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Preface.

• Thank you, organizers!

•Who is here?

• This is the Introductory Workshop.

• Focus on accessibility for grad students and junior faculty.

• # (questions by students + postdocs) ≥ # (questions by others)
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Summary.

• Matroids are everywhere.
• Many matroid sequences are (conj.) unimodal, log-concave.
• Geometry helps matroids.
• Tropical geometry helps matroids and needs matroids.
• (If time) Some new constructions and results.

Joint with Carly Klivans (06), Graham Denham+June Huh (17).
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Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B= {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. A set E and a collection B of subsets of E
are a matroid if they satisfies properties (B1) and (B2).



matroids unimodality and log concavity strategy: geometric models tropical models directions

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B= {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. A set E and a collection B of subsets of E
are a matroid if they satisfies properties (B1) and (B2).



matroids unimodality and log concavity strategy: geometric models tropical models directions

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B= {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. A set E and a collection B of subsets of E
are a matroid if they satisfies properties (B1) and (B2).



matroids unimodality and log concavity strategy: geometric models tropical models directions

Many matroids in “nature":

1. Linear matroids
E= set of vectors spanning Rd .
B = bases of Rd in E .

E = abcde
B= {abc,abd ,abe,acd ,ace}

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

2. Graphical matroids
E= edges of a connected graph G.
B = spanning trees of G.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

3. Algebraic matroids
E = set of elements in a field extension L/K .
B = transcendence bases for L/K in E

a = z3, b = x +y , c = x −y
d = xy , e = x2y2.

4. Transversal matroids
E = “bottom" vertices of a bipartite graph.
B = maxl sets that can be matched to the top.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 3. Matching Theory.

Goal: Marry as many people as possible.

No gay marriage in Texas.(!) No poligamy.

 a    b    c    d    e    f   

 1    2    3   

Wednesday, October 2, 13

Possible married men: {abc, abd , abe, acd , ace}
(The systems of distinct representatives.)Theorem for matroids 7→ Theorems for vectors, graphs, field exts, matchings,. . .
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MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.
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MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

Many points of view.

1. Bases
B = {abc,abd ,abe,acd ,ace}

2. Independent sets
I = {abc,abd ,abe,acd ,ace,
ab,ac,ad ,ae,bc,bd ,be,cd ,ce,
a,b,c,d ,e,
/0}

3. Circuits (dependences.)
C = {de,bcd ,bce}

4. Flats (spanned sets.)
F = {abcde
ab,ac,ade,bcde,
a,b,c,de,
/0}
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Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.
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Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

Many points of view.

1. Bases (polytope)

2. Independents (simplicial complex)

3. Circuits (monomial ideal)

4. Flats (poset)

It is as if one were to condense all trends of
present day mathematics onto a single finite

structure, a feat that anyone would a priori
deem impossible, were it not for the fact that

matroids do exist.

Gian-Carlo Rota
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Log concavity for graphs: Read + Hoggar

Proper coloring of a graph G = (V ,E):
color each vertex so that no two neighbors have the same color

Chromatic polynomial of G:

χG(q) = # of proper colorings of V with q colors
χG(q)/q = wv−1qv−1−wv−2qv−2 + · · ·±w1

Conjecture. (Read 1968, Hoggar 1974) (non-0 part of)
the sequence w1, . . . ,wv is unimodal⇐ log-concave:

w1 ≤ ·· ·wk−1 ≤ wk ≥ wk+1 ≥ ·· · ≥ wv−1

wi−1wi+1 ≤ w2
i for i = 2, . . . ,v −2

Let’s check this in an example.

Why care? Log-concavity is easy or quite hard. Progress
seems to require new ideas, constructions, connections.
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Theorem. (Huh 2012) This is true.
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Log concavity for matroids: Rota,Welsh,Mason,Heron

Fact 1. χG(q)/q = “characteristic polynomial of M(G)" Check!

Let M be a matroid on E , < a linear order on E .
Broken circuit: C−max<C for a circuit C

Two simplicial complexes from M:

IN(M) = {independent sets}
BC<(M) = {independent sets containing no broken circuit}

f -vector: fi(∆) = # of faces F ∈∆ with |F |= i + 1.

