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What?

Definitions

Lattice polytope P in RY := conv(S), S € Z9, finite.

Unimodular simplex := vertices are an affine basis of Z¢.
(Equivalently, normalized volume equal to 1)

(Lattice) subdivision of P: "face to face” decomposition into
lattice subpolytopes.

(Lattice triangulation) of P: same, into simplices.

Unimodular triangulation: triangulation into unimodular simplices.

F. Santos (Unimodular) triangulations of lattice polytopes
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What?

Dim 2 versus higher dim

Proposition

Every lattice polygon has a unimodular triangulation.

Proof.

Every lattice polytope can be triangulated into empty simplices
(lattice simplices w.o. extra lattice points). In dim 2 all empty
simplices are unimodular. O

Corollary (Pick's Theorem)
Area(P) = |int(P)NZ?| + 1|0P N Z?| - 1.

A

F. Santos (Unimodular) triangulations of lattice polytopes
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What?

Dim 2 versus higher dim

In dim > 3 there are empty non-unimodular simplices = there are
polytopes without unimodular triangulations.

F. Santos (Unimodular) tri lations of lattice polytopes
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Why?

Integer programming

Let A be an integer matrix and b an integer vector. If the normal
fan of P = {Ax < b} has a unimodular triangulation (using only
facet normals as vertices) then the system Ax < b is totally dual
integral.

In particular, all vertices of P are integral (P is a lattice
polyhedron) and integer programming on P is as easy” as linear
programming.

F. Santos (Unimodular) triangulations of lattice polytopes
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Why?

Classification of empty simplices
0000000000000

Counting lattice points

The Ehrhart series of a lattice polytope P counts how many lattice
points lie in kP, for k € N.

It is known that its generating function can be rewritten as

> #(kPNZY) th = p(D)

_ d+1°’
= (1—1)

for a certain polynomial h}, of degree (at most) dim(P).

F. Santos (Unimodular) triangulations of lattice polytopes
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Why?

Counting lattice points

The Ehrhart series of a lattice polytope P counts how many lattice
points lie in kP, for k € N.
It is known that its generating function can be rewritten as

> #(kPNZY) th = Pp(t)

__ +)d+1°?
= (1—1)

for a certain polynomial h}, of degree (at most) dim(P).

Theorem (Stanley 1996)

If T is a unimodular triangulation of P, then h, equals the
h-polynomial h1(x) of T. (That is, the coeffs of h; coincide with
the h-vector of T ).

F. Santos (Unimodular) tri lations of lattice polytopes
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Why?

Unimodular triangulation = integrally closed

If P has a unimodular triangulation then the cone op generated by
P x {1} C R9*! is generated in degree one: every lattice point in
kP, k € N, decomposes as the sum of k points in P.

Definition

We call P integrally closed if this happens. (Other names exist:
“integer decomposition property”, “normal”).

If P is integrally closed:
e PN Z4 is the Hilbert basis for op.

o The semigroup algebra Rp = K[op N Z9*] is an integral
domain and generated in degree one.

F. Santos (Unimodular) triangulations of lattice polytopes
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Why?

Smooth polytopes, “Oda’s question”

Let Xp = ProjK[op N Z9*1] = Proj Rp be the projective variety
associated to op and consider its natural embedding Xp — P"~!
(where n = |P N Z9)).
Then,
o Xp is projectively normal < P is normal.
@ Xp is smooth < P is simple and every vertex cone is
unimodular (we say then that “P is smooth”).

Oda’s conjecture

Every smooth Xp is projectively normal.

This would follow from

Every smooth lattice polytope P has a unimodular triangulation.

F. Santos (Unimodular) tri lations of lattice polytopes
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Why?

Algebraic geometry

Regular unimodular triangulations of P correspond to certain
(so-called crepant) resolutions of the singular point in the affine

toric variety
Up = SpecK[o} NZIT1.

In particular, to prove their semi-stable Reduction Theorem,
Kempf-Knudsen-Mumford-Saint Donat (1973) used the following
combinatorial result:

F. Santos (Unimodular) triangulations of lattice polytopes
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Why?

Algebraic geometry

Regular unimodular triangulations of P correspond to certain
(so-called crepant) resolutions of the singular point in the affine
toric variety

Up = SpecK[o} NZIT1.

In particular, to prove their semi-stable Reduction Theorem,
Kempf-Knudsen-Mumford-Saint Donat (1973) used the following
combinatorial result:

Theorem (Knudsen-Mumford-Waterman, 1973)

For every lattice polytope P there is a dilation factor ¢ € N such
that cP admits a regular unimodular triangulation.

F. Santos (Unimodular) tri lations of lattice polytopes
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Why?

Regular triangulations

A triangulation (unimodular or not) is called regular if its simplices
are the domains of linearity of a piece-wise convex function P — R.

Regular Non-regular

F. Santos (Unimodular) tri lations of lattice polytopes
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Why?

Regular triangulations

A triangulation (unimodular or not) is called regular if its simplices
are the domains of linearity of a piece-wise convex function P — R.

Non-regular

A quadratic triangulation is a regular, unimodular, and flag
triangulation (flag:= every clique in the graph spans a simplex).

F. Santos (Unimodular) tri lations of lattice polytopes
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Constructions

Compresed polytopes

A compressed polytope P is a polytope of width one with respect
to every facet. That is, for every facet hyperplane H of P, all
vertices of P not in H lie in the next lattice translation of H.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Compresed polytopes

A compressed polytope P is a polytope of width one with respect
to every facet. That is, for every facet hyperplane H of P, all
vertices of P not in H lie in the next lattice translation of H.

All compressed polytopes have regular unimodular triangulations.
In fact, all their pulling triangulations are unimodular.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Compresed polytopes

A compressed polytope P is a polytope of width one with respect
to every facet. That is, for every facet hyperplane H of P, all
vertices of P not in H lie in the next lattice translation of H.

All compressed polytopes have regular unimodular triangulations.
In fact, all their pulling triangulations are unimodular.

We can use this to show that

Theorem (S. 1996, Haase-Paffenholz-Piechnik-S 2014+ for

flagness)

If a polytope P has a (regular, flag) unimodular triangulation T
then every integer dilation cP of it has one too.

F. Santos (Unimodular) tri lations of lattice polytopes
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Constructions

Compresed polytopes

Sketch of proof.

Consider the dilation ¢T of T, which subdivides cP into dilated
unimodular simplices.

F. Santos (Unimodular) tri lations of lattice polytopes
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Constructions

Compresed polytopes

Sketch of proof.

Consider the dilation ¢T of T, which subdivides cP into dilated
unimodular simplices.

Slice those simplices by all lattice translates of their facet
hyperplanes. This produces a subdivision of ¢T into compressed
polytopes (hypersimplices).

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Compresed polytopes

Sketch of proof.

Consider the dilation ¢T of T, which subdivides cP into dilated
unimodular simplices.

Slice those simplices by all lattice translates of their facet
hyperplanes. This produces a subdivision of ¢T into compressed
polytopes (hypersimplices).

Any pulling refinement of this subdivision is unimodular.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Semidirect product

Join and cartesian product also preserve existence of unimodular
triangulations.
We generalize both (plus dilations) to the following definition.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Semidirect product

Join and cartesian product also preserve existence of unimodular
triangulations.

