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PART I:

Introduction
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Lattice points of a polytope

A (convex) polytope is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.
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Lattice points of a polytope

A (convex) polytope is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.

An integral polytope is a polytope whose vertices are all lattice points. i.e., points

with integer coordinates.

Definition. For any polytope P ⊂ R
d and positive integer t ∈ N, the tth dilation of P

is tP = {tx : x ∈ P}. We define

i(P, t) = |tP ∩ Z
d|

to be the number of lattice points in the tP.
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Lattice points of a polytope

A (convex) polytope is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.

An integral polytope is a polytope whose vertices are all lattice points. i.e., points

with integer coordinates.

Definition. For any polytope P ⊂ R
d and positive integer t ∈ N, the tth dilation of P

is tP = {tx : x ∈ P}. We define

i(P, t) = |tP ∩ Z
d|

to be the number of lattice points in the tP.

Example: For any d, let �d = {x ∈ R
d : 0 ≤ xi ≤ 1, ∀i} be the unit cube in R

d.

Then t�d = {x ∈ R
d : 0 ≤ xi ≤ t, ∀i} and i(�d, t) = (t+ 1)d.

P 3P
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Theorem of Ehrhart (on integral polytopes)

Theorem 1 (Ehrhart). Let P be a d-dimensional integral polytope. Then i(P, t) is a

polynomial in t of degree d.

Therefore, we call i(P, t) the Ehrhart polynomial of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, t)?
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, t)?

➠ The leading coefficient of i(P, t) is the volume vol(P ) of P.

➠ The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.

➠ The constant term of i(P, t) is always 1.

➠ No simple forms known for other coefficients for general polytopes.

Observation

The leading, second, and last coefficient of i(P, t) are positive.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, t)?

➠ The leading coefficient of i(P, t) is the volume vol(P ) of P.

➠ The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.

➠ The constant term of i(P, t) is always 1.

➠ No simple forms known for other coefficients for general polytopes.

Observation

The leading, second, and last coefficient of i(P, t) are positive.

Question. What about the coefficient of td−2, td−3, . . . , t1 in i(P, t)?
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Some negative results

• The Reeve tetrahedron Tm is the polytope with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)

and (1, 1, m), where m ∈ Z>0. Its Ehrhart polynomial is

i(Tm, t) =
m

6
t3 + t2 +

12−m

6
t+ 1.

The linear coefficient is negative when m ≥ 13.
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Some negative results

• The Reeve tetrahedron Tm is the polytope with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)

and (1, 1, m), where m ∈ Z>0. Its Ehrhart polynomial is

i(Tm, t) =
m

6
t3 + t2 +

12−m

6
t+ 1.

The linear coefficient is negative when m ≥ 13.

• In 2015, Hibi-Higashitani-Tsuchiya-Yoshida showed that each of coefficients of td−2,

td−3, . . . , t1 in i(P, t) can be negative. Moreover, they can be simultaneously

negative.
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Some negative results

• The Reeve tetrahedron Tm is the polytope with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)

and (1, 1, m), where m ∈ Z>0. Its Ehrhart polynomial is

i(Tm, t) =
m

6
t3 + t2 +

12−m

6
t+ 1.

The linear coefficient is negative when m ≥ 13.

• In 2015, Hibi-Higashitani-Tsuchiya-Yoshida showed that each of coefficients of td−2,

td−3, . . . , t1 in i(P, t) can be negative. Moreover, they can be simultaneously

negative.

• In 2016, Tsuchiya showed that any sign pattern is possible for the coefficients of

td−2, td−3, . . . , t1 in i(P, t).
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Ehrhart positivity

Definition. We say an integral polytope is Ehrhart positive if it has positive coefficients

in its Ehrhart polynomial.
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Ehrhart positivity

Definition. We say an integral polytope is Ehrhart positive if it has positive coefficients

in its Ehrhart polynomial.

Main problem:

Characterize integral polytopes that are Ehrhart positive.
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Ehrhart positivity

Definition. We say an integral polytope is Ehrhart positive if it has positive coefficients

in its Ehrhart polynomial.

Main problem:

Characterize integral polytopes that are Ehrhart positive.

In the literature, different techniques have been used to prove Ehrhart positivity.
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Example I

Polytope: Standard simplex.

