
In the field of Ehrhart theory, identification of lattice polytopes with unimodal Ehrhart h*-polynomials is a 
cornerstone investigation. The study of h*-unimodality is home to numerous long-standing conjectures 
within the field, and proofs thereof often reveal interesting algebra and combinatorics intrinsic to the 
associated lattice polytopes. Proof techniques for h*-unimodality are plentiful, and some are apparently 
more dependent on the lattice geometry of the polytope than others. In recent years, proving a 
polynomial has only real-roots has gained traction as a technique for verifying unimodality of h-
polynomials in general. However, the geometric underpinnings of the real-rooted phenomena for h*-
unimodality are not well-understood. As such, more examples of this property are always noteworthy. In 
this talk, we will discuss a family of lattice n-simplices that associate via their normalized volumes to the 
n^th-place values of positional numeral systems. The h*-polynomials for simplices associated to special 
systems such as the factoradics and the binary numerals recover ubiquitous h-polynomials, namely the 
Eulerian polynomials and binomial coefficients, respectively. Simplices associated to any base-r numeral 
system are also provably real-rooted. We will put the h*-real-rootedness of the simplices for numeral 
systems in context with that of their cousins, the s-lecture hall simplices, and discuss their admittance of 
this phenomena as it relates to other, more intrinsically geometric, reasons for h*-unimodality. 
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P ⊂ Rn an d-dimensional lattice polytope.

The Ehrhart series of P:

1+
∑

t∈Z>1

| tP∩Zn | z t =
h∗0 + h∗1z + · · ·+ h∗dz

d

(1− z)d+1
.

The Ehrhart h∗-polynomial of P:

h∗(P; z) := h∗0 + h∗1z + · · ·+ h∗dz
d

Properties:

h∗(P; 1) = d! vol(P)
= normalized volume of P.

h∗
1 =| P ∩ Zn | −d − 1.

h∗
0 , . . . , h

∗
d ∈ Z≥0 [Stanley, 1980]

P = [0, 1]2

| tP ∩ Z2 |= (t + 1)2∑
t∈Z≥0

(t + 1)2z t = 1+z
(1−z)3

h∗(P; z) = 1 + z



h∗(P ; z) is “combinatorial.”

If a0, a1, . . . , ad ∈ Z≥0 then maybe they coefficients of the polynomial

p(z) = a0 + a1z + a2z
2 + · · ·+ adz

d

count a collection of combinatorial objects Ω as stratified by some parameter
k = 0, 1, . . . , d .

Question: When is p(z) unimodal?

i.e., when is there a j such that a0 ≤ · · · ≤ aj ≥ · · · ≥ ad?

Unimodality is a distributional statement.

Proofs can reveal hidden structure about Ω.

variety of proof techniques exist [Stanley 1989, Brenti 1993, Brändén 2016]



h∗(P; z) is combinatorial.

h∗(P; z) arises via enumeration of lattice points in dilates of P.

Two natural questions:

What different things does h∗(P; z) count?

When is h∗(P; z) unimodal?

P := [0, 1]n

∑
t≥0

(t+1)nz t =
An(z)

(1− z)n+1

An(z) =
∑
π∈Sn

zdes(π),

nth Eulerian Polynomial.



The Order Polytopes: [Stanley, 1980]

Lipschitz Order Polytopes [Sanyal, Stump, 2015]

Double Poset Polytopes [Chappell, Friedel, Sanyal, 2016]

Twinned Order Polytopes [Hibi, Matsuda, Tsuchiya, 2015]

The (n, k)-hypersimplices: [Katzman, 2005]

matroid polytopes [De Loera, Haws, Köppe, 2007]

r -stable hypersimplices [Braun, LS, 2014]

alcoved polytopes [Lam, Postnikov, 2007]

The s-lecture hall simplices: [Savage, Schuster, 2012]

s-lecture hall order polytopes [Brändén, Leander, 2016]

simplices for numeral systems [LS, 2017]

Lattice Parallelpipeds: [Schepers, Van Langenhoven, 2013]

Lattice Zonotopes [Beck, Jochemko, McCullough, 2016]



When is h∗(P ; z) unimodal?



How to answer this question:

Use the techniques in surveys: Stanley 1989, Brenti 1993, Brändén 2016

(Not always clear how to apply these...)

Two main philosophies arise for proving unimodality of h∗(P; z):

1 Decompose P and apply algebraic results.

2 Recursions and real-rootedness.



Lattice polytopes associate naturally to semigroup algebras.

cone(P) := spanR≥0
{(p, 1) : p ∈ P} ⊂ Rn+1.

For v := (v1, . . . , vn+1) ∈ Zn+1 define a
monomial

xv := xv1
1 · · · xvn+1

n+1 .