We generalize both (plus dilations) to the following definition.

Definition

Let Q c RY and P; c R% for i =1,...,n be lattice polytopes,
and let ¢ : Z9 — Z" be an integer affine map with ¢(Q) C Rxo.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Semidirect product

Join and cartesian product also preserve existence of unimodular
triangulations.
We generalize both (plus dilations) to the following definition.

Definition

Let Q c RY and P; c R% for i =1,...,n be lattice polytopes,
and let ¢ : Z9 — Z" be an integer affine map with ¢(Q) C Rxo.
The semidirect product of Q and the tuple (P1,..., P,) along ¢ is

Q x4 (P, ..., Py) = convacg <{a} x H(;S;(a)P;) ,

where (¢1,...,¢,) are the coordinates of ¢.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Semidirect product

This includes:

o Ad X 14 (Po, ceey Pd) is the join of Py, ..., Py,
e {pt} x1 (Po,...,Py) is the product of Py,..., Py.

F. Santos (Unimodular) tri lations of lattice polytopes
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Constructions

Semidirect product

This includes:

o Ad X 14 (Po, ceey Pd) is the join of Py, ...

Dilations

0000000000000 0

)Pdv

e {pt} x1 (Po,...,Py) is the product of Py, ...

o {pt} xx (P) is the k-th dilation of P.

F. Santos
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Constructions

Semidirect product

This includes:

A? %14 (Po, ..., Pg) is the join of Py,..., Py,
{pt} %1 (Po, ..., Pqg) is the product of Py,..., Py.
{pt} %k (P) is the k-th dilation of P.

The chimney (Haase-Paffenholz 2007)

chim(Q, f,g) :== {(x,t) e R : f(x) < t < g(x)}

associated to two integer functionals f < g on @ is the
semidirect product Q xz_¢ /, where / is a unimodular
segment.

F. Santos (Unimodular) triangulations of lattice polytopes
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Constructions

Semidirect product

Theorem (Aoki et al. 2008, HPPS 2014+ )

If Q, P1,...,and P, admit unimodular triangulations, then every
semidirect product Q x4 (P1, ..., P,) admits one too.

F. Santos (Unimodular) tri lations of lattice polytopes
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Constructions

Semidirect product

Theorem (Aoki et al. 2008, HPPS 2014+ )

If Q, P1,...,and P, admit unimodular triangulations, then every
semidirect product Q X4 (P, ..., P,) admits one too.

Remark

| A

Semidirect product is essentially equivalent to nested configurations
[Aoki et al. 2008]. Aoki et al. prove the theorem above under the
assumption that all factor triangulations are regular.

A\

F. Santos (Unimodular) tri lations of lattice polytopes
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Polytopes related to root systems

Polytopes from root systems

(Crystallographic) root systems give examples of particularly nice
lattices. It seems natural to look at lattice polytopes related to
them. We can do this in two ways:

@ Polytopes cut out by roots: facet normals belong to the root
system (=:alcoved polytopes).

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Polytopes from root systems

(Crystallographic) root systems give examples of particularly nice
lattices. It seems natural to look at lattice polytopes related to
them. We can do this in two ways:

@ Polytopes cut out by roots: facet normals belong to the root
system (=:alcoved polytopes).

@ Polytopes with vertex sets contained in the root system.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Polytopes from root systems

(Crystallographic) root systems give examples of particularly nice
lattices. It seems natural to look at lattice polytopes related to
them. We can do this in two ways:

@ Polytopes cut out by roots: facet normals belong to the root
system (=:alcoved polytopes).

@ Polytopes with vertex sets contained in the root system.

We concentrate on the first type.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Payne (2009) has proved that all alcoved polytopes in the classical
types A, B, C and D are integrally closed. This suggests they may
all have unimodular triangulations.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Payne (2009) has proved that all alcoved polytopes in the classical
types A, B, C and D are integrally closed. This suggests they may
all have unimodular triangulations.

In type A this is easy to show. Remember that.

Ap={ej—e:ije[n+1]} c R

A, is a totally unimodular vector configuration.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Payne (2009) has proved that all alcoved polytopes in the classical
types A, B, C and D are integrally closed. This suggests they may
all have unimodular triangulations.

In type A this is easy to show. Remember that.

Ap={ej—e:ije[n+1]} c R

A, is a totally unimodular vector configuration. In particular, the
hyperplane arrangement consisting of all lattice translates of the
hyperplanes normal to the roots has all vertices in the lattice.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Payne (2009) has proved that all alcoved polytopes in the classical
types A, B, C and D are integrally closed. This suggests they may
all have unimodular triangulations.

In type A this is easy to show. Remember that.

Ap={ej—e:ije[n+1]} c R

A, is a totally unimodular vector configuration. In particular, the
hyperplane arrangement consisting of all lattice translates of the
hyperplanes normal to the roots has all vertices in the lattice.
Moreover, all cells in the arrangement are simplices (affine Weyl
chambers or alcoves).

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Payne (2009) has proved that all alcoved polytopes in the classical
types A, B, C and D are integrally closed. This suggests they may
all have unimodular triangulations.

In type A this is easy to show. Remember that.

Ap={ej—e:ije[n+1]} c R

A, is a totally unimodular vector configuration. In particular, the
hyperplane arrangement consisting of all lattice translates of the
hyperplanes normal to the roots has all vertices in the lattice.
Moreover, all cells in the arrangement are simplices (affine Weyl
chambers or alcoves).

Hence:

F. Santos (Unimodular) triangulations of lattice polytopes



Polytopes related to root systems

Alcoved polytopes of type A

-~ F.samtos (Uni

(=)

) triangul.

na
of lattice polytopes



Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000080 00000000000000 0000000000000

Polytopes related to root systems

Alcoved polytopes of type A

Let P be an alcoved polytope of type A. The dicing triangulation
obtained slicing P by all lattice hyperplanes normal to the roots is
a flag, regular, unimodular (that is, quadratic) triangulation of P.

F. Santos (Unimodular) tri lations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Let P be an alcoved polytope of type A. The dicing triangulation
obtained slicing P by all lattice hyperplanes normal to the roots is
a flag, regular, unimodular (that is, quadratic) triangulation of P.

Remark

If A = conv{vy,...,v,} is any lattice simplex with its vertices
given in a specific order, we can consider the linear map sending its
facet normals to the (normals of)) the simple roots of type A,, in
that order. The preimage of the A-dicing gives a canonical
triangulation of c/A, for every c € N, into simplices of the same
volume as A.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes of type A

Let P be an alcoved polytope of type A. The dicing triangulation
obtained slicing P by all lattice hyperplanes normal to the roots is
a flag, regular, unimodular (that is, quadratic) triangulation of P.

Remark

If A = conv{vy,...,v,} is any lattice simplex with its vertices
given in a specific order, we can consider the linear map sending its
facet normals to the (normals of)) the simple roots of type A,, in
that order. The preimage of the A-dicing gives a canonical
triangulation of c/A, for every c € N, into simplices of the same
volume as A.

This canonical triangulation will be important in our proof of the
KMW theorem.