Reason: Explicit verification.
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Example I

Polytope: Standard simplex.

Reason: Explicit verification.

In the case of

∆d = {x ∈ R
d+1 : x1 + x2 + · · ·+ xd+1 = 1, xi ≥ 0},
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Example I

Polytope: Standard simplex.

Reason: Explicit verification.

In the case of

∆d = {x ∈ R
d+1 : x1 + x2 + · · ·+ xd+1 = 1, xi ≥ 0},

It can be computed that its Ehrhart polynomial is

(

t+ d

d

)

.

More explicitly, we have

(

t+ d

d

)

=
(t+ d)(t+ d− 1) · · · (t+ 1)

d!
,

which expands positively in powers of t.
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Example II

Polytope: Crosspolytope.

Reason: Roots have negative real parts.
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Example II

Polytope: Crosspolytope.

Reason: Roots have negative real parts.

In the case of the crosspolytope:

♦d = conv{±ei : 1 ≤ i ≤ d},

It can be computed that its Ehrhart polynomial is

d
∑

k=0

2k
(

d

k

)(

t

k

)

,

which is not clear if it expands positively in powers of t.
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Example II

Polytope: Crosspolytope.

Reason: Roots have negative real parts.

In the case of the crosspolytope:

♦d = conv{±ei : 1 ≤ i ≤ d},

It can be computed that its Ehrhart polynomial is

d
∑

k=0

2k
(

d

k

)(

t

k

)

,

which is not clear if it expands positively in powers of t.

However, according to EC1, Exercise 4.61(b), every zero of i(♦d, t) has real part

−1/2. Thus it is a product of factors in the form of

(t+ 1/2) or (t+ 1/2 + ia)(t+ 1/2− ia) = t2 + t+ 1/4 + a2,

where a is real, so Ehrhart positivity follows.
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More on roots

The following is the graph (Beck-DeLoera-Pfeifle-Stanley) of zeros for the Ehrhart

polynomial of the Birkhoff polytope of doubly stochastic n × n matrices for n =

2, . . . , 9.

–3

–2

–1

0

1

2

3

–8 –6 –4 –2 0
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Example III

Polytope: Zonotopes.

Reason: A combinatorial formula for the Ehrhart coefficients.
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Example III

Polytope: Zonotopes.

Reason: A combinatorial formula for the Ehrhart coefficients.

Definition. A zonotope is the Minkowski sum of a set of vectors (in R
d):

Z(v1, · · · ,vk) = v1 + v2 + · · ·+ vk.

Theorem 2 (Stanley). The coefficient of ti in i(Z(v1, · · · ,vk), t) is equal to

∑

S={j1,...,ji}⊆[k]

m(S),

where m(S) is the g.c.d. of all i× i minors of the d× i matrix

MS =











· · ·

vj1 vj2 · · · vji

· · ·











.
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The family of zonotopes includes:

• The unit cube �d = [0, 1]d whose Ehrhart polynomial is

i(�d, t) = (t+ 1)d.
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The family of zonotopes includes:

• The unit cube �d = [0, 1]d whose Ehrhart polynomial is

i(�d, t) = (t+ 1)d.

• The regular permutohedron:

Πn−1 = conv{(σ(1), σ(2), · · · , σ(n)) ∈ R
n : σ ∈ Sn}

∼=
∑

1≤i<j≤n

[ei, ej].
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The family of zonotopes includes:

• The unit cube �d = [0, 1]d whose Ehrhart polynomial is

i(�d, t) = (t+ 1)d.

• The regular permutohedron:

Πn−1 = conv{(σ(1), σ(2), · · · , σ(n)) ∈ R
n : σ ∈ Sn}

∼=
∑

1≤i<j≤n

[ei, ej].

i(Π3, t) = 1 + 6t+ 15t2 + 16t3
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Example IV

Polytope: Cyclic polytopes.

Reason: Higher integrality condition.
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Example IV

Polytope: Cyclic polytopes.

Reason: Higher integrality condition.

The moment curve is the image of the map ν : R → R
d that sends

x 7→ (x, x2, · · · , xd).

For n > d, the convex hull of any n distinct points on the moment curve is a cyclic

polytope.
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Example IV

Polytope: Cyclic polytopes.

Reason: Higher integrality condition.