Fact 2. fi(BC<(M)) = coeffs of char. polynomial χM . Check!

Conjectures. (Welsh 71 Mason 72, Rota 71 Heron 72 Welsh 76)
{fi(IN(M))} and {fi(BC<(M))} are strictly unimodal, log-concave.

Theorem. (Adiprasito–Huh–Katz 2015) These are strictly? true.
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Log concavity for matroids, 2: Dawson + Huh

Let M be a matroid on E , < a linear order on E .

Two simplicial complexes from M:

IN(M) = {independent sets}
BC<(M) = {independent sets cont. no broken circuit}

h-vector: A more compact way of storing the f -vector. Compute!

h0xv +h1xv−1 + · · ·+hv x0 = f0(x +1)v + f1(x +1)v−1 + · · ·+ fv (x +1)0

Conjectures. (Dawson 84, Huh 15)
{hi(IN(M))} and {hi(BC<(M))} are unimodal, log-concave.

Theorem. (Huh 15) This is true for M linear over characteristic 0.

>90% Theorem. (A.–Denham–Huh 17) This is true for any M.
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Unimodality and log-concavity: relations
Two simple but useful observations (Brylawski, Lenz):

1. IN(M) = BC<(M×p) for M×p = free dual extension of M
2. h(∆) log-concave⇒ f (∆) strictly log-concave .

Log-concavity implications:

hi(BC<(M))

��

−→ fi(BC<(M))

��
hi(IN(M)) −→ fi(IN(M))

The log-concavity of hi(BC<(M)) implies all the others.

Juhnke-Kubitzke, Le, 2016: It also implies Swartz’s conjecture:

hi(BC<(M)) is flawless : hi ≤ hs−i for i ≤ s/2.

Chari 97 and Swartz 03 proved this for hi(IN(M)) only.
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matroids → geometries

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

• Almost any matroid we come up with is linear (geometric).
• (Nelson, 16) Almost all matroids are not linear.

• “Missing axiom" for linear matroids? No. (Mayhew et al, 14)
• This is not a flaw. Matroids are natural geometric objects.



matroids unimodality and log concavity strategy: geometric models tropical models directions

matroids → geometries

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

• Almost any matroid we come up with is linear (geometric).
• (Nelson, 16) Almost all matroids are not linear.

• “Missing axiom" for linear matroids? No. (Mayhew et al, 14)
• This is not a flaw. Matroids are natural geometric objects.



matroids unimodality and log concavity strategy: geometric models tropical models directions

matroids → geometries

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

• Almost any matroid we come up with is linear (geometric).
• (Nelson, 16) Almost all matroids are not linear.

• “Missing axiom" for linear matroids?

No. (Mayhew et al, 14)
• This is not a flaw. Matroids are natural geometric objects.



matroids unimodality and log concavity strategy: geometric models tropical models directions

matroids → geometries

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

• Almost any matroid we come up with is linear (geometric).
• (Nelson, 16) Almost all matroids are not linear.

• “Missing axiom" for linear matroids? No. (Mayhew et al, 14)
• This is not a flaw. Matroids are natural geometric objects.



matroids unimodality and log concavity strategy: geometric models tropical models directions

Strategy: geometric models of matroids

To prove log-concavity of invariants of a linear matroid M:

1. Build an algebro-geometric model X (M) for M.
2. (Combin invariants of M) = (Geom invariants of X (M)).
3. Algebraic-geometric inequalities for geometric invariants.

Two algebro-geometric models.
fi(BC<(M)): wonderful compactification DP(A).

De Concini–Procesi 95

hi(BC<(M)): critical set variety X(A).
Varchenko 95, Orlik–Terao 95, Denham–Garrousian–Schulze 12

Good news: This strategy works! (Huh, 2012, 15)
Bad news: ...only when M is a linear matroid.
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Strategy of proofs: tropical geometric models

To prove log-concavity of invariants of any matroid M:

1. Build a tropical geometric model X (M) for M.
2. (Combin invariants of M) = (Trop geom invariants of X (M)).
3. Algebro-geom inequalities for tropical geometric invariants.

Two tropical geometric models.
fi(BC<(M)): tropical linear space Trop(M).

