unimodality and log concavity

strategy: geometric models

tropical mode

directions

Matroids and Tropical Geometry

Federico Ardila

San Francisco State University (San Francisco, California) Mathematical Sciences Research Institute (Berkeley, California) Universidad de Los Andes (Bogotá, Colombia)

Introductory Workshop: Geometric and Topological Combinatorics MSRI, September 5, 2017

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	000	00 0000	00
			00000	

Preface.

• Thank you, organizers!

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	000	00 0000 00000	00

Preface.

- Thank you, organizers!
- Who is here?

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	000	00	00
			00000	

Preface.

- Thank you, organizers!
- Who is here?
- This is the Introductory Workshop.
- Focus on accessibility for grad students and junior faculty.
- # (questions by students + postdocs) \geq # (questions by others)

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	000	00 0000 00000	00

Summary.

- Matroids are everywhere.
- Many matroid sequences are (conj.) unimodal, log-concave.
- Geometry helps matroids.
- Tropical geometry helps matroids and needs matroids.
- (If time) Some new constructions and results.

Joint with Carly Klivans (06), Graham Denham+June Huh (17).

matroids
0000

unimodality and log concavity

strategy: geometric models

tropical mode

directions

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = collection of subsets of *E* which are bases of \mathbb{R}^d .

E = abcde $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

unimodality and log concavity

strategy: geometric models

tropical mode

directions

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = collection of subsets of *E* which are bases of \mathbb{R}^d .

Properties: (B1) $\mathcal{B} \neq \emptyset$ (B2) If $A, B \in \mathcal{B}$ and $a \in A - B$, then there exists $b \in B - A$ such that $(A - a) \cup b \in \mathcal{B}$.

E = abcde $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

unimodality and log concavity

strategy: geometric models

tropical mode

directions

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = collection of subsets of *E* which are bases of \mathbb{R}^d .

Properties: (B1) $\mathcal{B} \neq \emptyset$ (B2) If $A, B \in \mathcal{B}$ and $a \in A - B$, then there exists $b \in B - A$ such that $(A - a) \cup b \in \mathcal{B}$.

 $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

Definition. A set *E* and a collection \mathcal{B} of subsets of *E* are a **matroid** if they satisfies properties (B1) and (B2).

matroids o●oo	unimodality and log concavity	strategy: geometric models	tropical models	directions 00
			00000	
Mar	nv matroids in "nature	": B = {	E = a abc abd abe acd	bcde ace}

1. Linear matroids E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = bases of \mathbb{R}^d in E.

matroids o●oo	unimodality and log concavity	strategy: geometric models	tropical models 00 0000 00000	directions oo
Many	matroids in "nature":	$\mathcal{B} = \{a$	E = a, bc, abd, abe, acd,	bcde ace}

- 1. Linear matroids E= set of vectors spanning \mathbb{R}^d . \mathcal{B} = bases of \mathbb{R}^d in E.
- 2. Graphical matroids E= edges of a connected graph G. \mathcal{B} = spanning trees of G.

matroids ○●○○	unimodality and log concavity	strategy: geometric models	tropical models oo ooooo ooooo	directio oo
N	lany matroids in "nature":	$\mathcal{B} = \{abc$	E = ak c, abd, abe, acd, a	ocde ace}
1. <i>E</i> B	Linear matroids = set of vectors spanning \mathbb{R}^d . = bases of \mathbb{R}^d in <i>E</i> .		a d c	e

- 2. Graphical matroids E= edges of a connected graph G. \mathcal{B} = spanning trees of G.
- 3. Algebraic matroids
- E = set of elements in a field extension L/K.
- \mathcal{B} = transcendence bases for L/K in E

matroids ○●○○	unimodality and log concavity	strategy: geometric models	tropical models 00 0000 00000	direct 00
Mai	ny matroids in "nature":	$\mathcal{B} = \{a_i\}$	E = a, bc, abd, abe, acd,	bcde ace}
1. Li <i>E=</i> s B =	near matroids set of vectors spanning \mathbb{R}^d . bases of \mathbb{R}^d in <i>E</i> .		a b d c	*e
2. G <i>E</i> = e	raphical matroids	G.		0

 \mathcal{B} = spanning trees of *G*.

3. Algebraic matroids

E = set of elements in a field extension L/K.