The moment curve is the image of the map ν : R → R
d that sends

x 7→ (x, x2, · · · , xd).

For n > d, the convex hull of any n distinct points on the moment curve is a cyclic

polytope.

Theorem 3 (L.). If a polytope P satisfies certain higher integrality conditions, the coef-

ficient of tk in i(P, t) is given by the volume of the projection that forgets the last d− k

coordinates.
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Example IV

Polytope: Cyclic polytopes.

Reason: Higher integrality condition.

The moment curve is the image of the map ν : R → R
d that sends

x 7→ (x, x2, · · · , xd).

For n > d, the convex hull of any n distinct points on the moment curve is a cyclic

polytope.

Theorem 3 (L.). If a polytope P satisfies certain higher integrality conditions, the coef-

ficient of tk in i(P, t) is given by the volume of the projection that forgets the last d− k

coordinates.

Theorem 4 (L.). For any rational polytope P , there exsits a polytope P ′ with the same

face lattice and Ehrhart positivity.

Hence,

Ehrhart positivity is not a combinatorial property.
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Remarks

• Unlike IDP or unimodular triangulation, simple dilating does not help.
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Remarks

• Unlike IDP or unimodular triangulation, simple dilating does not help. If

i(P, t) = cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0,

then

i(kP, t) = i(P, kt) =
(

cdk
d
)

td +
(

cd−1k
d−1

)

td−1 + · · ·+ (c1k)t+ c0.
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i(kP, t) = i(P, kt) =
(

cdk
d
)

td +
(

cd−1k
d−1

)

td−1 + · · ·+ (c1k)t+ c0.

They have exactly the same sign patterns.
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Remarks

• Unlike IDP or unimodular triangulation, simple dilating does not help. If

i(P, t) = cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0,

then

i(kP, t) = i(P, kt) =
(

cdk
d
)

td +
(

cd−1k
d−1

)

td−1 + · · ·+ (c1k)t+ c0.

They have exactly the same sign patterns.

However, dilating each coordinate with different parameter works.
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Question

Are there other geometric ways to prove Ehrhart positivity?
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Other polytopes observed to be Ehrhart positive

• CRY (Chan-Robbins-Yuen).

• Tesler matrices (Mezaros-Morales-Rhoades).

• Birkhoff polytopes. (Beck-DeLoera-Pfeifle-Stanley)

• Matroid polytopes (DeLoera - Haws- Koeppe). (We were interested in this one.)
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Other polytopes observed to be Ehrhart positive

• CRY (Chan-Robbins-Yuen).

• Tesler matrices (Mezaros-Morales-Rhoades).

• Birkhoff polytopes. (Beck-DeLoera-Pfeifle-Stanley)

• Matroid polytopes (DeLoera - Haws- Koeppe). (We were interested in this one.)

Littlewood Richardson

Ron King conjectured that the stretch Littlewood Richardson coefficients ctνtλ,tµ are poly-

nomials in N(t).
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PART II:

McMullen’s formula and consequences
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McMullen’s formula

Definition. Suppose F is a face of P. The feasible cone of P at F , denoted by

fcone(F, P ), is the cone of all feasible directions of P at F .

The pointed feasible cone of P at F is fconep(F, P ) = fcone(F, P )/L, where L

is the subspace spanned by F. In general, fconep(F, P ) is k-dim’l pointed cone if F

is codimensional k.
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McMullen’s formula

Definition. Suppose F is a face of P. The feasible cone of P at F , denoted by

fcone(F, P ), is the cone of all feasible directions of P at F .

The pointed feasible cone of P at F is fconep(F, P ) = fcone(F, P )/L, where L

is the subspace spanned by F. In general, fconep(F, P ) is k-dim’l pointed cone if F

is codimensional k.

In 1975 Danilov asked if it is possible to assign values Ψ(C) to all rational cones C

such that the following McMullen’s formula holds

|P ∩ Z
d| =

∑

F : a face of P

α(F, P ) vol(F ).

where α(F, P ) := Ψ(fconep(F, P )).
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McMullen’s formula

Definition. Suppose F is a face of P. The feasible cone of P at F , denoted by

fcone(F, P ), is the cone of all feasible directions of P at F .