C[P] := C[xv : v ∈ cone(P)].

With the grading

deg(xv ) := vn+1,

C[P] is a graded semigroup algebra sometimes
called the Ehrhart ring of P.

h∗(P; z)

(1− z)d+1
= the Hilbert series of C[P].



Algebraic Properties of C[P]:
C[P]’s are examples of Cohen-Macaulay integral domains. [Hochster, 1972]

Consequently, many conjectures on Ehrhart unimodality are related to
algebraic properties of C[P].

P is called IDP or has the Integer Decomposition Property if for every t ∈ Z>0

and every v ∈ tP ∩ Zn there exist v (1), . . . , v (t) ∈ P ∩ Zn such that

v = v (1) + · · ·+ v (t).

i.e. C[P] is integrally closed.

P is called Gorenstein if h∗(P; z) is symmetric.

i.e. if deg(h∗(P; z)) = s then h∗i = h∗s−i for all i = 0, 1, . . . , s.

i.e. C[P] is a Gorenstein ring. [Stanley, 1978]

If deg(h∗(P; z)) = n then P is called reflexive.



Two Major Open Problems:

Conjecture (Hibi, Ohsugi, 1992). If P is Gorenstein and IDP then h∗(P; z) is
unimodal.

Special case of an algebraic conjecture of Stanley (1989) about standard
graded Gorenstein integral domains.

Question (Schepers, Van Langenhoven, 2013). If P is IDP, is it true that
h∗(P; z) is always unimodal?



The Major Positive Result:
A triangulation T of P into lattice simplices is called:

regular if it is the projection of the lower hull of a lifting of the lattice points
in P into Rn+1.
unimodular if all simplices σ ∈ T have unit volume (i.e. h∗(σ; 1) = 1).

i
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50 Configurations, Triangulations, Subdivisions, and Flips

2. The intersection of any two simplices of T is a (possibly empty) face
of both. (Intersection Property.)

3. The union of all these simplices equals conv(A). (Union Property.)

Note that the first two properties are the definition of a (geometric) sim-
plicial complex. In other words: a triangulation of A is a simplicial complex
with vertex set contained in A and which covers conv(A).

In our definition we do not assume conv(A) to be full-dimensional. In
particular, we may speak of triangulations of a single point (there is one!),
or of triangulations of a face of conv(A), as in the following statement,
proved in 2.3.4 in a more general context.

Lemma 2.2.2. Let T be a triangulation of a point configuration A and let
F be a face of conv(A). Then, the following is a triangulation of A\F:

TF := {s 2 T : s ⇢ F} .Figure 2.20: The four triangulations of the point

configuration of Figure 2.11
Observe that we do not require all the points of A to be used as vertices

in a triangulation. For example, the configuration of Figure 2.11 has the
four triangulations shown in Figure 2.20. Two of them use the five points
and have four triangles, and two use only four points and have two trian-
gles. Similarly, the six points in Figure 2.14 have 18 triangulations, only
8 of which use all points. Of course, all vertices of convA are used in all
triangulations.

2.2.1 There is always a triangulation

Our first goal is to show that every point configuration has at least one trian-
gulation. The method we are going to use is conceptually the simplest way
of getting triangulations of point configurations. It is surprisingly general
and it is central to the structure of the set of all triangulations of A. The
process, illustrated in Figure 2.21, is as follows: Let A = (p1, . . . ,pn) be a
point configuration in Rm:

Figure 2.21: The lifting construction.

1. Pick a “height function” w : A ! R (w can be thought of as a vector
w = (w1, . . . ,wn)2Rn, with wi = w(pi)) and consider the lifted point

#photocred [Triangulations; De Loera, Rambau, Santos, 2010]

P has a regular unimodular triangulation ⇒ P is IDP.

Theorem (Bruns, Römer, 2007). If P is Gorenstein and admits a regular
unimodular triangulation then h∗(P; z) is unimodal.



Theorem (Bruns, Römer, 2007). If P is Gorenstein and admits a regular
unimodular triangulation then h∗(P; z) is unimodal.

Applied to a wide variety of polytopes to recover Ehrhart unimodality results

Regular unimodular triangulations and/or identification of Gorenstein:

order polytopes [Stanley, 1972]

double poset polytopes [Chappell, Friedl, Sanyal, 2016]

twinned poset polytopes [Hibi, Matsuda, Tsuchiya, 2015]

(n,k)-hypersimplices [Stanley, 1977; Sturmfels, 1996]

r -stable (n, k)-hypersimplices [Braun, LS, 2014]

positroid polytopes [Ardila, Rincón, Williams, 2015]

alcoved polytopes [Lam and Postnikov, 2007]

s-lecture hall simplices [Hibi, Olsen, Tsuchiya, 2016]

[Beck, Braun, Köppe, Savage, Zafeirakopoulos, 2016]

[Brändén, LS, 2017]

s-lecture hall order polytopes [Brändén, Leander, 2016]

etc...