Sturmfels 02, A.–Klivans 03

hi(BC<(M)): combinatorial critical set variety Crit(M).
A.–Denham–Huh 17

Good news: This works even when M is not realizable!
(Good or bad) news: We have to work harder for our inequalities.
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Tropical geometry: a general philosophy
Tropicalization is a very useful general technique:

algebraic variety 7→ tropical variety
V 7→ Trop(V ).

Idea: Obtain information about V from Trop(V ).

o Trop(V ) is simpler, but still contains information about V .

o Trop(V ) is a polyhedral complex, we can do combinatorics.

(1,2,1,0)    

(3,2,1,0)    

(1,3,1,0)    

(-1,0,1,0)    

(-3,-2,-1,0)    

(-1,0,2,0)    

1

2

3

4

conic in 2-space line in 3-space plane in 2-space
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Tropicalization.
To tropicalize a projective variety, take all the equations it
satisfies, and change:

X + Y 7→ min(x ,y)

X ·Y 7→ x + y
multiplicative scalar 7→ 0

additive scalar 7→ ignore
= 0 7→ is achieved ≥ twice

For example, the 2-D surface in C4:

2X + Y = 0,X 3 + Z 2W + W 3 = 0

becomes the 2-D polyhedral complex in R4:

min(x ,y), min(3x ,2z + w ,3w), min(3y ,2z + w ,3w),...
are achieved twice.

I am oversimplifying in some ways.
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Tropical linear spaces = matroids

V = linear subspace of Cn

TropV = tropical linear space.

w ∈ TropV ↔ for each circuit a1Xi1 + · · ·+ akXik = 0 of V ,
min(wi1 , . . . ,wik ) is achieved ≥ twice.

Corollary: TropV only depends on the matroid of V .

Example. L = {X ∈ R4 : X1−X2 + X3 = 0 , X4 = 2X3}
Circuits: 123,34,124.

TropL: min(w1,w2,w3),min(w1,w2,w4),min(w3,w4) att. ≥ twice.
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Tropical linear spaces = matroids.
Example. (cont.) Circuits: 123,34,124.

TropL: min(w1,w2,w3),min(w1,w2,w4),min(w3,w4) att. ≥ twice.

Whether w ∈ TropL depends on relative order of w1, . . . ,w4.
• w3 = w4
• w1 > w2 = w3 or w2 > w1 = w3 or w3 > w1 = w2.

↓

Three rays: e1, e2, e34

Q: What are these in general?

2>1=3=4

1>2=3=4

3=4>1=2

0011

1000

0100
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Tropical linear spaces = matroids
Definition. (Sturmfels 02) The tropical linear space of M is

Trop(M) = {w ∈ RE : for every circuit C of M,

minc∈C wc is achieved ≥ twice}

2>1=3=4

1>2=3=4

3=4>1=2

0011

1000

0100

Let eadf = (1,0,0,1,0,1).

If F = { /0⊂ F1 ⊂ ·· · ⊂ Fr = E} is a flag of flats

σF := cone(eF1 , . . . ,eFr )⊆ RE

Theorem. (A. - Klivans 03)
The tropical linear space Trop(M) has
• rays: eF where F is a flat
• cones: σF where F is a flag of flats

Trop(M) =
⋃
F flag σF

So we can recover M from Trop(M). (for M simple.)
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Tropical linear spaces = matroids
Definition. (Sturmfels 02) The tropical linear space of M is

Trop(M) = {w ∈ RE : for every circuit C of M,

minc∈C wc is achieved ≥ twice}

2>1=3=4

1>2=3=4

3=4>1=2

0011

1000

0100

There is also an intrinsic tropical definition:

Theorem / Definition. (Fink ’09)
A tropical linear space is an abstract tropical variety of degree 1.

So matroids arise very naturally – even non-linear ones!
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Orthogonality for matroids
Theorem / Definition. If B is a matroid on E , then

B⊥ = {E −B : B ∈B}

is also a matroid, the orthogonal or dual matroid M⊥.

This generalizes:

• Dual graphs:
abe spanning tree of G

l
cd spanning tree of G∗

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

A theorem in matroid theory gives us theorems in � 5 areas!

Theorem. If M = (E , B) is a matroid, then M⇤ = (E , B⇤) is the
dual matroid, where

B⇤ = {E \ B : B is a basis of M}

Examples. GRAPHS.