The pointed feasible cone of P at F is fconep(F, P ) = fcone(F, P )/L, where L

is the subspace spanned by F. In general, fconep(F, P ) is k-dim’l pointed cone if F

is codimensional k.

In 1975 Danilov asked if it is possible to assign values Ψ(C) to all rational cones C

such that the following McMullen’s formula holds

|P ∩ Z
d| =

∑

F : a face of P

α(F, P ) vol(F ).

where α(F, P ) := Ψ(fconep(F, P )).

McMullen proved it was possible in a non-constructive and nonunique way.
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Different Constructions

There are at least three different constructions for Ψ.

• Pommersheim-Thomas: Need to choose a flag of subspaces.

• Berline-Vergne: No choices, invariant under On(Z).

• Schurmann-Ring: Need to choose a fundamental cell.
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Different Constructions

There are at least three different constructions for Ψ.

• Pommersheim-Thomas: Need to choose a flag of subspaces.

• Berline-Vergne: No choices, invariant under On(Z).

• Schurmann-Ring: Need to choose a fundamental cell.

We will use Berline-Vergne’s construction, which we will refer to as the BV-construction.
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A refinement of positivity

Applying McMullen’s formula to the dilation tP of P , we obtain

i(P, t) = |tP ∩ Z
d| =

∑

F : a face of P

α(tF, tP ) vol(tF )

=
∑

F : a face of P

α(F, P ) vol(F )tdim(F )
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A refinement of positivity

Applying McMullen’s formula to the dilation tP of P , we obtain

i(P, t) = |tP ∩ Z
d| =

∑

F : a face of P

α(tF, tP ) vol(tF )

=
∑

F : a face of P

α(F, P ) vol(F )tdim(F )

Hence, the coefficient of tk in i(P, t) is given by

∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

Page 21



On Ehrhart positivity Fu Liu

A refinement of positivity

Applying McMullen’s formula to the dilation tP of P , we obtain

i(P, t) = |tP ∩ Z
d| =

∑

F : a face of P

α(tF, tP ) vol(tF )

=
∑

F : a face of P

α(F, P ) vol(F )tdim(F )

Hence, the coefficient of tk in i(P, t) is given by

∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

Therefore,

α(F, P ) > 0 for all k-dim’l face F =⇒ the coefficient of tk of i(P, t) > 0

Moreover,

all α positive =⇒ Ehrhart positive
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(BV-)α-positivity

Definition. We say a polytope P is α-positive if all the α(F, P ) are positive for a given

α construction.

We will use BV-α-positive for Berline-Vergne’s construction.
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A refined conjecture

Conjecture 5. The regular permutohedron Πn−1 is BV-α-positive.
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A refined conjecture

Conjecture 5. The regular permutohedron Πn−1 is BV-α-positive.

Why do we care?

Proposition 6. The above conjecture implies that all integral generalized permutohedra

are Ehrhart positive.
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A refined conjecture

Conjecture 5. The regular permutohedron Πn−1 is BV-α-positive.

Why do we care?

Proposition 6. The above conjecture implies that all integral generalized permutohedra

are Ehrhart positive.

A few facts on generalized permutohedra

• A family of polytopes has nice combinatorial properties, first studied by Postnikov.

• Matroid polytopes belong to this family.

• Postnikov showed that a subfamily, called the y-family, has Ehrhart positivity. (Ma-

troid polytopes do not belong to the y-family.)
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Ambition

Example V

Polytope: Generalized permutohedra.

Reason: α-positivity.
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PART III:

Positivity for generalized permutohedra

Based on joint work with Castillo.
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Usual permutohedra

Definition. Suppose v = (v1, v2, · · · , vn) is a (nondecreasing) sequence. We define

the usual permutohedron

Perm (v) := conv
{(

vσ(1), vσ(2), · · · , vσ(n)
)

: σ ∈ Sn

}

.

• If v = (1, 2, · · · , n), we get the regular permutohedron Πn−1.

Example. Π2:

Any usual permutohedron in R
n is (n− 1)-dimensional.
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Generalized permutohedra

Definition (Postnikov). A generalized permutohedron is a polytope obtained from a

usual permutohedron by moving the facets while keeping the normal directions.
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Generalized permutohedra

Definition (Postnikov). A generalized permutohedron is a polytope obtained from a

usual permutohedron by moving the facets while keeping the normal directions.