F. Santos (Unimodular) triangulations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes in other types

Theorem (Haase-Paffenholz-Piechnik-S 2014+)

Every alcoved polytope P of type B has a regular unimodular
triangulation

F. Santos (Unimodular) tri lations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes in other types

Theorem (Haase-Paffenholz-Piechnik-S 2014+)

Every alcoved polytope P of type B has a regular unimodular
triangulation

| A\

Sketch of proof.

First slice P by the hyperplanes corresponding to the “short roots”
of type B. This gives a regular subdivision into compressed cells.
Any pulling refinement of this is unimodular. Ol

The triangulation in the theorem may need to use simplices that
are not alcoved.

F. Santos (Unimodular) tri lations of lattice polytopes
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Polytopes related to root systems

Alcoved polytopes in other types

Theorem (Haase-Paffenholz-Piechnik-S 2014+)

Every alcoved polytope P of type B has a regular unimodular
triangulation

| A\

Sketch of proof.

First slice P by the hyperplanes corresponding to the “short roots”
of type B. This gives a regular subdivision into compressed cells.
Any pulling refinement of this is unimodular. Ol

The triangulation in the theorem may need to use simplices that
are not alcoved.
For other types:
@ In F4 and Eg we have explicit examples of polytopes without
r.u.t.'s
o In C,, D,, Eg and E7 we do not know.

F. Santos (Unimodular) triangulations of lattice polytopes
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The KMW Theorem

X

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

F. Santos (Unimodular) tri lations of lattice polytopes
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The KMW Theorem

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c¢(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

It raises several questions:

F. Santos (Unimodular) tri lations of lattice polytopes




Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 ©0000000000000 0000000000000

The KMW Theorem

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c¢(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

It raises several questions:

@ Is there a ¢(d) common to every d-polytope?

F. Santos (Unimodular) tri lations of lattice polytopes
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The KMW Theorem

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c¢(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

It raises several questions:

@ Is there a ¢(d) common to every d-polytope?
@ What is the structure of the set of valid ¢(P)'s of a given P?

F. Santos (Unimodular) tri lations of lattice polytopes
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The KMW Theorem

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c¢(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

It raises several questions:

@ Is there a ¢(d) common to every d-polytope?
@ What is the structure of the set of valid ¢(P)'s of a given P?

o Is it additively closed? (we have shown it is closed under
multiplication by an integer).

F. Santos (Unimodular) tri lations of lattice polytopes
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The KMW Theorem

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c¢(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

It raises several questions:

@ Is there a ¢(d) common to every d-polytope?
@ What is the structure of the set of valid ¢(P)'s of a given P?

o Is it additively closed? (we have shown it is closed under
multiplication by an integer).

o There are examples where cP has a r.u.t. but (¢ + 1)P is not
even integrally closed [Cox-Haase-Hibi-Higashitani 2012].

F. Santos (Unimodular) triangulations of lattice polytopes
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The KMW Theorem

The KMW Theorem

We recall the following classical theorem of Knudsen, Mumford,
and Waterman (1973):

Given a polytope P, there is a factor ¢ = c¢(P) € N such that the
dilation ¢ - P admits a regular unimodular triangulation.

It raises several questions:
@ Is there a ¢(d) common to every d-polytope?

@ What is the structure of the set of valid ¢(P)'s of a given P?

o Is it additively closed? (we have shown it is closed under
multiplication by an integer).

o There are examples where cP has a r.u.t. but (¢ + 1)P is not
even integrally closed [Cox-Haase-Hibi-Higashitani 2012].

e What is a (good?) bound on ¢(P) for a given P?

F. Santos (Unimodular) triangulations of lattice polytopes
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The KMW Theorem

The KMW Theorem

Concerning the last question:

@ Neither the original KMW proof nor the reworking of it by
Bruns and Gubeladze (2009) contains any explicit bound on
the ¢ needed for a given P.
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The KMW Theorem

The KMW Theorem

Concerning the last question:
@ Neither the original KMW proof nor the reworking of it by
Bruns and Gubeladze (2009) contains any explicit bound on
the ¢ needed for a given P.
@ Working out a bound from those proofs is not easy, and would
certainly lead to a tower of exponentials of length related to
the volume of P.
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The KMW Theorem

The KMW Theorem

Concerning the last question:

@ Neither the original KMW proof nor the reworking of it by
Bruns and Gubeladze (2009) contains any explicit bound on
the ¢ needed for a given P.

@ Working out a bound from those proofs is not easy, and would
certainly lead to a tower of exponentials of length related to
the volume of P.

@ The regularity part of the proof is not totally clear (it is
omitted in [Bruns-Gubeladze 2009]).
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KMW in 3d

An effective KMW Theroem

Theorem (Effective KMW Theorem, Haase-Paffenholz-Piechnik-S
2014+)

If a lattice polytope P has a triangulation into lattice simplices of
(lattice) volume bounded by V/, then the dilation

JIvol(PV1d*Y p

has a regular unimodular triangulation.

Idea of proof: While V > 1, show that dilating P sufficiently many
times you can triangulate cP into simplices of volume < V (and
get bounds on ¢).
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Canonical refinement of a dilated simplex

Canonical triangulation

Our proof is not substantially different from the previous ones, but
uses a better “book-keeping” based on the canonical triangulation
of dilations of an ordered simplex:

Definition
An ordered simplex A is a simplex with its vertices given in a
specified order.

F. Santos (Unimodular) tri lations of lattice polytopes
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Canonical refinement of a dilated simplex

Canonical triangulation

Our proof is not substantially different from the previous ones, but
uses a better “book-keeping” based on the canonical triangulation
of dilations of an ordered simplex:

Definition

An ordered simplex A is a simplex with its vertices given in a
specified order.

The canonical triangulation of cA is the inverse image of the
dicing triangulation of type A, under the natural affine map
sending A to an alcoved simplex of type A.

F. Santos (Unimodular) triangulations of lattice polytopes
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Canonical refinement of a dilated simplex

Canonical triangulation

Canonical triangulations glue together nicely; for every face F of
P, the canonical triangulation of F equals the canonical
triangulation of P restricted to F. In particular:
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Canonical refinement of a dilated simplex

Canonical triangulation

Canonical triangulations glue together nicely; for every face F of
P, the canonical triangulation of F equals the canonical
triangulation of P restricted to F. In particular:

Lemma

If T is a triangulation of P, canonically refining each simplex of
cT produces a triangulation of cP in which:

o Volume of simplices is preserved. (Each simplex in the final
triangulation has the volume of the simplex of of T that it
refines).

F. Santos (Unimodular) triangulations of lattice polytopes



Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 0000®000000000 0000000000000

Canonical refinement of a dilated simplex

Canonical triangulation

Canonical triangulations glue together nicely; for every face F of
P, the canonical triangulation of F equals the canonical
triangulation of P restricted to F. In particular:

Lemma
If T is a triangulation of P, canonically refining each simplex of
cT produces a triangulation of cP in which:
o Volume of simplices is preserved. (Each simplex in the final
triangulation has the volume of the simplex of of T that it
refines).

@ Regularity is preserved.

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume of a single dilated simplex

Let A be a non-unimodular simplex. let Aa be the lattice spanned
by its vertices (rather, the linear lattice parallel to it...), so that
vol(A) = |Z9/Aa|. A box point is a non-zero element of this

quotient.