 \mathcal{B} = transcendence bases for L/K in E

- 4. Transversal matroids
- E = "bottom" vertices of a bipartite graph.
- $\ensuremath{\mathbb{B}}$ = maxl sets that can be matched to the top.

 $a = z^3, b = x + y, c = x - y$ $d = xy, e = x^2y^2.$

Theorem for matroids \mapsto Theorems for vectors, graphs, field exts, matchings,...

matroids	
0000	

unimodality and log concavity

strategy: geometric models

tropical models

directions

Many points of view.

1. Bases $\mathcal{B} = \{abc, abd, abe, acd, ace\}$

2. Independent sets $J = \{abc, abd, abe, acd, ace, ab, ac, ad, ae, bc, bd, be, cd, ce, a, b, c, d, e, 0\}$

3. Circuits (dependences.) $C = \{de, bcd, bce\}$

4. Flats (spanned sets.)
 𝔅 = {abcde
 ab, ac, ade, bcde,
 a, b, c, de,
 ∅}

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	000	00	00
			0000	

Many points of view.

- 1. Bases (polytope)
- 2. Independents (simplicial complex)
- 3. Circuits (monomial ideal)
- 4. Flats (poset)

It is as if one were to condense all trends of present day mathematics onto a single finite structure, a feat that anyone would a priori deem impossible, were it not for the fact that matroids do exist.

Gian-Carlo Rota

unimodality and log concavity •0000 strategy: geometric models

tropical mode

directions

Log concavity for graphs: Read + Hoggar

Proper coloring of a graph G = (V, E):

color each vertex so that no two neighbors have the same color

Chromatic polynomial of G:

 $\chi_G(q) = \# \text{ of proper colorings of } V \text{ with } q \text{ colors}$ $\chi_G(q)/q = w_{v-1}q^{v-1} - w_{v-2}q^{v-2} + \cdots \pm w_1$

Conjecture. (Read 1968, Hoggar 1974) (non-0 part of) the sequence w_1, \ldots, w_v is unimodal \leftarrow log-concave:

$$w_1 \leq \cdots \leq w_{k-1} \leq w_k \geq w_{k+1} \geq \cdots \geq w_{\nu-1}$$

$$w_{i-1}w_{i+1} \le w_i^2$$
 for $i = 2, ..., v-2$

unimodality and log concavity •0000 strategy: geometric models

tropical mode

directions

Log concavity for graphs: Read + Hoggar

Proper coloring of a graph G = (V, E):

color each vertex so that no two neighbors have the same color

Chromatic polynomial of G:

 $\chi_G(q) = \# \text{ of proper colorings of } V \text{ with } q \text{ colors}$ $\chi_G(q)/q = w_{v-1}q^{v-1} - w_{v-2}q^{v-2} + \cdots \pm w_1$

Conjecture. (Read 1968, Hoggar 1974) (non-0 part of) the sequence w_1, \ldots, w_v is unimodal \leftarrow log-concave:

$$w_1 \leq \cdots \leq w_{k-1} \leq w_k \geq w_{k+1} \geq \cdots \geq w_{\nu-1}$$

$$w_{i-1}w_{i+1} \le w_i^2$$
 for $i = 2, ..., v-2$

Let's check this in an example.

unimodality and log concavity •0000 strategy: geometric models

tropical mode

directions

Log concavity for graphs: Read + Hoggar

Proper coloring of a graph G = (V, E):

color each vertex so that no two neighbors have the same color

Chromatic polynomial of G:

 $\chi_G(q) = \# \text{ of proper colorings of } V \text{ with } q \text{ colors}$ $\chi_G(q)/q = w_{v-1}q^{v-1} - w_{v-2}q^{v-2} + \cdots \pm w_1$

Conjecture. (Read 1968, Hoggar 1974) (non-0 part of) the sequence w_1, \ldots, w_v is unimodal \leftarrow log-concave:

$$w_1 \leq \cdots \leq w_{k-1} \leq w_k \geq w_{k+1} \geq \cdots \geq w_{\nu-1}$$

$$w_{i-1}w_{i+1} \le w_i^2$$
 for $i = 2, ..., v-2$

Let's check this in an example.