For n = 3, we get 2-dimensional polytopes.
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Generalized permutohedra

Definition (Postnikov). A generalized permutohedron is a polytope obtained from a

usual permutohedron by moving the facets while keeping the normal directions.

For n = 3, we get 2-dimensional polytopes.

regular permutohedron
usual permutohedra

generalized
permutohedra
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Generalized permutohedra

Definition (Postnikov). A generalized permutohedron is a polytope obtained from a

usual permutohedron by moving the facets while keeping the normal directions.

For n = 3, we get 2-dimensional polytopes.
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generalized
permutohedra

Page 27



On Ehrhart positivity Fu Liu

Alternative definition

Let V be the subspace of Rn defined by x1 + x2 + · · · + xn = 0. The braid

arrangement fan denoted by Bn, is the complete fan in V given by the hyperplanes

xi − xj = 0 for all i 6= j.
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Alternative definition

Let V be the subspace of Rn defined by x1 + x2 + · · · + xn = 0. The braid

arrangement fan denoted by Bn, is the complete fan in V given by the hyperplanes

xi − xj = 0 for all i 6= j.

Proposition 7 (Postnikov-Reiner-Williams). A polytope P ∈ R
n is a generalized per-

mutoheron if and only if its normal fan is refined by the braid arrangement fan Bn.
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Alternative definition

Let V be the subspace of Rn defined by x1 + x2 + · · · + xn = 0. The braid

arrangement fan denoted by Bn, is the complete fan in V given by the hyperplanes

xi − xj = 0 for all i 6= j.

Proposition 7 (Postnikov-Reiner-Williams). A polytope P ∈ R
n is a generalized per-

mutoheron if and only if its normal fan is refined by the braid arrangement fan Bn.

regular permutohedron
usual permutohedra

generalized
permutohedra
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Berline-Vergne’s construction

For the rest of this part, we assume that α is the BV-construction.

Important facts about the BV-construction:

• Certain valuation property.

• Invariant under On(Z) – orthogonal unimodular transformations, in particular invari-

ant under rearranging coordinates with signs.
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Reduction Theorem

Theorem 8. Suppose α(F,Πn−1) > 0 for any k-dimensional face F of the regu-

lar permutohedron Πn−1. Then α(G,Q) > 0 for any k-dimensional face G of any

generalized permutohedron Q in R
n.
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A more general form of the reduction theorem

The reduction theorem is a consequence of the valuation property of the BV-construction

for α, thus does not only work for Πn−1 and generalized permutohedra.

Theorem 9. Suppose Q is a deformation of P, or the normal fan of P is a refinement

of the normal fan of Q. If α(F, P ) > 0 for any k-dimensional face F of P , then

α(G,Q) > 0 for any k-dimensional face G of Q.
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What can we show?
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What can we show?

Partial results to the conjecture:

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Lemma (Castillo-L.). α(E,Πn−1) > 0 for any edge E of Πn−1 of dimension ≤ 100.

Applying the reduction theorem, we get:

Corollary (Castillo-L.). i. Any integral generalized permutohedron of dimension ≤ 6

is Ehrhart positive.

ii. The third and fourth coefficients in the Ehrhart polynomial of any integral generalized

permutohedron is positive.

iii. The linear coefficient in the Ehrhart polynomial of any integral generalized permuto-

hedron of dimension ≤ 100 is positive.
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Proofs of the first two lemmas

Recall that
α(F, P ) := Ψ(fconep(F, P )),

where Ψ is a function that assigns values to all rational cones.

Fact. 1. Berline-Vergne’s Ψ is computed recursively. So lower dimensional cones are

easier to compute.

2. If F is a codimension k face of P , then fconep(F, P ) is k-dimensional.

Thus, α(F, P ) is easier to compute if F is a higher dimensional face.
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Proofs of the first two lemmas

Recall that
α(F, P ) := Ψ(fconep(F, P )),

where Ψ is a function that assigns values to all rational cones.

Fact. 1. Berline-Vergne’s Ψ is computed recursively. So lower dimensional cones are

easier to compute.

2. If F is a codimension k face of P , then fconep(F, P ) is k-dimensional.

Thus, α(F, P ) is easier to compute if F is a higher dimensional face.