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume of a single dilated simplex

Let A be a non-unimodular simplex. let Aa be the lattice spanned
by its vertices (rather, the linear lattice parallel to it...), so that
vol(A) = |Z9/Aa|. A box point is a non-zero element of this

quotient.
Box points allow us to triangulate a dilation of A into simplices of

volume strictly less than vol(A)
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Volume reduction

Reducing the volume of a single dilated simplex

Let A be a non-unimodular simplex. let Aa be the lattice spanned
by its vertices (rather, the linear lattice parallel to it...), so that
vol(A) = |Z9/Aa|. A box point is a non-zero element of this

quotient.
Box points allow us to triangulate a dilation of A into simplices of

volume strictly less than vol(A)
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Volume reduction

Reducing the volume in a single simplex

Lemma (Elementary volume reduction)

If T is a lattice triangulation on an ordered set of vertices and

F ={w,..., vk} is a non-unimodular face with a box point

m = (mo,...,mx) € Z9\ Ar, then for every integer c € (k + 1)N,
c - Star(F;T) has a refinement Ty, such that:

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume in a single simplex

Lemma (Elementary volume reduction)
If T is a lattice triangulation on an ordered set of vertices and
F ={w,..., vk} is a non-unimodular face with a box point
m = (mo,...,mx) € Z9\ Ar, then for every integer c € (k + 1)N,
c - Star(F;T) has a refinement Ty, such that:
@ The volume of every full-dimensional simplex A" in T, is
strictly less than the volume of simplex A for which A’ C cA.
© 7., induces the canonical triangulation on the boundary
c-0Star(F;T).
© 7., is a regular refinement of T, so if T is regular then Tp, is

regular.

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume in several simplices at a time

Remarks:

@ If we have box-points my, ..., my for a family of simplices
F1,..., Fy with disjoint stars, the reduction lemma can be
applied simultaneously to all of them, to reduce the volumes
in all stars simultaneously.
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Volume reduction

Reducing the volume in several simplices at a time

Remarks:

@ If we have box-points my, ..., my for a family of simplices
F1,..., Fy with disjoint stars, the reduction lemma can be
applied simultaneously to all of them, to reduce the volumes
in all stars simultaneously.

@ This happens, for example, for all simplices of prime volume:

Let T be a triangulation of a lattice polytope P and assume that
the maximal volume V' among all simplices in T is a prime. Then
(d + 1)!T can be refined to a triangulation with all simplices of
volume < V.

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume in several simplices at a time

Remarks:

@ If we have box-points my, ..., my for a family of simplices
F1,..., Fy with disjoint stars, the reduction lemma can be
applied simultaneously to all of them, to reduce the volumes
in all stars simultaneously.

@ This happens, for example, for all simplices of prime volume:

Let T be a triangulation of a lattice polytope P and assume that
the maximal volume V' among all simplices in T is a prime. Then
(d + 1)!T can be refined to a triangulation with all simplices of
volume < V.

...if every number was a prime, (d + 1)!Y'T would have a
unimodular refinement .. ..

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume in all simplices iteratively

What we can still do is apply the reduction lemma over and over,
hoping that eventually we get rid off all simplices of maximal
volume V/, then go to those of volume V — 1, etc.

F. Santos (Unimodular) triangulations of lattice polytopes
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Volume reduction

Reducing the volume in all simplices iteratively

What we can still do is apply the reduction lemma over and over,
hoping that eventually we get rid off all simplices of maximal
volume V/, then go to those of volume V — 1, etc.

Problem

If we do not process all simplices of volume V at the same time, in
the unprocessed ones we get a lot of new simplices of volume V.
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Volume reduction

Reducing the volume in all simplices iteratively

What we can still do is apply the reduction lemma over and over,
hoping that eventually we get rid off all simplices of maximal
volume V/, then go to those of volume V — 1, etc.

Problem

If we do not process all simplices of volume V at the same time, in
the unprocessed ones we get a lot of new simplices of volume V.
The number of simplices of volume V' will actually increase, not
decrease.

F. Santos (Unimodular) tri lations of lattice polytopes




Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 00000000800000 0000000000000

Volume reduction

Reducing the volume in all simplices iteratively

What we can still do is apply the reduction lemma over and over,
hoping that eventually we get rid off all simplices of maximal
volume V/, then go to those of volume V — 1, etc.

Problem

If we do not process all simplices of volume V at the same time, in
the unprocessed ones we get a lot of new simplices of volume V.
The number of simplices of volume V' will actually increase, not
decrease.

Knudsen-Mumford-Waterman (1973) and Bruns-Gubeladze (2009)
solve this via the use of “rational structures” or “local
lattices” .
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Volume reduction

Reducing the volume in all simplices iteratively

What we can still do is apply the reduction lemma over and over,
hoping that eventually we get rid off all simplices of maximal
volume V/, then go to those of volume V — 1, etc.

Problem

If we do not process all simplices of volume V at the same time, in
the unprocessed ones we get a lot of new simplices of volume V.
The number of simplices of volume V' will actually increase, not
decrease.

Knudsen-Mumford-Waterman (1973) and Bruns-Gubeladze (2009)
solve this via the use of “rational structures” or “local
lattices” .. .. which leads to a tower of exponentials.
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Volume reduction

Reducing the volume in all simplices iteratively

What we can still do is apply the reduction lemma over and over,
hoping that eventually we get rid off all simplices of maximal
volume V/, then go to those of volume V — 1, etc.

Problem

If we do not process all simplices of volume V at the same time, in
the unprocessed ones we get a lot of new simplices of volume V.
The number of simplices of volume V' will actually increase, not
decrease.

Knudsen-Mumford-Waterman (1973) and Bruns-Gubeladze (2009)
solve this via the use of “rational structures” or “local

lattices” .. .. which leads to a tower of exponentials.

We solve it by taking advantage of some properties of canonical
triangulations.
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An effective KMW Theorem

Canonical refinement, revisited

Definition

An ordered k-simplex is a simplex with a specified order in its
vertices. Two ordered simplices A = conv{py, ..., px} and
A’ = conv{p),...,p} are called A-equivalent if

{pi—pic1:i=1...k}={pi—pl_1:i=1...k}

F. Santos (Unimodular) triangulations of lattice polytopes
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An effective KMW Theorem

Canonical refinement, revisited

Definition

An ordered k-simplex is a simplex with a specified order in its
vertices. Two ordered simplices A = conv{py, ..., px} and
A’ = conv{p),...,p} are called A-equivalent if

{pi—pic1:i=1...k}={pi—pl_1:i=1...k}

Lemma (A-equivalence)

© AIl the simplices in the canonical triangulation of cA are
A-equivalent to A.

Q If two simplices A and A’ are A-equivalent then the A-dicing
defined by A and by A’ are the same, modulo a translation.

F. Santos (Unimodular) triangulations of lattice polytopes
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An effective KMW Theorem

Canonical refinement, revisited

Part (2) of the previous lemma allows us to consider a box point
for a simplex A as a box point for any other A-equivalent simplex
A’ (by the unique, modulo L, translation sending one A-dicing to
the other).