Why care? Log-concavity is easy or quite hard. Progress seems to require new ideas, constructions, connections.

matroids 0000

unimodality and log concavity

strategy: geometric models

tropical mode

directions

Log concavity for graphs: Read + Hoggar

Proper coloring of a graph G = (V, E):

color each vertex so that no two neighbors have the same color

Chromatic polynomial of G:

 $\chi_G(q) = \# \text{ of proper colorings of } V \text{ with } q \text{ colors}$ $\chi_G(q)/q = w_{v-1}q^{v-1} - w_{v-2}q^{v-2} + \cdots \pm w_1$

Conjecture. (Read 1968, Hoggar 1974) (non-0 part of) The sequence w_1, \ldots, w_v is unimodal and log-concave:

$$w_1 \leq \cdots \leq w_{k-1} \leq w_k \geq w_{k+1} \geq \cdots \geq w_{\nu-1}$$

$$w_{i-1}w_{i+1} \le w_i^2$$
 for $i = 1, \dots, v-2$

Note: log-concavity implies unimodality.

matroids 0000

unimodality and log concavity 00000

strategy: geometric models

tropical mode

directions

Log concavity for graphs: Read + Hoggar

Proper coloring of a graph G = (V, E):

color each vertex so that no two neighbors have the same color

Chromatic polynomial of G:

 $\chi_G(q) = \# \text{ of proper colorings of } V \text{ with } q \text{ colors}$ $\chi_G(q)/q = w_{v-1}q^{v-1} - w_{v-2}q^{v-2} + \cdots \pm w_1$

Conjecture. (Read 1968, Hoggar 1974) (non-0 part of) The sequence w_1, \ldots, w_v is unimodal and log-concave:

$$w_1 \leq \cdots \leq w_{k-1} \leq w_k \geq w_{k+1} \geq \cdots \geq w_{\nu-1}$$

$$w_{i-1}w_{i+1} \le w_i^2$$
 for $i = 1, ..., v - 2$

Note: log-concavity implies unimodality.

Theorem. (Huh 2012) This is true.

strategy: geometric models

tropical mode

directions

Log concavity for matroids: Rota, Welsh, Mason, Heron

Fact 1. $\chi_G(q)/q$ = "characteristic polynomial of M(G)" Check!

Log concavity for matroids: Rota, Welsh, Mason, Heron

Fact 1. $\chi_G(q)/q$ = "characteristic polynomial of M(G)" Check!

Let *M* be a matroid on *E*, < a linear order on *E*. Broken circuit: $C - \max_{<} C$ for a circuit *C*

Two simplicial complexes from *M*:

 $IN(M) = \{ independent sets \}$

 $\overline{BC}_{<}(M) = \{\text{independent sets containing no broken circuit}\}$

f-vector: $f_i(\Delta) = #$ of faces $F \in \Delta$ with |F| = i + 1.

Fact 2. $f_i(\overline{BC}_{<}(M)) = \text{coeffs of char. polynomial } \chi_M$. Check!

Log concavity for matroids: Rota, Welsh, Mason, Heron

Fact 1. $\chi_G(q)/q$ = "characteristic polynomial of M(G)" Check!

Let *M* be a matroid on *E*, < a linear order on *E*. Broken circuit: $C - \max_{<} C$ for a circuit *C*

Two simplicial complexes from *M*:

 $IN(M) = \{ independent sets \}$

 $\overline{BC}_{<}(M) = \{\text{independent sets containing no broken circuit}\}$

f-vector: $f_i(\Delta) = #$ of faces $F \in \Delta$ with |F| = i + 1.

Fact 2. $f_i(\overline{BC}_{<}(M)) = \text{coeffs of char. polynomial } \chi_M$. Check!

Conjectures. (Welsh 71 Mason 72, Rota 71 Heron 72 Welsh 76) $\{f_i(IN(M))\}\$ and $\{f_i(\overline{BC}_{<}(M))\}\$ are strictly unimodal, log-concave.

Log concavity for matroids: Rota, Welsh, Mason, Heron

Fact 1. $\chi_G(q)/q$ = "characteristic polynomial of M(G)" Check!

Let *M* be a matroid on *E*, < a linear order on *E*. Broken circuit: $C - \max_{<} C$ for a circuit *C*

Two simplicial complexes from *M*:

 $IN(M) = \{ independent sets \}$

 $\overline{BC}_{<}(M) = \{ \text{independent sets containing no broken circuit} \}$

f-vector: $f_i(\Delta) = #$ of faces $F \in \Delta$ with |F| = i + 1.