• If M is the matroid of a planar graph G, then M⇤ is the
matroid of the dual graph G⇤.

 a   
 b   

 c   

 f   
 e   

 d   

 a   
 f   

 c   

 e   
 b   

 d   

Wednesday, October 2, 13

B⇤ = {def , cef , cdf , bef , bdf}.
• Orthogonal complements:

abe basis of W
l

cd basis of W⊥

W = rowspace

0 1 0 .5 1
0 0 1 .5 1
1 0 0 0 0


W⊥ = rowspace

[
0 1 1 0 −1
0 0 0 2 −1

]
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Tropical critical set variety

Let {e1, . . . ,en, f1, . . . , fn} = standard bases of RE and RE .

Definition. (A. – Denham – Huh 17)
The tropical critical set variety Crit(M) ⊂ RE ×RE of M has
• rays: eF + fG where F is a flat and G is a coflat with F ∪G = E .
• cones: τF,G := cone(eF1 + fG1 , . . . ,eFn−1 + fGn−1)
for each pair F,G of compatible flags of flats and coflats.

where
Definition. (A.–Denham–Huh 17) Say two flags

F = { /0⊆ F1 ⊆ ·· · ⊆ Fk = E} of flats
G = {E ⊇G1 ⊇ ·· · ⊆Gk ⊆ /0} of coflats (flats of M⊥)

are compatible if
k⋂

i=1

(Fi ∪Gi) = E ,
k⋃

i=1

(Fi ∩Gi) 6= E .

(Motivation: toric+trop geometry, hyperplane arrangements, Coxeter combin)
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Trop M and Crit M as configuration spaces

...if there is time...
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Tropical critical set variety
Why is this a useful construction?

Definition. (A.–Denham–Huh 17) The Chow ring of Crit(M) is

AM,M⊥ = Z[xF ,G : F flat,G coflat,F ∪G = E ]/(IM + JM)

where
IM =

(
xF1,G1

· · ·xFk ,Gk
: {Fi} and {Gi} are not compatible

)
JM =

(
∑

i∈F 6=E
xF ,G− ∑

j∈F 6=E
xF ,G, ∑

i∈G 6=E
xF ,G− ∑

j∈G 6=E
xF ,G : i , j ∈ E

)

It behaves like the Chow ring of a smooth proj. alg. variety; e.g.:

Poincaré duality : A = A0⊕·· ·⊕An−1, Ai ∼= An−1−i

Hard Lefschetz theorem : dimA0 ≤ ·· · ≤ dimA(n−1)/2 ≥ ·· · ≥ dimAn−1

Hodge-Riemann relations : imply log-concavity results
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Tropical critical set variety
Definition. (A.–Denham–Huh 17) In the Chow ring of Crit(M)

AM,M⊥ = Z[xF ,G : F flat,G coflat,F ∪G = E ]/(IM + JM)

the “hyperplane" and “cohyperplane" classes are

a = ∑
i∈F 6=E

xF ,G, d = ∑
i∈F ,G

xF ,G

An−1
∼= A0 = Z ⇒ degree n−1 elements are just integers!

Theorem. (A.–Denham–Huh 17) In the Chow ring of Crit(M)

ar−1−idn−r−i = hi(BC<(M)) (1≤ i ≤ r −1)

This program should imply the log-concavity of h1, . . . ,hr−1.



matroids unimodality and log concavity strategy: geometric models tropical models directions

Open problems

1. Other log-concavity results from these constructions?

2. Topology and combinatorics of critical set variety?

Trop(M) Crit(M)

(A.–Klivans, 06) ?
Trop(M) = wedge of |µ(M)| (r −1)-spheres
(A.–Klivans–Williams, 06) (M oriented) ?
•Trop+(M) = sphere.
•|µ(M)| reorientations whose Trop+ cover Trop(M).
(A.–Reiner–Williams, 06) (M = root system) ?
Trop+(M) = graph associahedron of Dynkin dgm

3. Connection w Chern-Schwartz-MacPherson classes ck (M)?
degck = hk (BC<). (López de Medrano–Rincón–Shaw, 17)
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muchas gracias.
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