F. Santos (Unimodular) triangulations of lattice polytopes
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An effective KMW Theorem

Canonical refinement, revisited

Part (2) of the previous lemma allows us to consider a box point
for a simplex A as a box point for any other A-equivalent simplex
A’ (by the unique, modulo L, translation sending one A-dicing to
the other).

The crucial property that we need is:

Let A and A" be two A-equivalent simplices in a triangulation T,
and let m be a box point for both (in the above sense). Let F and
F’ be the faces of A and A’ having m in their relative interior.
Then, either F = F' or they have disjoint stars.

F. Santos (Unimodular) triangulations of lattice polytopes
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An effective KMW Theorem

Canonical refinement, revisited

Thus:

The elementary volume reduction can be applied simultaneously to
all simplices of a given A-equivalence class.
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An effective KMW Theorem

Canonical refinement, revisited

Thus:

Corollary

The elementary volume reduction can be applied simultaneously to
all simplices of a given A-equivalence class.

| A\

Corollary

Let T be a triangulation of a lattice polytope P and let V' be the
maximal volume V. Let N be the number of A-equivalence classes
of maximal simplices of volume V in T .

Then, (d + 1)!NT can be refined to a triangulation with all
simplices of volume < V.
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An effective KMW Theorem

An algorithm

To get a unimodular refinement of cP for some constant c:

@ Construct any lattice triangulation 7 of P. Let V be the
maximal volume among its simplices and N the number of
A-equivalence classes of them.

@ While N > 0, apply the reduction lemma (that is, dilate by d!
and refine) to all the simplices in one of the A-equivalence
classes of volume V. This reduces by (at least) one the
number of them.

© At the end of step 2 all simplices have volume bounded by a
V' < V. lterate.

F. Santos (Unimodular) triangulations of lattice polytopes
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An effective KMW Theorem

An algorithm

To get a unimodular refinement of cP for some constant c:

@ Construct any lattice triangulation 7 of P. Let V be the
maximal volume among its simplices and N the number of
A-equivalence classes of them.

@ While N > 0, apply the reduction lemma (that is, dilate by d!
and refine) to all the simplices in one of the A-equivalence
classes of volume V. This reduces by (at least) one the
number of them.

© At the end of step 2 all simplices have volume bounded by a
V' < V. lterate.

Remark: in all steps regularity of the triangulation can be
preserved.
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KMW in 3d

Dimension 3

In dimension three the following is known:

@ For every lattice 3-polytope P, 2P has a unimodular cover
(Ziegler 1997, Kantor-Sarkaria 2003).
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KMW in 3d

Dimension 3

In dimension three the following is known:

@ For every lattice 3-polytope P, 2P has a unimodular cover
(Ziegler 1997, Kantor-Sarkaria 2003).

@ Not for every lattice 3-simplex A, 2A has a unimodular
triangulation (Ziegler 1997, Kantor-Sarkaria 2003).
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KMW in 3d

Dimension 3

In dimension three the following is known:

@ For every lattice 3-polytope P, 2P has a unimodular cover
(Ziegler 1997, Kantor-Sarkaria 2003).

@ Not for every lattice 3-simplex A, 2A has a unimodular
triangulation (Ziegler 1997, Kantor-Sarkaria 2003).

o For every empty lattice 3-simplex P and every ¢ > 4, cP has a
unimodular triangulation (Ziegler 1997). (Open for ¢ = 3).
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KMW in 3d

Dimension 3

In dimension three the following is known:
@ For every lattice 3-polytope P, 2P has a unimodular cover
(Ziegler 1997, Kantor-Sarkaria 2003).
@ Not for every lattice 3-simplex A, 2A has a unimodular
triangulation (Ziegler 1997, Kantor-Sarkaria 2003).

o For every empty lattice 3-simplex P and every ¢ > 4, cP has a
unimodular triangulation (Ziegler 1997). (Open for ¢ = 3).

@ For every lattice 3-polytope P and every ¢ € N\ {1,2,3,5},
cP has a unimodular triangulation (Kantor-Sarkaria 2003 for
c =4, S.-Ziegler 2013 for other c).

F. Santos (Unimodular) triangulations of lattice polytopes
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KMW in 3d

Dimension 3

In dimension three the following is known:

@ For every lattice 3-polytope P, 2P has a unimodular cover
(Ziegler 1997, Kantor-Sarkaria 2003).

@ Not for every lattice 3-simplex A, 2A has a unimodular
triangulation (Ziegler 1997, Kantor-Sarkaria 2003).

o For every empty lattice 3-simplex P and every ¢ > 4, cP has a
unimodular triangulation (Ziegler 1997). (Open for ¢ = 3).

@ For every lattice 3-polytope P and every ¢ € N\ {1,2,3,5},
cP has a unimodular triangulation (Kantor-Sarkaria 2003 for
c =4, S.-Ziegler 2013 for other c).

All these results heavily rely on the classification of empty
3-simplices (White 1964).
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A lattice polytope is:

@ P is hollow (or "lattice-free”) := °e e o e
no lattice points in int(P)
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A lattice polytope is:

@ P is hollow (or "lattice-free”) := °e e o e
no lattice points in int(P)

@ P is empty := no lattice points in P
apart of its vertices.
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A lattice polytope is:

@ P is hollow (or "lattice-free”) := °
no lattice points in int(P)

@ P is empty := no lattice points in P
apart of its vertices.

Remark: Every lattice polytope can
be triangulated (even regularly) into
empty simplices.
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A lattice polytope is:

@ P is hollow (or "lattice-free”) := °
no lattice points in int(P)

@ P is empty := no lattice points in P
apart of its vertices.

Remark: Every lattice polytope can
be triangulated (even regularly) into
empty simplices.

Goal: Classify empty simplices (in low dimensions). “Classify”
means modulo lattice automorphisms (< affine integer
transformations).
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty
simplices.
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty

simplices.

o] o]
] ]

o o
o o

o o
o o

o o
o o

o o
o o
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty

simplices.
o] o]
] ]
o o
o o
o o
o o

1,1,1)
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty
simplices.

(0,0,00  (1,0,0)
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty
simplices.

(0,0,00  (1,0,0)
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty
simplices.

(0,0,00  (1,0,0)
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty
simplices. Yet, they have a nice and relatively simple classification:

Theorem (White 1964)

Every empty tetrahedron has
width one with respect to a pair
of opposite edges.
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243

In dimension 2 there is a single empty triangle, the unimodular
one. In dimension 3, there are infinitely many (classes of) empty
simplices. Yet, they have a nice and relatively simple classification:

Theorem (White 1964)

Every empty tetrahedron has
width one with respect to a pair
of opposite edges.

Hence it is equivalent to some
T(p,q) ==

conv {(0, 0, 0), (1, 0,0),(0,0,1), (p, q,1)
(qeN, peZ, ged(p,q) =1).
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(Lattice) Width

Definition

e Width of P with respect to a linear (or
affine) functional f : RY — R = length of the
interval f(P)
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(Lattice) Width

Definition

e Width of P with respect to a linear (or
affine) functional f : RY — R = length of the
interval f(P)

o (Lattice) width of P:= Minimum width of P with respect to
a linear non-constant, integer functional.
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(Lattice) Width

Definition
e Width of P with respect to a linear (or
affine) functional f : RY — R = length of the
interval f(P)

o (Lattice) width of P:= Minimum width of P with respect to
a linear non-constant, integer functional.