Fact 2. $f_i(\overline{BC}_{<}(M)) = \text{coeffs of char. polynomial } \chi_M$. Check!

Conjectures. (Welsh 71 Mason 72, Rota 71 Heron 72 Welsh 76) $\{f_i(IN(M))\}\$ and $\{f_i(\overline{BC}_{<}(M))\}\$ are strictly unimodal, log-concave.

Theorem. (Adiprasito–Huh–Katz 2015) These are strictly? true.

Log concavity for matroids, 2: Dawson + Huh

Let *M* be a matroid on E, < a linear order on E.

Two simplicial complexes from *M*:

 $IN(M) = \{ independent sets \}$

 $\overline{BC}_{<}(M) = \{ \text{independent sets cont. no broken circuit} \}$

h-vector: A more compact way of storing the f-vector. Compute!

 $h_0 x^{\nu} + h_1 x^{\nu-1} + \dots + h_{\nu} x^0 = f_0 (x+1)^{\nu} + f_1 (x+1)^{\nu-1} + \dots + f_{\nu} (x+1)^0$

Conjectures. (Dawson 84, Huh 15) $\{h_i(IN(M))\}$ and $\{h_i(\overline{BC}_{<}(M))\}$ are unimodal, log-concave.

Log concavity for matroids, 2: Dawson + Huh

Let *M* be a matroid on E, < a linear order on E.

Two simplicial complexes from *M*:

 $IN(M) = \{ independent sets \}$

 $\overline{BC}_{<}(M) = \{ \text{independent sets cont. no broken circuit} \}$

h-vector: A more compact way of storing the *f*-vector. Compute!

 $h_0 x^{\nu} + h_1 x^{\nu-1} + \dots + h_{\nu} x^0 = f_0 (x+1)^{\nu} + f_1 (x+1)^{\nu-1} + \dots + f_{\nu} (x+1)^0$

Conjectures. (Dawson 84, Huh 15) $\{h_i(IN(M))\}$ and $\{h_i(\overline{BC}_{<}(M))\}$ are unimodal, log-concave.

Theorem. (Huh 15) This is true for *M* linear over characteristic 0.

Log concavity for matroids, 2: Dawson + Huh

Let *M* be a matroid on E, < a linear order on E.

Two simplicial complexes from *M*:

 $IN(M) = \{ independent sets \}$

 $\overline{BC}_{<}(M) = \{ \text{independent sets cont. no broken circuit} \}$

h-vector: A more compact way of storing the *f*-vector. Compute!

 $h_0 x^{\nu} + h_1 x^{\nu-1} + \dots + h_{\nu} x^0 = f_0 (x+1)^{\nu} + f_1 (x+1)^{\nu-1} + \dots + f_{\nu} (x+1)^0$

Conjectures. (Dawson 84, Huh 15) $\{h_i(IN(M))\}$ and $\{h_i(\overline{BC}_{<}(M))\}$ are unimodal, log-concave.

Theorem. (Huh 15) This is true for *M* linear over characteristic 0.

>90% Theorem. (A.–Denham–Huh 17) This is true for any *M*.

unimodality and log concavity 0000

strategy: geometric models

tropical mode 00 0000 00000 directions

Unimodality and log-concavity: relations Two simple but useful observations (Brylawski, Lenz):

1. $IN(M) = \overline{BC}_{<}(M \times p)$ for $M \times p =$ free dual extension of M2. $h(\Delta)$ log-concave $\Rightarrow f(\Delta)$ strictly log-concave .

Log-concavity implications:

The log-concavity of $h_i(BC_{<}(M))$ implies all the others.

unimodality and log concavity

strategy: geometric models

tropical mode 00 0000 00000 directions

Unimodality and log-concavity: relations Two simple but useful observations (Brylawski, Lenz):

1. $IN(M) = \overline{BC}_{<}(M \times p)$ for $M \times p =$ free dual extension of M2. $h(\Delta)$ log-concave $\Rightarrow f(\Delta)$ strictly log-concave .

Log-concavity implications:

The log-concavity of $h_i(\overline{BC}_{<}(M))$ implies all the others.