Box Polynomials and Box Unimodality:

∆ := conv(v (1), . . . , v (d), v (d+1)) ⊂ Rn a simplex.

The box polynomial of ∆ is

B(∆; z) :=
∑

v∈Π◦(∆)∩Zn+1

zvn+1 ,

where the open fundamental parallelpiped of ∆ is

Π◦(∆) :=

{
d+1∑
i=1

λi (v
(i), 1) : 0 < λi < 1

}
.

Theorem (Betke, McMullen, 1985). Fix a triangulation T of the boundary of a
reflexive polytope P. Then

h∗(P; z) =
∑
∆∈T

h(link(∆); z)B(∆; z),

where h(link(∆); z) denotes the h-polynomial of the link of ∆ in T .



Box Polynomials and Box Unimodality:

Definition (Schepers and Van Langenhoven, 2013). A regular triangulation T
of the boundary of an n-dimensional polytope P is called box unimodal if
B(∆; z) is unimodal for all ∆ ∈ T .

If P is reflexive and has a box unimodal triangulation (with box polynomials
of appropriate degrees...) then h∗(P; z) is unimodal.

Question (Schepers, Van Langenhoven, 2013). Does the boundary of
every IDP reflexive lattice polytope admit a box unimodal triangulation?

Question (Braun, 2016). Which lattice simplices have unimodal box
polynomials?



Recursions and Real-rootedness:

An increasingly popular technique for proving Ehrhart unimodality is to show that
all roots of h∗(P; z) are real numbers.

Lemma. Suppose
p(z) = a0 + a1z + · · ·+ adz

d

satisfies a0, . . . , ad ∈ R≥0.

1 If p(z) has only real-roots then it is log-concave, i.e., a2
i ≥ ai−1ai+1 for all i .

2 If p(z) is log-concave and ai are all positive the p(z) is unimodal.

The key to proving real-rootedness:

Identify recursions.

Show recursions preserve interlacing of real-roots.



f interlaces g , denoted f � g .

A sequence of real-rooted polynomials

f1 � f2 � · · · � fm

is called interlacing if fi � fj for all 1 ≤ i < j ≤ m.

To prove real-rootedness we search for recursions for our polynomials that can be
stated using interlacing preservers.



This red m × k matrix of polynomials is an interlacing preserver:

1 1 1 · · · 1

z 1 1
...

z z 1
. . . 1

...
. . .

. . . 1

z z · · · z
. . .




f1
f2
...
fk

 =


g0

g1

...
gm



f1 � f2 � · · · � fk ⇒ g1 � g2 � · · · � gm

The following have real-rooted h∗-polynomials:

s-lecture hall polytopes [Savage, Visontai, 2014]

Zonotopes [Beck, Jochemko, McCullough, 2016]

(Sufficiently) dilated lattice polytopes [Jochemko, 2016]

Some order polytopes [Wagner, 1992]

Some r -stable hypersimplices [Braun, LS, 2014]

Some symmetric edge polytopes [Higashitani, Kummer, Micha lek, 2016]

Some simplices for numeral systems [LS, 2017]



Key Observations so far:

1 Popular techniques for proving Ehrhart unimodality:

(i) Prove Gorenstein and existence of regular unimodular triangulation.
(ii) Prove box unimodality.
(iii) Prove real-rootedness.

2 Note that (ii) is less popular... Perhaps not well-understood?

3 Oftentimes, if (i) is easy then (iii) is hard, or vice-versa:

For r-stable (n, k)-hypersimplices:
Existence of regular unimodular triangulations [Braun, LS, 2014]

Characterization of Gorenstein [Hibi, LS, 2014]

Few known to be real-rooted [Braun, LS, 2014]

For s-lecture hall simplices:
All real-rooted [Savage, Visontai, 2014]

Partial results on Gorenstein [Hibi, Olsen, Tsuchiya, 2016]

Few known to have regular unimodular triangulations [Hibi, Olsen, Tsuchiya, 2016]

[Beck, Braun, Köppe, Savage, Zafeirakopoulos, 2016]

[Brändén, LS, 2017]



(i) and (ii) have strong geometric ties to P.

(iii) is increasingly popular, but removes real-rootedness proof to recursion
(independent of geometry?).

Question. Can we better understand the geometric underpinnings of Ehrhart
real-rootedness?

Where to start?



