c^{\top} x+\delta} \quad \operatorname{det}\left[\begin{array}{cc}A & b \\ c^{\top} & \delta\end{array}\right] \neq 0$
$P \subset \mathbf{R}^{d} \quad d$-polytope


```
combinatorics of P:
vertices: }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{},\mp@subsup{v}{4}{
facets: {v, ,v2},{\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}},
    {\mp@subsup{v}{3}{},\mp@subsup{v}{4}{}},{\mp@subsup{v}{1}{},\mp@subsup{v}{4}{}}
```

projective equivalence:
$Q \underline{\underline{p}} P \Leftrightarrow Q=\phi(P), \quad \phi(x)=\frac{A x+b}{c^{\top} x+\delta} \quad \operatorname{det}\left[\begin{array}{cc}A & b \\ c^{\top} & \delta\end{array}\right] \neq 0$

All quadrilaterals are projectively equivalent to a square. A square is projectively unique.

Realization Spaces

set of all realizations of polytopes combinatorially equivalent to P
Mod out affine transformations: fix an affine basis of $d+1$ common vertices

$$
\left\{\begin{array}{cc}
(x, y): & x>0, y>0 \\
& x+y>1
\end{array}\right\}
$$

Realization Spaces

set of all realizations of polytopes combinatorially equivalent to P
Mod out affine transformations: fix an affine basis of $d+1$ common vertices

$$
\left\{\begin{array}{cc}
(x, y): & x>0, y>0 \\
& x+y>1
\end{array}\right\}
$$

$$
\mathcal{R}(P, B)=\left\{\begin{array}{l}
Q=\operatorname{conv}\left(q_{1}, \ldots, q_{v}\right) \subset \mathbf{R}^{d}: q_{i}=p_{i} \forall i \in B \\
Q \stackrel{c}{=} P
\end{array}\right\}
$$

Realization Spaces

set of all realizations of polytopes combinatorially equivalent to P
Mod out projective transformations:
fix a projective basis of $d+2$ common vertices

Reduced realization space of P :

$$
\mathcal{R}_{\text {red }}\left(P, B^{\prime}\right)=\left\{\begin{array}{l}
Q=\operatorname{conv}\left(q_{1}, \ldots, q_{v}\right) \subset \mathbf{R}^{d}: q_{i}=p_{i} \forall i \in B^{\prime} \\
Q \stackrel{c}{=} P
\end{array}\right\}
$$

The reduced realization space of a square is a single point. Same for all projectively unique polytopes.

Main Results

- A new model for realization spaces of polytopes that arises as the positive part of an algebraic variety.
- Naturally mods out affine equivalence, so no choice of basis is needed. Nice way to study projective equivalence.
- The ideal defining the variety is a computational engine for questions concerning realizations such as rational realizability, convex realizability, freeness of faces, projective uniqueness.
- The ideal suggests a new way to classify polytopes.
$P \subset \mathbf{R}^{d} \quad d$-polytope
vertices: $\left\{p_{1}, \ldots, p_{v}\right\}$
facet inequalities: $\beta_{j}-a_{j}^{T} x \geq 0, j=1, \ldots, f$

Slack matrix of P :
$S_{P}=\left(\begin{array}{ccc} & \vdots \\ \cdots & \beta_{j}-a_{j}^{\top} p_{i} & \cdots \\ & \vdots\end{array}\right)_{v \times f}$
$P \subset \mathbf{R}^{d} \quad d$-polytope
vertices: $\left\{p_{1}, \ldots, p_{v}\right\}$
facet inequalities: $\beta_{j}-a_{j}^{T} x \geq 0, \quad j=1, \ldots, f$