Juhnke-Kubitzke, Le, 2016: It also implies Swartz's conjecture: $h_i(\overline{BC}_{<}(M))$ is **flawless**: $h_i \leq h_{s-i}$ for $i \leq s/2$. Chari 97 and Swartz 03 proved this for $h_i(IN(M))$ only.

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	•00	00 0000 00000	00

When I wrote my book on matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it?"

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	●00	00 0000 00000	00

When I wrote my book on matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it?"

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

- Almost any matroid we come up with is linear (geometric).
- (Nelson, 16) Almost all matroids are not linear.

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	●00	00 0000 00000	00

When I write my book on matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it?"

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

- Almost any matroid we come up with is linear (geometric).
- (Nelson, 16) Almost all matroids are not linear.
- "Missing axiom" for linear matroids?

matroids	unimodality and log concavity	strategy: geometric models	tropical models	directions
0000	00000	● ○ ○	00 0000 00000	00

When I write my book on matroids, I changed the name. I called it "Combinatorial Geometries" - but it didn't take. They said "that's really matroids, isn't it?"

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)

(linear matroids) vs. (all matroids):

- Almost any matroid we come up with is linear (geometric).
- (Nelson, 16) Almost all matroids are not linear.
- "Missing axiom" for linear matroids? No. (Mayhew et al, 14)
- This is not a flaw. Matroids are natural geometric objects.

Strategy: geometric models of matroids

To prove log-concavity of invariants of a **linear** matroid *M*:

- 1. Build an algebro-geometric model X(M) for M.
- 2. (Combin invariants of M) = (Geom invariants of X(M)).
- 3. Algebraic-geometric inequalities for geometric invariants.

Strategy: geometric models of matroids

To prove log-concavity of invariants of a **linear** matroid *M*:

- 1. Build an algebro-geometric model X(M) for M.
- 2. (Combin invariants of M) = (Geom invariants of X(M)).
- 3. Algebraic-geometric inequalities for geometric invariants.

Two algebro-geometric models.

 $f_i(\overline{BC}_{<}(M))$: wonderful compactification DP(A).

De Concini-Procesi 95

 $h_i(\overline{BC}_{<}(M))$: critical set variety $\mathfrak{X}(\mathcal{A})$.

Varchenko 95, Orlik-Terao 95, Denham-Garrousian-Schulze 12

Strategy: geometric models of matroids

To prove log-concavity of invariants of a **linear** matroid *M*:

- 1. Build an algebro-geometric model X(M) for M.
- 2. (Combin invariants of M) = (Geom invariants of X(M)).
- 3. Algebraic-geometric inequalities for geometric invariants.

Two algebro-geometric models.

 $f_i(\overline{BC}_{<}(M))$: wonderful compactification DP(A).

De Concini-Procesi 95

 $h_i(\overline{BC}_{<}(M))$: critical set variety $\mathfrak{X}(\mathcal{A})$.

Varchenko 95, Orlik-Terao 95, Denham-Garrousian-Schulze 12

Good news: This strategy works! (Huh, 2012, 15) Bad news: ...only when *M* is a linear matroid.

Strategy of proofs: tropical geometric models

To prove log-concavity of invariants of **any** matroid *M*:

- 1. Build a tropical geometric model X(M) for M.
- 2. (Combin invariants of M) = (Trop geom invariants of X(M)).
- 3. Algebro-geom inequalities for tropical geometric invariants.

Two tropical geometric models.

 $f_i(\overline{BC}_{<}(M))$: tropical linear space Trop(M).

Sturmfels 02, A.-Klivans 03

 $h_i(\overline{BC}_{<}(M))$: combinatorial critical set variety Crit(M). A.-Denham-Huh 17

Good news: This works even when *M* is not realizable! (Good or bad) news: We have to work harder for our inequalities. unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical geometry: a general philosophy Tropicalization is a very useful general technique:

algebraic variety \mapsto tropical variety $V \mapsto \operatorname{Trop}(V).$

Idea: Obtain information about V from Trop(V).

o Trop(V) is simpler, but still contains information about V.

o Trop(V) is a polyhedral complex, we can do combinatorics.

conic in 2-space

line in 3-space

plane in 2-space

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropicalization.