Width: 2 Width: 1 Width: 2
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In dimension 4, Haase and Ziegler (2000) experimentally found
that:

@ There are infinitely many empty 4-simplices of width two
(e. g., A(2,2,3,D — 6) when gcd(D,6) = 1).
@ There are (at least) 178 of width three plus one of width 4).
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In dimension 4, Haase and Ziegler (2000) experimentally found
that:

@ There are infinitely many empty 4-simplices of width two
(e. g., A(2,2,3,D — 6) when gcd(D,6) = 1).
@ There are (at least) 178 of width three plus one of width 4).

On the positive side: Every empty 4-simplex is cyclic (Barile et al.
2011).
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In dimension 4, Haase and Ziegler (2000) experimentally found
that:

@ There are infinitely many empty 4-simplices of width two

(e. g., A(2,2,3,D — 6) when gcd(D,6) = 1).

@ There are (at least) 178 of width three plus one of width 4).
On the positive side: Every empty 4-simplex is cyclic (Barile et al.
2011). Here, a simplex A is called cyclic if the quotient group Z¢/L(A) is
cyclic, where L(A) is the lattice spanned by the vertices of A.
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In dimension 4, Haase and Ziegler (2000) experimentally found
that:

@ There are infinitely many empty 4-simplices of width two
(e. g., A(2,2,3,D — 6) when gcd(D,6) = 1).
@ There are (at least) 178 of width three plus one of width 4).

On the positive side: Every empty 4-simplex is cyclic (Barile et al.
2011). Here, a simplex A is called cyclic if the quotient group Z¢/L(A) is
cyclic, where L(A) is the lattice spanned by the vertices of A.

Observe that |Z9/L(A)| equals the (normalized) volume (or the
determinant) of A.
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In dimension 4, Haase and Ziegler (2000) experimentally found
that:

@ There are infinitely many empty 4-simplices of width two
(e. g., A(2,2,3,D — 6) when gcd(D,6) = 1).
@ There are (at least) 178 of width three plus one of width 4).

On the positive side: Every empty 4-simplex is cyclic (Barile et al.
2011). Here, a simplex A is called cyclic if the quotient group Z¢/L(A) is
cyclic, where L(A) is the lattice spanned by the vertices of A.

Observe that |Z9/L(A)| equals the (normalized) volume (or the
determinant) of A.

In dimension > 5 there are non-cyclic empty simplices.

F. Santos (Unimodular) triangulations of lattice polytopes



Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 00000000000000 0000800000000

Classification of terminal quotient singularities

Another classification comes from algebraic geometry, where
terminal quotient singularities of a certain dimension are in

bijection to empty simplices (together with a choice of a vertex to
be the origin).

F. Santos (Unimodular) triangulations of lattice polytopes
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Classification of terminal quotient singularities

Another classification comes from algebraic geometry, where
terminal quotient singularities of a certain dimension are in
bijection to empty simplices (together with a choice of a vertex to
be the origin). In particular, Mori, Morrison and Morrison (1989)
studied those of prime volume and found that:

@ There are 1+14+29 infinite families with three, two, and one
parameter respectively.

@ Up to volume 419 there are some 4-simplices not in those
families, but between 420 and 1600 there are none.
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Classification of terminal quotient singularities

Another classification comes from algebraic geometry, where
terminal quotient singularities of a certain dimension are in
bijection to empty simplices (together with a choice of a vertex to
be the origin). In particular, Mori, Morrison and Morrison (1989)
studied those of prime volume and found that:

@ There are 1+14+29 infinite families with three, two, and one
parameter respectively.

@ Up to volume 419 there are some 4-simplices not in those
families, but between 420 and 1600 there are none. They
conjectured:

CONJECTURE 1.4 (four-dimensional terminal lemma). Fiz p > 421. Up to
the actions of (Z/pZ)* and S*, each isolated four-dimensional terminal Z/pZ-
quotient singularity of index p is associated with one of the p-terminal quintuples
given in Theorem 1.3.

This conjecture was proved by Bover (2009) (and Sankaran (1990)).

F. Santos (Unimodular) triangulations of lattice polytopes
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Hollow 3-polytopes of width three

Theorem (Nill and Ziegler, 2011)

For each dimension d, all except finitely many hollow d-polytopes
admit a lattice projection to a hollow (d — 1)-polytope.

In particular, every hollow 3-polytope of dimension three either
(Treutlein 2008):

F. Santos (Unimodular) tri lations of lattice polytopes




Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 00000000000000 0000000000000

Hollow 3-polytopes of width three

Theorem (Nill and Ziegler, 2011)

For each dimension d, all except finitely many hollow d-polytopes
admit a lattice projection to a hollow (d — 1)-polytope.

In particular, every hollow 3-polytope of dimension three either
(Treutlein 2008):

@ Has width one.
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Hollow 3-polytopes of width three

Theorem (Nill and Ziegler, 2011)

For each dimension d, all except finitely many hollow d-polytopes
admit a lattice projection to a hollow (d — 1)-polytope.

In particular, every hollow 3-polytope of dimension three either
(Treutlein 2008):

@ Has width one.

@ Projects to the only hollow lattice polygon of width larger
than one (the second dilation of a unimodular triangle).
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Hollow 3-polytopes of width three

Theorem (Nill and Ziegler, 2011)

For each dimension d, all except finitely many hollow d-polytopes
admit a lattice projection to a hollow (d — 1)-polytope.

In particular, every hollow 3-polytope of dimension three either
(Treutlein 2008):
@ Has width one.

@ Projects to the only hollow lattice polygon of width larger
than one (the second dilation of a unimodular triangle).

@ Belongs to a final list with only twelve maximal ones
(Averkov-Kriimpelmann-Weltge, 2016): Seven of width two
and five of width three.

F. Santos (Unimodular) triangulations of lattice polytopes
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Hollow 3-polytopes of width three

Theorem (Averkov-Wagner-Weismantel'11,

A.-Kriimpelmann-Weltge'15)

There are 12 maximal hollow lattice 3-polytopes. Seven of width
two plus the following five, of width three:

Wy

F. Santos (Unimodular) tri lations of lattice polytopes
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Hollow 3-polytopes of width three

Theorem (Averkov-Wagner-Weismantel'11,

A.-Kriimpelmann-Weltge'15)

There are 12 maximal hollow lattice 3-polytopes. Seven of width
two plus the following five, of width three:

Wy

Remark: all proper subpolytopes of these have width < 2 (BHHS
16+). Hence, these five are the only hollow 3-polytopes of
width > 3.

F. Santos (Unimodular) tri lations of lattice polytopes




Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 00000000000000 0000000000000

Classification of empty 4-simplices, part 1. Volume bounds

Theorem (lIglesias-S. 2017+)

Let P be an empty 4-simplex.

o If width(P) > 3 then Vol(P) < 5058.

o If width(P) = 2 but P does not project to a hollow 3-polytope
then Vol(P) < 5184.