Slack matrix of P :
$S_{P}=\left(\begin{array}{ccc} & \vdots & \\ \cdots & \beta_{j}-a_{j}^{\top} p_{i} & \cdots \\ & \vdots\end{array}\right)_{v \times f}$

$$
S_{P}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

$P \subset \mathbf{R}^{d} \quad d$-polytope
vertices: $\left\{p_{1}, \ldots, p_{v}\right\}$
facet inequalities: $\beta_{j}-a_{j}^{T} x \geq 0, \quad j=1, \ldots, f$
Slack matrix of P :
$S_{P}=\left(\begin{array}{ccc} & \vdots & \\ \cdots & \beta_{j}-a_{j}^{\top} p_{i} & \cdots \\ & \vdots & \end{array}\right)_{v \times f}$

non-negative matrix whose zero pattern captures the combinatorics of P

$$
S_{P}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

$P \subset \mathbf{R}^{d} \quad d$-polytope
vertices: $\left\{p_{1}, \ldots, p_{v}\right\}$
facet inequalities: $\beta_{j}-a_{j}^{T} x \geq 0, j=1, \ldots, f$

Slack matrix of P:

- P has infinitely many slack matrices: $\left\{S_{P} D_{f}\right\}$
- affinely equivalent polytopes have the same slack matrices
$P \subset \mathbf{R}^{d} \quad d$-polytope
vertices: $\left\{p_{1}, \ldots, p_{v}\right\}$
facet inequalities: $\beta_{j}-a_{j}^{T} x \geq 0, j=1, \ldots, f$

Slack matrix of P:

- P has infinitely many slack matrices: $\left\{S_{P} D_{f}\right\}$
- affinely equivalent polytopes have the same slack matrices

Lemma (GGKPRT 2013): S slack matrix of $P \Rightarrow$ $\operatorname{conv}(\operatorname{rows}(S))$ is affinely equivalent to P
S_{P} is a realization of P (representative of affine eq. class of P)
$P \subset \mathbf{R}^{d} \quad d$-polytope
vertices: $\left\{p_{1}, \ldots, p_{v}\right\}$
facet inequalities: $\beta_{j}-a_{j}^{T} x \geq 0, j=1, \ldots, f$

Slack matrix of P :

$$
S_{P}=\left(\begin{array}{ccc}
& \vdots & \\
\cdots & \beta_{j}-a_{j}^{\top} p_{i} & \cdots \\
\vdots &
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
1 & p_{1}^{\top} \\
\vdots & \vdots \\
1 & p_{i}^{\top} \\
\vdots & \vdots \\
1 & p_{v}^{\top}
\end{array}\right)}_{v \times(d+1)} \underbrace{\left(\begin{array}{ccccc}
\beta_{1} & \cdots & \beta_{j} & \cdots & \beta_{f} \\
-a_{1} & \cdots & -a_{j} & \cdots & -a_{f}
\end{array}\right)}_{(d+1) \times f}
$$

$$
\operatorname{rank}\left(S_{P}\right)=d+1
$$

The all-ones vector $\mathbf{1}$ is in the column span of S_{P}.
combinatorial equivalence:

Theorem follows from (GGKPRT 2013):
A nonnegative S is a slack matrix of a realization of P
\Leftrightarrow (1) $\operatorname{support}(S)=\operatorname{support}\left(S_{P}\right)$
(2) $\operatorname{rank}(S)=d+1$
(3) $\mathbf{1} \in$ column span of S
combinatorial equivalence:
Theorem follows from (GGKPRT 2013):
A nonnegative S is a slack matrix of a realization of P
\Leftrightarrow (1) $\operatorname{support}(S)=\operatorname{support}\left(S_{P}\right)$
(2) $\operatorname{rank}(S)=d+1$
(3) $\mathbf{1} \in$ column span of S
projective equivalence:

Theorem (GPRT 2017):

$$
Q \stackrel{\underline{p}}{=} P \Leftrightarrow S_{Q}=D_{v} S_{P} D_{f} \text { for some } D_{v}, D_{f}
$$

Symbolic slack matrix of P:

$S_{P}(x)=$ replace every positive entry in S_{P} by a variable x_{i}

$$
S_{P}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right) \rightarrow S_{P}(x)=\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & 0 \\
0 & 0 & x_{3} & x_{4} \\
x_{5} & 0 & 0 & x_{6} \\
x_{7} & x_{8} & 0 & 0
\end{array}\right)
$$

Symbolic slack matrix of P:

$S_{P}(x)=$ replace every positive entry in S_{P} by a variable x_{i}

$$
S_{P}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right) \rightarrow S_{P}(x)=\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & 0 \\
0 & 0 & x_{3} & x_{4} \\
x_{5} & 0 & 0 & x_{6} \\
x_{7} & x_{8} & 0 & 0
\end{array}\right)
$$

Slack ideal of $\mathrm{P}: \quad I_{P}=\left\langle(d+2)\right.$-minors of $\left.S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty}$

Symbolic slack matrix of P :

$S_{P}(x)=$ replace every positive entry in S_{P} by a variable x_{i}

$$
S_{P}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right) \rightarrow S_{P}(x)=\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & 0 \\
0 & 0 & x_{3} & x_{4} \\
x_{5} & 0 & 0 & x_{6} \\
x_{7} & x_{8} & 0 & 0
\end{array}\right)
$$

Slack ideal of P: $\quad I_{P}=\left\langle(d+2)\right.$-minors of $\left.S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty}$

$$
I_{P}=\left\langle x_{2} x_{4} x_{5} x_{8}-x_{1} x_{3} x_{6} x_{7}\right\rangle
$$

Theorems (GMTW 2017):

$$
\mathcal{V}_{+}\left(I_{P}\right)=\{\text { nonnegative matrices } S \text { satisfying (1) and (2) }\}
$$

(1) $\operatorname{support}(S)=\operatorname{support}\left(S_{P}\right)$
(2) $\operatorname{rank}(S)=d+1$

Symbolic slack matrix of P :

$S_{P}(x)=$ replace every positive entry in S_{P} by a variable x_{i}

$$
S_{P}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right) \quad \rightarrow \quad S_{P}(x)=\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & 0 \\
0 & 0 & x_{3} & x_{4} \\
x_{5} & 0 & 0 & x_{6} \\
x_{7} & x_{8} & 0 & 0
\end{array}\right)
$$

Slack ideal of P: $\quad I_{P}=\left\langle(d+2)\right.$-minors of $\left.S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty}$

$$
I_{P}=\left\langle x_{2} x_{4} x_{5} x_{8}-x_{1} x_{3} x_{6} x_{7}\right\rangle
$$

Theorems (GMTW 2017):

$$
\mathcal{V}_{+}\left(I_{P}\right)=\{\text { nonnegative } S \text { satisfying (1) and (2) }\}
$$

$\mathcal{V}_{+}\left(I_{P}\right) /\left(\mathbf{R}_{>0}^{v} \times \mathbf{R}_{>0}^{f}\right) \leftrightarrow$ proj. eq. classes with the comb. of P $\mathcal{V}_{+}\left(I_{P}\right) /\left(\mathbf{R}_{>0}^{v} \times \mathbf{R}_{>0}^{f}\right)$ rationally equivalent to $\mathcal{R}_{\text {red }}\left(P, B^{\prime}\right)$
slack realization space of P

Is there a convex realization?

(Altshuler \& Steinberg 1985):
a non-polytopal 3-sphere on 8 vertices
$12345,12346,12578,12678,14568,34578,2357,2367,3467,4678$

$$
S_{P}(\mathbf{x})=\left[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & 0 & x_{6} & x_{7} & 0 & 0 & x_{8} & x_{9} \\
0 & 0 & x_{10} & x_{11} & x_{12} & 0 & 0 & 0 & 0 & x_{13} \\
0 & 0 & x_{14} & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 & 0 \\
0 & x_{18} & 0 & x_{19} & 0 & 0 & 0 & x_{20} & x_{21} & x_{22} \\
x_{23} & 0 & x_{24} & 0 & 0 & x_{25} & x_{26} & 0 & 0 & 0 \\
x_{27} & x_{28} & 0 & 0 & x_{29} & 0 & 0 & 0 & 0 & 0 \\
x_{30} & x_{31} & 0 & 0 & 0 & 0 & x_{32} & x_{33} & x_{34} & 0
\end{array}\right]
$$

$I_{P}=\langle 1\rangle \Rightarrow$ there is no rank 5 matrix with this support
There isn't even a point/hyperplane configuration in \mathbf{C}^{4} with the above incidences.