To tropicalize a projective variety, take **all** the equations it satisfies, and change:

 $X + Y \mapsto \min(x, y)$ $X \cdot Y \mapsto x + y$ multiplicative scalar $\mapsto 0$ additive scalar \mapsto ignore $= 0 \mapsto$ is achieved > twice

For example, the 2-D surface in \mathbb{C}^4 :

 $2X + Y = 0, X^3 + Z^2W + W^3 = 0$

becomes the 2-D polyhedral complex in \mathbb{R}^4 :

 $\min(x, y), \min(3x, 2z + w, 3w), \min(3y, 2z + w, 3w),...$ are achieved twice.

I am oversimplifying in some ways.

Tropical linear spaces = matroids

V = linear subspace of \mathbb{C}^n Trop V = tropical linear space.

 $w \in \operatorname{Trop} V \iff \text{for each circuit } a_1 X_{i_1} + \dots + a_k X_{i_k} = 0 \text{ of } V,$ $\min(w_{i_1}, \dots, w_{i_k}) \text{ is achieved } \geq \text{twice.}$

Corollary: Trop V only depends on the matroid of V.

Example. $L = \{X \in \mathbb{R}^4 : X_1 - X_2 + X_3 = 0, X_4 = 2X_3\}$ Circuits: 123,34,124.

Trop *L*: $\min(w_1, w_2, w_3), \min(w_1, w_2, w_4), \min(w_3, w_4)$ att. \geq twice.

strategy: geometric models

tropical models

directions

Tropical linear spaces = matroids. Example. (cont.) Circuits: 123,34,124.

Trop *L*: $\min(w_1, w_2, w_3), \min(w_1, w_2, w_4), \min(w_3, w_4)$ att. \geq twice.

Whether $w \in \text{Trop } L$ depends on relative order of w_1, \ldots, w_4 .

• $W_3 = W_4$

 \downarrow

• $W_1 > W_2 = W_3$ or $W_2 > W_1 = W_3$ or $W_3 > W_1 = W_2$.

Three rays: e_1 , e_2 , e_{34}

Q: What are these in general?

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical linear spaces = matroids

Definition. (Sturmfels 02) The tropical linear space of M is

 $\operatorname{Trop}(M) = \{ w \in \mathbb{R}^E : \quad \text{for every circuit } C \text{ of } M,$

 $\min_{c \in C} w_c$ is achieved \geq twice}

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical linear spaces = matroids

Definition. (Sturmfels 02) The tropical linear space of M is

 $\operatorname{Trop}(M) = \{ w \in \mathbb{R}^{E} : \text{ for every circuit } C \text{ of } M, \\ \min_{c \in C} w_{c} \text{ is achieved } > \operatorname{twice} \}$

Let $e_{adf} = (1, 0, 0, 1, 0, 1)$. If $\mathcal{F} = \{ \emptyset \subset F_1 \subset \cdots \subset F_r = E \}$ is a flag of flats $\sigma_{\mathcal{F}} := \operatorname{cone}(e_{F_1}, \dots, e_{F_r}) \subseteq \mathbb{R}^E$

Theorem. (A. - Klivans 03) The tropical linear space Trop(M) has

- rays: e_F where F is a flat
- cones: $\sigma_{\mathfrak{F}}$ where \mathfrak{F} is a flag of flats

 $\mathsf{Trop}(M) = \bigcup_{\mathcal{F} \mathsf{flag}} \sigma_{\mathcal{F}}$

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical linear spaces = matroids

Definition. (Sturmfels 02) The tropical linear space of M is

 $\operatorname{Trop}(M) = \{ w \in \mathbb{R}^{E} : \text{ for every circuit } C \text{ of } M, \\ \min_{c \in C} w_{c} \text{ is achieved } > \operatorname{twice} \}$

Let $e_{adf} = (1, 0, 0, 1, 0, 1)$. If $\mathcal{F} = \{ \emptyset \subset F_1 \subset \cdots \subset F_r = E \}$ is a flag of flats $\sigma_{\mathcal{F}} := \operatorname{cone}(e_{F_1}, \dots, e_{F_r}) \subseteq \mathbb{R}^E$

Theorem. (A. - Klivans 03) The tropical linear space Trop(M) has

- rays: e_F where F is a flat
- cones: $\sigma_{\mathfrak{F}}$ where \mathfrak{F} is a flag of flats

So we can recover M from Trop(M).