F. Santos (Unimodular) tri lations of lattice polytopes
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Classification of empty 4-simplices, part 1. Volume bounds

Theorem (lIglesias-S. 2017+)

Let P be an empty 4-simplex.

o If width(P) > 3 then Vol(P) < 5058.

o If width(P) = 2 but P does not project to a hollow 3-polytope
then Vol(P) < 5184.

Ideas in proof: (1) reduce to dimension three and (2) use volume

bounds for hollow 3-dimensional 3-polytopes.

(1) For width two, look at intermediate slice. For width > 3 show
that either P is “short n every direction” or it “projects to a
wide hollow 3-polytope”.

(2) Uses several convex geometry tricks (covering minima,
Minkowski Theorem, coefficient of asymmetry, etc).

F. Santos (Unimodular) triangulations of lattice polytopes
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Classification of empty 4-simplices, part 2. Enumeration

We have enumerated all empty 4.simplices up to volume 7, 600.
More than 10000 hours of computation have been used.

lde5| |.-Algorithm 2 (p~q) .
- Algorithm 1 - .
1.2e5] - Algorithm 2 (p<<q) L .
.
1le5 L.
-
. -
8ed . .,
. v
-t o
bed o o
P Ld ¢
- '
4ed - . - e
e * -.'u...on o™
= vt e ey, ....-“-' T s o “e, . .
S -"".-..‘...:..'. .--.-.‘.... wase we teareeyast a0t LTRSES .t
3500 4000 4500 5000

Computation time (sec.) for the list of all empty lattice 4-simplices
of a given volume
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Classification of empty 4-simplices, part 3. Simplices
projecting to lower dimension

Looking at hollow lifts of hollow polytopes (4 la
Blanco-Haase-Hofmann-S. 2017) we conclude that the hollow
4-simplices that project to lower dimensional hollow polytopes are:

© Those of width one (i.e., projecting to dimension 1), which
form a 3-parameter family.

F. Santos (Unimodular) triangulations of lattice polytopes



Intro-motivation Some constructions Dilations Classification of empty simplices
000000000 0000000000 00000000000000 0000000000000

Classification of empty 4-simplices, part 3. Simplices
projecting to lower dimension

Looking at hollow lifts of hollow polytopes (4 la
Blanco-Haase-Hofmann-S. 2017) we conclude that the hollow
4-simplices that project to lower dimensional hollow polytopes are:
© Those of width one (i.e., projecting to dimension 1), which
form a 3-parameter family.

@ Those projecting to the second dilation of a unimodular
triangle, which form two 2-parameter families.
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Classification of empty 4-simplices, part 3. Simplices
projecting to lower dimension

Looking at hollow lifts of hollow polytopes (4 la
Blanco-Haase-Hofmann-S. 2017) we conclude that the hollow
4-simplices that project to lower dimensional hollow polytopes are:

© Those of width one (i.e., projecting to dimension 1), which
form a 3-parameter family.

@ Those projecting to the second dilation of a unimodular
triangle, which form two 2-parameter families.

© Those projecting to one of 29 (primitive) plus 23
(non-primitive) bipyramids of width two. Each forms a
1-parameter family.
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Classification of empty 4-simplices, part 3. Simplices
projecting to lower dimension

Looking at hollow lifts of hollow polytopes (4 la
Blanco-Haase-Hofmann-S. 2017) we conclude that the hollow
4-simplices that project to lower dimensional hollow polytopes are:

© Those of width one (i.e., projecting to dimension 1), which
form a 3-parameter family.

@ Those projecting to the second dilation of a unimodular
triangle, which form two 2-parameter families.

© Those projecting to one of 29 (primitive) plus 23
(non-primitive) bipyramids of width two. Each forms a
1-parameter family. The first 29 correspond to the “stable
quintuples” of Mori-Morrison and Morrison (1988). The other 23 form

new ‘“non-primitive quintuples”.

F. Santos (Unimodular) triangulations of lattice polytopes
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The 29 stable quintuples

Q{(9,1,-2,-3,-5)}
Q{(9,2,-1,—4,-6)}
Q{(12,3,—4,-5,-6)}
Q{(12,2,-3,—-4,-7)}
Q{(9,4,-2,-3,-8)}
Q{(12,1,-2,-3,-8)}
Q{(12,3,-1,-6,-8)}
Q{(15,4,-5,—6,—8)}
Q{(12,2,-1,—4,-9)}
Q{(10,6,-2,—5,-9)}
Q{(15,1,-2,-5,-9)}
Q{(12,5,-3,—4,-10)}
Q{(15,2,-3,—-4,-10)}
Q{(6,4,3,—-1,-12)}

Table : The 29 stable quintuples of Mori-Morrison-Morrison. Each represents

Dilations
00000000000000

Q{(7,5,3,—-1,-14)}
Q{(9,7,1,-3,-14)}
Q{(15,7,—3,—5,—14)}
Q{(8,5,3,—1,—-15)}
Q{(10,6,1,—2,—-15)}
Q{(12,5,2,—4,-15)}
Q{(9,6,4,—1,—-18)}
Q{(9,6,5,—2,-18)}
Q{(12,9,1,—4,-18)}
Q{(10,7,4,—1,-20)}
Q{(10,8,3,—1,-20)}
Q{(10,9,4,-3,-20)}
Q{(12,10,1,-3,-20)}
Q{(12,8,5,—1,—-24)}
Q{(15,10,6,—1,—30)}

(the rational points in) a line through the origin, in 7*.

F. Santos

(Unimodular) triangulations of lattice polytopes
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The 23 “non-primitive stable quintuples”

(0,0,3,2,00 + Q{(6, -2 -12,4,4)} (0,0,3,3,00 + ©Qf(-96,3,3 -3)}
(3,0,0,0,3) + Q{(s —6,2,-8,4)} (3,0,2,0,00 + Q{(9,-9,3,-6,3)}
(0,0,3,0,1) + ©f(s, —4,-12,6,2)} (0,0,3,2,00 + ©f(-93,6,6,—6)}
(3,0,0,0,3) + Q{(46,—2,-16,8)} (0,0,1,2,00 + Q{(12,-6,-12,3,3)}
(0,%,3,000 + Q{2 -12,4,12,-6)} (3,0,2,0,00 + Q{(9,-18,6,6,—3)}
(3,0,4,000 + Q{12 -16,8,—6,2)} (3:0,%,0,00 + Q@{(12,-18,3,6, -3)}
(0,1,0,0,3) + Q{212 -8, -12,6)} (3,0,2,0,00 + @{(12,-9,3,-12,6)}
(3,0,0,0,1) + Q{(8,6,—2,-24,12)} (3,0,3,000 + Q{(6,—3,6,—-18,9)}
(0,1,0,0,3) + Q{(6,-2,8 —24,12)} (0,01, 1,1y + @{@3, -186,18 —9)}
(3,3, 4,000 + 0Qf(12,-12,4,-8,4)} (8,0,0,2, %) + Q{(6,-18,6,12,—6)}
(0,2, %0,1) + Q{¢48 -4-16,8)}

(0,0,3,3, 1) + (@4 —16,4,16,-8)}

(0%, 1.0.1) + Q¢4 12,-4,-24,12)}

Table : The 23 non-primitive quintuples. Each represents (the rational points
in) a line in T* not passing through the origin.