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Proof. Directly compute all the α’s.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Proof. We have precise formulas forΨ of unimodular cones of dimension ≤ 3. Applying

these to regular permutohedra, we get α-positivity for faces of codimension ≤ 3.
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The third lemma

Lemma (Castillo-L.). α(E,Πn−1) > 0 for any edge E of Πn−1 of dimension ≤ 100.

The approaches used for the other two lemmas do not work. Since α(E,Πn−1) is

Ψ of an (n− 2)-dimensional cone, which is very hard to compute directly.
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The symmetry property

Lemma. The valuation Ψ (from the BV-construction) is symmetric about the coordi-

nates, i.e., for any cone C ∈ R
n and any signed permutation (σ, s) ∈ Sn × {±1}n,

we have

Ψ(C) = Ψ((σ, s)(C)),
where (σ, s)(C) = {(s1xσ(1), s2xσ(2), . . . , snxσ(n)) : (x1, . . . , xn) ∈ C}.

Page 35



On Ehrhart positivity Fu Liu

Idea of the proof of the third lemma

Recall that the coefficient of tk in i(P, t) is given by

∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

In particular, the coefficient of the linear term is given by

∑

E: edge of P

α(E, P ) vol(E).
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Idea of the proof of the third lemma

Recall that the coefficient of tk in i(P, t) is given by

∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

In particular, the coefficient of the linear term is given by

∑

E: edge of P

α(E, P ) vol(E).

General idea: Suppose you have a family of polytopes such that

• they have same pointed feasible cones (for edges) up to signed permutations, and

thus have the same α-values;

• the Ehrhart polynomial of each polytope in the family is known (or at least the linear

Ehrhart coefficient is known).

Then as long as you have enough “independent” polytopes in your family, you can figure

out the α-values.
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Idea of the proof of the third lemma (cont’d)

Example. When n = 3 : Π2 = Perm((1, 2, 3)) = conv{σ : σ ∈ S3}.

(3, 1, 2)

(3, 2, 1) (2, 3, 1)

(1, 3, 2)

(1, 2, 3)(2, 1, 3)
The pointed feasible cones of the six edges of Π2 are

Cone((1, 1,−2)), Cone((2,−1,−1)), Cone((1,−2, 1)),

Cone((−1,−1, 2)), Cone((−2, 1, 1)), Cone((−1, 2,−1)),
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Idea of the proof of the third lemma (cont’d)
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The pointed feasible cones of the six edges of Π2 are

Cone((1, 1,−2)), Cone((2,−1,−1)), Cone((1,−2, 1)),

Cone((−1,−1, 2)), Cone((−2, 1, 1)), Cone((−1, 2,−1)),

By the symmetry property of Ψ, these cones all have the same value. Therefore, all

α(E,Π2) are a single value, say α.
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Idea of the proof of the third lemma (cont’d)

Example. When n = 3 : Π2 = Perm((1, 2, 3)) = conv{σ : σ ∈ S3}.

(3, 1, 2)

(3, 2, 1) (2, 3, 1)

(1, 3, 2)

(1, 2, 3)(2, 1, 3)
The pointed feasible cones of the six edges of Π2 are

Cone((1, 1,−2)), Cone((2,−1,−1)), Cone((1,−2, 1)),

Cone((−1,−1, 2)), Cone((−2, 1, 1)), Cone((−1, 2,−1)),

By the symmetry property of Ψ, these cones all have the same value. Therefore, all

α(E,Π2) are a single value, say α.

The Ehrhart polynomial of Π2 is 3t2 + 3t+ 1. Thus,

3 =
∑

E

α(E,Π2) · vol(E) = 6α ⇒ α = 1/2 > 0.
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Idea of the proof of the third lemma (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.
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Idea of the proof of the third lemma (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.

Π3 have 36 edges of two kinds.

24 short edges have the same α-

values, say α1, and 12 long edges

have the same α-values, say α2.
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Idea of the proof of the third lemma (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.

Π3 have 36 edges of two kinds.

24 short edges have the same α-

values, say α1, and 12 long edges

have the same α-values, say α2.

The Ehrhart polynomial of Π3 is 16t3 + 15t2 + 6t+ 1. Thus,

6 =
∑

E

α(E,Π3) · vol(E) = 24α1 + 12α2.
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Idea of the proof of the third lemma (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.