 $\mathsf{Trop}(M) = \bigcup_{\mathcal{F} \mathsf{flag}} \sigma_{\mathcal{F}}$

(for M simple.)

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical linear spaces = matroidsDefinition. (Sturmfels 02) The tropical linear space of M is $Trop(M) = \{w \in \mathbb{R}^E :$ for every circuit C of M,
 $\min_{c \in C} w_c$ is achieved \geq twice}

There is also an intrinsic tropical definition:

Theorem / Definition. (Fink '09) A tropical linear space is an **abstract tropical variety** of **degree** 1.

So matroids arise very naturally - even non-linear ones!

unimodality and log concavity

strategy: geometric models

tropical models

directions

Orthogonality for matroids

Theorem / Definition. If \mathcal{B} is a matroid on E, then

 $\mathcal{B}^{\perp} = \{ \boldsymbol{E} - \boldsymbol{B} : \boldsymbol{B} \in \mathcal{B} \}$

is also a matroid, the **orthogonal** or **dual** matroid M^{\perp} .

unimodality and log concavity

strategy: geometric models

tropical models

directions

Orthogonality for matroids

Theorem / Definition. If \mathcal{B} is a matroid on E, then

 $\mathcal{B}^{\perp} = \{ \boldsymbol{E} - \boldsymbol{B} : \boldsymbol{B} \in \mathcal{B} \}$

is also a matroid, the **orthogonal** or **dual** matroid M^{\perp} .

This generalizes:

Dual graphs:
 abe spanning tree of G
 \$\overline{G}\$
 cd spanning tree of G*

unimodality and log concavity

strategy: geometric models

tropical models

directions

Orthogonality for matroids

Theorem / Definition. If \mathcal{B} is a matroid on E, then

 $\mathcal{B}^{\perp} = \{ \boldsymbol{E} - \boldsymbol{B} : \boldsymbol{B} \in \mathcal{B} \}$

is also a matroid, the **orthogonal** or **dual** matroid M^{\perp} .

This generalizes:

- Dual graphs:
 abe spanning tree of G
 \$\overline{G}\$
 cd spanning tree of G*

$$W = \text{rowspace} \begin{bmatrix} 0 & 1 & 0 & .5 & 1 \\ 0 & 0 & 1 & .5 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$W^{\perp} = \text{rowspace} \begin{bmatrix} 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 2 & -1 \end{bmatrix}$$

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical critical set variety

Let $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ = standard bases of \mathbb{R}^E and \mathbb{R}^E .

Definition. (A. – Denham – Huh 17) The **tropical critical set variety** $Crit(M) \subset \mathbb{R}^E \times \mathbb{R}^E$ of M has • rays: $e_F + f_G$ where F is a flat and G is a coflat with $F \cup G = E$. • cones: $\tau_{\mathcal{F},\mathcal{G}} := \operatorname{cone}(e_{F_1} + f_{G_1}, \dots, e_{F_{n-1}} + f_{G_{n-1}})$ for each pair \mathcal{F},\mathcal{G} of **compatible** flags of flats and coflats.

where

Definition. (A.–Denham–Huh 17) Say two flags $\mathcal{F} = \{\emptyset \subseteq F_1 \subseteq \cdots \subseteq F_k = E\}$ of flats $\mathcal{G} = \{E \supseteq G_1 \supseteq \cdots \subseteq G_k \subseteq \emptyset\}$ of coflats (flats of M^{\perp}) are **compatible** if $\bigcap_{i=1}^{k} (F_i \cup G_i) = E, \qquad \bigcup_{i=1}^{k} (F_i \cap G_i) \neq E.$

(Motivation: toric+trop geometry, hyperplane arrangements, Coxeter combin)

unimodality and log concavity

strategy: geometric models

tropical models

directions

Trop M and Crit M as configuration spaces

... if there is time...

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical critical set variety Why is this a useful construction?

Definition. (A.–Denham–Huh 17) The **Chow ring** of Crit(*M*) is $A_{M,M^{\perp}} = \mathbb{Z}[x_{F,G} : F \text{ flat}, G \text{ coflat}, F \cup G = E] / (I_M + J_M)$ where $I_M = (x_{F_1,G_1} \cdots x_{F_k,G_k} : \{F_i\} \text{ and } \{G_i\} \text{ are not compatible})$ $J_M = \left(\sum_{i \in F \neq E} x_{F,G} - \sum_{j \in F \neq E} x_{F,G}, \sum_{i \in G \neq E} x_{F,G} - \sum_{j \in G \neq E} x_{F,G} : i, j \in E\right)$

н

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical critical set variety Why is this a useful construction?