F. Santos (Unimodular) tri lations of lattice polytopes
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Putting things together

By the bounds in “part 1" empty 4-simplices that do not project to
hollow lower-dimensional polytopes have volume < 6000. We have
the complete list of them, since we enumerated up to volume 7600
(“part 2"). Together with thw classification in “part 3" we have a
complete classification of empty 4-simplices:

Theorem (Iglesias-S. 2017+)
Let P be a 4-dimensional empty 4-simplex:

@ If P projects to a hollow 3-polytope then it is as in the
previous slide (142452 infinite families, depending on the
projection).

@ If P does not project to a hollow 3-polytope then it has
volume at most 419. There are 2461 classes of them, all of
width two except for 178 classes of width three and one class
of width four.

F. Santos (Unimodular) triangulations of lattice polytopes
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Nbr. of sporadic 4-simplices (part 1 of 2)

V =24 1 V =53: 38 V=78: 3 vV =103: 51 V=129: 17
V=27 1 V=54: 11 V=79: 55 V=104: 8 =130: 2
V=29 3 V=55: 20 V=80: 7 V=105: 7 V=131: 29
V =30 2 V=56: 3 V=8l: 18 V=106: 8 =132:

V=31 2 V=57: 16 V=82: 13 V =107: 54 =133: 14
V=32 3 vV =58: 13 V=8: 60| V=108: 5 =134:

V =33 4 V=59: 51 V=84: 7 V =109: 44 V=135: 6
V =34 5 V=60: 4 V=8: 27 V=110: 5 V=136: 6
V=35 3 V=61: 38 V=86: 11 V =111: 13 V=137: 28
V =37 6 V=62: 26 V=87: 24| V=112: 2 V=138: 2
V =38 8 V=63: 17 V=88: 5 vV =113: 40 V=139: 37
vV =39 9 V=64: 9 V=89: 55 V=114: 4 V=140: 5
V=40: 1 V=65: 27 V=9: 6 V=115: 21 V=141: 6
V=41: 14 V=66: 3 vV=0901: 18 V =116 11 V=142: 9
V=42: 5 V=67: 41 V=902: 9 vV =117: 10 V=143: 13
V=43: 20 V=68: 13 vV=903: 17 V=118: 9 V=144: 1
V=44: 8 V=69: 26 V=94: 12 V=119: 22 V=145: 14
V=45: 6 V=70: 4 V=905: 35 V=120: 3 V=146: 5
V=46: 7 V=71: 50 V=96: 3 vV =121: 18 =147: 10
V =47: 30 V=72: 3 V=97: 46 V=122: 9 =148: 7
V=48: 5 V=73: 44 V=908: 9 vV =123: 17 =149: 26
V=49: 17 V=74: 18 V=99: 13 V=124: 8 =150: 2
V=50: 8 V=7: 22 V=100: 8 V=125: 25 =151: 19
V=51: 16 V=76: 14 | V=101: 41 V=127: 24 =152: 6
V=52: 6 V=77: 19 V=102: 3 V=128: 9 V=153: 9
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Nbr. of sporadic 4-simplices (part 2 of 2)

V=154: 3 5?122 ;3 v=211: 4 Kfjﬁ g V=203: 5
V=155: 12 o v=212: 2 T V=209: 2
V=18: 5 V=248: 3
V=1s6: 2 | o oo 0| V=213 3 70 S| V=304: 1
Vi=1s7: 11| o ool o | V=214 2 7o | V=308 1
V=158: 10 T V=215: 5 e V=310: 1
V=18: 2 V=251: 5
V=159: o | T o0 L | V=26 1| 700 1| V=311 1
V=160: 3 “lss. 5 | V=28 5| 070 | v=313: 1
V=161: 13 | o oo o | V=210 4 7O S| V=314 1
V=163: 17 | | " o O | V=220 1| 700 0| V=317 1
V=164: 6 “lo1. g | V=2 3| 700 (| v=319: 2
V=165: 1 | o "o 0| V=222 1) 70 | V=321 1
V=166: 7 los. 1| V=2 7| 0700 |v=33. 1
V=167: 18 an. V=225: 2 ey V=331: 1
V=194: 3 V=267: 1
V=168: 3 | | oo L | V=226 4 70 | V=332 1
V=169: 13 o7, 13| V=227 9| 7o V=33 2
V=170: 2 “loo. 11| V=20: 6| o0 L |v=3% 1
V=11 6 | o S v=20: 3 D700 V=347 1
vV=172: 3 v:201: 3 V=232: 1 v:274: 1| V=349 2
vV=173: 15 o vV=233: 9 e V=353: 1
vV=202: 2 v=215: 1
V=14 3 | o To s S v=aa 1 DT | v=3ss: 1
V=175: 8 e V=23%: 3 en V=356: 1
V=204 1 vV =283: 2
V=176: 4 v=237: 1 V=376: 1
V=205: 4 vV=287: 1
V=177: 5 vV =238: 2 V=377: 2
V=206: 4 V=289: 4
V=18 2 | o To o o V=239 3 7o L V=307 1
V=179 a1 | oo D V=24 6 o o0 ] V=308 1
V=180 1| T oo o | V=2 2 o V=419 1
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Nbr. of sporadic t.q.s. of prime volume (MMM vs. us)

39 113 200 229 30 349 10

TABLE 1.14

P Sp p S » S p S vV =29: 15 vV =113: 200 V =229 30
2 0 73 220 179 105 283 10 V =31: 10 V =127 120 V =1233: 45
3 0 79 275 181 65 293 25 V=37: 30 vV =131: 145 V=23: 15
5 0 83 300 191 40 307 0 V=41: 66 V=137: 140 V =241: 30
7 0 80 275 193 60 311 5 V=43: 100 V=139: 18 V =251: 25
U o0 o1 23 197 65 313 5 Vi=47i 150 V=149: 130 V=257: 15
moo o mmoweowoaoso | Y70 0 UZ00 B U0 B
7 9 103 255 211 20 381 5 e = ; = :
l; 13 107 270 23 35 337 0 V =61: 186 V =163 : 85 vV =271: 20

28 109 220 27 45 1 s V =67: 205 V =167 : 90 V =1283: 10
z V="71: 250 VvV =173: 75 V =293: 25
31

S V=73: 220 V=179: 105 V =311:
80 127 120 233 45 353 V=79: 275 V=181: 65 V =313:

5
5

Bl 50 131145 239 15 359 V=83: 300 V=191: 40 V=317: 5
5

5

41 76 137 140 241 30 367
43 110 139 185 251 25 373

5

0

g V=89: 275 V=193: 60 V =331:
47 100 149 130 257 15 379 0

0

0

5

0

5

V=97: 230 V=197: 65 V =347

vV =101: 201 V=199: 55 V=349: 10
V =103: 255 vV=211: 20 V=353: 5
V=107: 270 V =223: 35 V=397: 5
V=109: 220 V =227: 45 V=419: 5

83 195 151 95 263 35 383
59 260 157 55 269 10 389
61 186 163 85 271 20 397
67 205 167 90 217 0 409
71 250 173 75 281 0 419

F. Santos (Unimodular) tri lations of lattice polytopes
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