Π3 have 36 edges of two kinds.

24 short edges have the same α-

values, say α1, and 12 long edges

have the same α-values, say α2.

The Ehrhart polynomial of Π3 is 16t3 + 15t2 + 6t+ 1. Thus,

6 =
∑

E

α(E,Π3) · vol(E) = 24α1 + 12α2.

Not enough equations!
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Idea of the proof of the third lemma (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.
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Idea of the proof of the third lemma (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.

The Ehrhart polynomial of ∆2,4 is
2

3
t3 + 2t2 +

7

3
t+ 1. Thus,

7

3
=

∑

E

α(E,∆2,4) · vol(E) = 12α2.
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Idea of the proof of the third lemma (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.

The Ehrhart polynomial of ∆2,4 is
2

3
t3 + 2t2 +

7

3
t+ 1. Thus,

7

3
=

∑

E

α(E,∆2,4) · vol(E) = 12α2.

Therefore, we solve the 2× 2 linear system, and get

α1 =
11

72
> 0, α2 =

7

36
> 0.
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Idea of the proof of the third lemma (cont’d)

For arbitrary n: The linear Ehrhart coeffcient of some polytopes in the y-family can be

easily described. Using these, we were able to set up an explicit triangular linear system

for {α(E,Πn−1) : E is an edge of Πn−1} for any n.

Remark. The number “100” in the lemma can be pushed further.
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PART IV:

Other questions and results

Based on joint work with Castillo, Nill and Paffenholz.
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Questions and Answers

• Recall that a d-dimensional integral polytope P is called smooth if each vertex is

contained in precisely d edges, and the primitive edge directions form a lattice basis.

Bruns asked the following question:

Question 1. Is smooth integral polytope always Ehrhart positive?
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• We have seen that

BV-α-positivity =⇒ Ehrhart positivity

or equivalently,
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Question 2. Are there polytopes P that are Ehrhart positive but not BV-α-positive?

Yes.
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Questions and Answers

• Recall that a d-dimensional integral polytope P is called smooth if each vertex is

contained in precisely d edges, and the primitive edge directions form a lattice basis.

Bruns asked the following question:

Question 1. Is smooth integral polytope always Ehrhart positive? No.

• We have seen that

BV-α-positivity =⇒ Ehrhart positivity

or equivalently,

BV-α is positive for any cone in Σ =⇒ Ehrhart positivity for P with normal fan Σ

Question 2. Are there polytopes P that are Ehrhart positive but not BV-α-positive?

Yes.

Question 3. If some cone in Σ is BV-α-negative, can we always construct a polytope

with normal fan Σ that is not Ehrhart positive? No.
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Idea of the constructions

i. Chiseling cubes:

Pd(a, b): cutting one vertex off a�d at distance b.

= − +

Figure 1: Inclusion-Exclusion for P2(2, 1)
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Idea of the constructions

i. Chiseling cubes:

Pd(a, b): cutting one vertex off a�d at distance b.

= − +

Figure 1: Inclusion-Exclusion for P2(2, 1)

ii. Use inclusion-exclusion to compute BV-α-values for Pd(a, b) and search for nega-

tive values. Negatives appear at d = 7.
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Idea of the constructions

i. Chiseling cubes:

Pd(a, b): cutting one vertex off a�d at distance b.

= − +

Figure 1: Inclusion-Exclusion for P2(2, 1)

ii. Use inclusion-exclusion to compute BV-α-values for Pd(a, b) and search for nega-

tive values. Negatives appear at d = 7.

Results Pd(a, b) has negative BV-α-values for any d ≥ 7, but any polytope that

has the same normal fan as Pd(a, b) is Ehrhart positive.
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Idea of the constructions

iii Chiseling cubes more:

Qd(a, b): cutting all vertices off the a�d at distance b.

= − +

Figure 2: Inclusion-Exclusion for Q2(3, 1)
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Idea of the constructions

iii Chiseling cubes more:

Qd(a, b): cutting all vertices off the a�d at distance b.

= − +

Figure 2: Inclusion-Exclusion for Q2(3, 1)

Results For any d ≥ 7, the smooth polytope Qd(a, b) is not Ehrhart positive.
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