Definition. (A.–Denham–Huh 17) The **Chow ring** of Crit(*M*) is $A_{M,M^{\perp}} = \mathbb{Z}[x_{F,G} : F \text{ flat}, G \text{ coflat}, F \cup G = E] / (I_M + J_M)$ where $I_M = (x_{F_1,G_1} \cdots x_{F_k,G_k} : \{F_i\} \text{ and } \{G_i\} \text{ are not compatible})$ $J_M = \left(\sum_{i \in F \neq E} x_{F,G} - \sum_{j \in F \neq E} x_{F,G}, \sum_{i \in G \neq E} x_{F,G} - \sum_{j \in G \neq E} x_{F,G} : i, j \in E\right)$

It behaves like the Chow ring of a smooth proj. alg. variety; e.g.:

Poincaré duality	:	$A = A_0 \oplus \cdots \oplus A_{n-1}, \qquad A_i \cong A_{n-1-i}$
Hard Lefschetz theorem	:	$\dim A_0 \leq \cdots \leq \dim A_{(n-1)/2} \geq \cdots \geq \dim A_{n-1}$
odge-Riemann relations	:	imply log-concavity results

unimodality and log concavity

strategy: geometric models

tropical models

directions

Tropical critical set variety

Definition. (A.–Denham–Huh 17) In the **Chow ring** of Crit(*M*)

$$A_{M,M^{\perp}} = \mathbb{Z}[x_{F,G} : F \text{ flat}, G \text{ coflat}, F \cup G = E] / (I_M + J_M)$$

the "hyperplane" and "cohyperplane" classes are

$$a = \sum_{i \in F \neq E} x_{F,G}, \qquad d = \sum_{i \in F,G} x_{F,G}$$

 $A_{n-1} \cong A_0 = \mathbb{Z} \implies \text{degree } n-1 \text{ elements are just integers!}$

Theorem. (A.–Denham–Huh 17) In the **Chow ring** of Crit(*M*)

$$a^{r-1-i}d^{n-r-i} = h_i(\overline{BC}_{<}(M)) \qquad (1 \le i \le r-1)$$

This program should imply the log-concavity of h_1, \ldots, h_{r-1} .

unimodality and log concavity

strategy: geometric models

tropical mode

directions

Open problems

1. Other log-concavity results from these constructions?

unimodality and log concavity

strategy: geometric models

tropical model

directions

Open problems

- 1. Other log-concavity results from these constructions?
- 2. Topology and combinatorics of critical set variety?

Trop(M)	Crit(<i>M</i>)
(AKlivans, 06)	?
Trop(M) = wedge of $ \mu(M) $ (r – 1)-spheres	
(A.–Klivans–Williams, 06) (M oriented)	?
• Trop ⁺ (M) = sphere.	
• $ \mu(M) $ reorientations whose Trop ⁺ cover Trop(M).	
(A.–Reiner–Williams, 06) (M = root system)	?
$Trop^+(M) = graph$ associahedron of Dynkin dgm	

unimodality and log concavity

strategy: geometric models

tropical model

directions

Open problems

- 1. Other log-concavity results from these constructions?
- 2. Topology and combinatorics of critical set variety?

Trop(<i>M</i>)	Crit(<i>M</i>)
(AKlivans, 06)	?
Trop(M) = wedge of $ \mu(M) $ (r – 1)-spheres	
(A.–Klivans–Williams, 06) (M oriented)	?
• Trop ⁺ (M) = sphere.	
• $ \mu(M) $ reorientations whose Trop ⁺ cover Trop(M).	
(A.–Reiner–Williams, 06) (M = root system)	?
$Trop^+(M) = graph$ associahedron of Dynkin dgm	

3. Connection w Chern-Schwartz-MacPherson classes $c_k(M)$? deg $c_k = h_k(BC_<)$. (López de Medrano–Rincón–Shaw, 17)

unimodality and log concavity

strategy: geometric models

tropical models

directions

muchas gracias.