Can a face be freely prescribed?

Lemma: F face of $P \Rightarrow S_{F}$ submatrix of $S_{P} \& I_{F} \subset I_{P} \cap \mathbf{C}\left[\mathbf{x}_{F}\right]$ F prescribable in $P \Leftrightarrow \mathcal{V}_{+}\left(I_{F}\right)=\mathcal{V}_{+}\left(I_{P} \cap \mathbf{C}\left[\mathbf{x}_{F}\right]\right)$
(Barnette 1987): 4-d prism over a square pyramid with a non-prescribable cubical facet

$$
S_{P}(\mathbf{x})=\left[\begin{array}{ccccccc}
x_{1} & 0 & 0 & 0 & x_{2} & x_{3} & 0 \\
x_{4} & 0 & 0 & 0 & 0 & x_{5} & x_{6} \\
x_{7} & 0 & 0 & x_{8} & 0 & 0 & x_{9} \\
x_{7} & 0 & 0 & x_{11} & x_{12} & 0 & 0 \\
x_{13} & 0 & x_{14} & 0 & 0 & 0 & 0 \\
0 & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 \\
0 & x_{18} & 0 & 0 & 0 & x_{19} & x_{20} \\
0 & x_{21} & 0 & x_{22} & 0 & 0 & x_{23} \\
0 & x_{24} & 0 & x_{25} & x_{26} & 0 & 0 \\
0 & x_{27} & x_{28} & 0 & 0 & 0 & 0
\end{array}\right] . \begin{array}{ll}
& \operatorname{dim}\left(I_{F}\right)=16 \\
\text { with a bit more work } \\
\text { conclude that } F \text { cannot be } \\
\text { freely prescribed in } P
\end{array}
$$

Is there a rational realization?

Lemma: P is rational $\Leftrightarrow \mathcal{V}_{+}\left(I_{P}\right)$ has a rational point

(Ziegler 2008)

$$
S(\mathbf{x})=\left[\begin{array}{ccccccccc}
x_{1} & 0 & x_{2} & 0 & x_{3} & x_{4} & x_{5} & x_{6} & 0 \\
x_{7} & x_{8} & x_{9} & 0 & x_{10} & 0 & 0 & x_{11} & x_{12} \\
x_{13} & x_{14} & 0 & x_{15} & x_{16} & x_{17} & x_{18} & 0 & 0 \\
x_{19} & x_{20} & 0 & x_{21} & 0 & 0 & x_{22} & x_{23} & x_{24} \\
x_{25} & 0 & x_{26} & x_{27} & 0 & x_{28} & 0 & 0 & x_{29} \\
0 & 0 & x_{30} & x_{31} & x_{32} & 0 & x_{33} & x_{34} & x_{35} \\
0 & x_{36} & 0 & x_{37} & x_{38} & x_{39} & 0 & x_{40} & x_{41} \\
0 & x_{42} & x_{43} & 0 & x_{44} & x_{45} & x_{46} & 0 & x_{47} \\
0 & x_{48} & x_{49} & x_{50} & 0 & x_{51} & x_{52} & x_{53} & 0
\end{array}\right] .
$$

Scaling rows and columns allows one to set several variables to one.
Then $x_{46}^{2}+x_{46}-1$ is in the slack ideal.
Therefore, $x_{46}=\frac{-1 \pm \sqrt{5}}{2}$ and there is no rational realization.

I_{P} has no monomials

I_{P} can be binomial though typically it is not

Which are the binomial ideals, toric ideals?

A four-dimensional example

$P=\operatorname{conv}\left\{0,2 e_{1}, 2 e_{2}, 2 e_{3}, e_{12}-e_{3}, e_{4}, e_{34}\right\}$

$$
S_{P}(x)=\left[\begin{array}{ccccccc}
0 & x_{1} & 0 & 0 & 0 & x_{2} & 0 \\
x_{3} & 0 & 0 & 0 & 0 & x_{4} & 0 \\
x_{5} & 0 & x_{6} & 0 & 0 & 0 & x_{7} \\
0 & x_{8} & x_{9} & 0 & 0 & 0 & x_{10} \\
0 & 0 & 0 & 0 & x_{11} & 0 & x_{12} \\
0 & 0 & 0 & x_{13} & x_{14} & x_{15} & 0 \\
0 & 0 & x_{16} & x_{17} & 0 & 0 & 0
\end{array}\right] .
$$

$\exists 49$ 6-minors of $S_{P}(x)$ all binomials except 4 like: $x_{4} x_{5} x_{10} x_{11} x_{13} x_{16}-x_{4} x_{5} x_{9} x_{12} x_{14} x_{17}+x_{3} x_{7} x_{9} x_{11} x_{15} x_{17}-x_{3} x_{6} x_{10} x_{11} x_{15} x_{17}$

After saturating the ideal of minors, get the slack ideal:

$$
I_{P}= \begin{cases}x_{7} x_{9}-x_{6} x_{10} & x_{10} x_{11} x_{13} x_{16}-x_{9} x_{12} x_{14} x_{17} \\ x_{7} x_{11} x_{13} x_{16}-x_{6} x_{12} x_{14} x_{17} & x_{2} x_{8} x_{13} x_{16}-x_{1} x_{9} x_{15} x_{17} \\ x_{4} x_{5} x_{13} x_{16}-x_{3} x_{6} x_{15} x_{17} & x_{2} x_{8} x_{12} x_{14}-x_{1} x_{10} x_{11} x_{15} \\ x_{4} x_{5} x_{12} x_{14}-x_{3} x_{7} x_{11} x_{15} \\ x_{2} x_{3} x_{6} x_{8}-x_{1} x_{4} x_{5} x_{9} & x_{2} x_{3} x_{7} x_{8}-x_{1} x_{4} x_{5} x_{10}\end{cases}
$$

I_{P} has no monomials

I_{P} can be binomial though typically it is not

Which are the binomial ideals, toric ideals?

$$
\begin{aligned}
& d=2: \\
& d=3: \\
& d=4:
\end{aligned}
$$

I_{P} has no monomials

I_{P} can be binomial though typically it is not

Which are the binomial ideals, toric ideals?

Could I_{P} not be the defining ideal of $\mathcal{V}_{+}\left(I_{P}\right)$?
If I_{P} is toric, then it is.

Which slack ideals are toric ideals?

Toric

- There are infinitely many projectively unique polytopes in high enough dimension whose slack ideals are not toric. (Adiprasito-Ziegler 2015 \& GPRT)
- In dimension 5, there are non-projectively unique polytopes whose slack ideals are toric.
(Gouveia-Macchia-T-Wiebe)
- Which polytopes are PU \& have toric slack ideals? e.g. v or $f=d+2$ (products of simplices), example from before

Graphic slack ideals

K_{P} - bipartite graph supporting S_{P}

$$
S_{P}=\left[\begin{array}{llll}
0 & 3 & 6 & 0 \\
0 & 0 & 3 & 3 \\
1 & 0 & 0 & 3 \\
2 & 3 & 0 & 0
\end{array}\right]
$$

A_{P} - vertex-edge incidence matrix of K_{P}
T_{P} - toric ideal of A_{P}
Definition: I_{P} is graphic if $I_{P}=T_{P}$
(GMTW 2017): I_{P} is graphic if and only if it is toric and P is projectively unique.

Thank You