Simplices are hard enough:

Benefits:

Simple combinatorial structure (i.e. Boolean face lattice).

Easy-to-work-with interpretation of h∗-polynomials.

For large families of simplices still challenging to characterize:

IDP

Gorenstein

Existence of Regular Unimodular Triangulations

Box Polynomials

Real-rootedness



Focus on simplices of the form:

∆(1,q) := conv(e1, . . . , en,−q) ⊂ Rn,

where e1, . . . , en are the standard basis vectors and q := (q1, . . . , qn) is a sequence
of weakly increasing positive integers.

q = (1, 1, 1) q = (1, 2, 3)

Features:

Toric varieties are weighted projective spaces

Reflexivity is characterized [Conrads, 2002]

Reflexivity + IDP is characterized [Braun, Davis, LS, 2016]

Counterexamples to Ehrhart unimodality conjectures [Payne, 2008]

h∗(∆(1,q); z) has arithmetic formula in terms of q [Braun, Davis, LS, 2016]



Simplices for Numeral Systems:

Question. What do ∆(1,q) with real-rooted h∗-polynomials look like?

Approach:

Q := collection of all ∆(1,q).

Stratify Q by normalized volume.

Recursions evolve when normalized volumes associated to place values in
positional numeral systems.



Proposition (Nill, 2007). The normalized volume of ∆(1,q) is

1 + q1 + q2 + · · ·+ qn.

Proposition (Braun, Davis, LS, 2017). The h∗-polynomial of ∆(1,q) is

h∗(∆(1,q); z) =

q1+q2+···+qn∑
b=0

zω(b),

where

ω(b) = b −
n∑

i=1

⌊
qib

1 + q1 + q2 + · · ·+ qn

⌋
.



Positional Numeral Systems:
A numeral system is a sequence of positive integers (place values)

a = (an)∞n=0 satisfying a0 := 1 < a1 < a2 < · · · .

a = (2n)∞n=0 = (1, 2, 4, 8, 16, . . . , 2n, . . .)

102 = 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

a numeral is our representation of a number with digits:

the binary (base 2) representation of 102 is the numeral

η = 1100110.

Main Idea. By associating simplices ∆(1,q) for q ∈ Rn with normalized volume an
to a numeral system (an)∞n=0, we can study the combinatorics of h∗(∆(1,q); z)
recursively in terms of the numerals η w.r.t. to a.



Example: The Binary System.
Let a = (2n)∞n=0 = (1, 2, 4, 8, 16, . . . , 2n, . . .) be the binary numeral system.

For each n let q := (1, 2, 4, . . . , 2n−1).

Then h∗(∆(1,q); 1) = 1 + 1 + 2 + 4 + · · ·+ 2n−1 = 2n = an.

Recall

h∗(∆(1,q); 1) =

q1+q2+···+qn∑
b=0

zω(b),

where

ω(b) = b −
n∑

i=1

⌊
qib

1 + q1 + q2 + · · ·+ qn

⌋
.

Apply some inductive reasoning...

Discover that ω(b) = # of 1’s in base 2 representation of b := supp2(b)

Theorem (LS, 2017).

h∗(∆(1,q); z) =
2n−1∑
b=0

z supp2(b) = (1 + z)n.



Another Example: The Factoradics.
a = ((n + 1)!)∞n=0 = (1, 2, 6, 24, . . .) is the factoradic numeral system.

The factoradic representation of 0 ≤ b < n! is the Lehmer Code of π(b), the
bth lexicographically largest permutation in Sn.

Define the generating polynomial

Bn(z) :=
∑
π∈Sn

zmaxDes(π),

where maxDes(π) = 0 if Des(π) = ∅.

Let q =
(
[z ].Bn+1(z), [z2].Bn+1(z), . . . , [zn].Bn+1(z)

)
....

Discover that ω(b) = des(π(b))....

Theorem (LS, 2017).

h∗(∆(1,q); z) =

(n+1)!−1∑
b=0

zdes(π(b)) = An+1(z).



By stratifying Q by normalized volumes associated to numeral systems we are
recovering classic families of real-rooted polynomials!

The examples so far are called reflexive systems since all h∗-polynomials are
symmetric.

If we drop the symmetry requirement, we obtain larger families of simplices
with real-rooted h∗-polynomials.

These have intriguing connections to box polynomials....



More Examples: The Base-r Numeral Systems:
The base-r numeral system is a = (rn)∞n=0.

Here, we let

q = ((r − 1), (r − 1)r , (r − 1)r2, . . . , (r − 1)rn−1),

since then

h∗(∆(1,q); 1) = 1 +
n−1∑
k=0

(r − 1)rk = rn = an.

Let B(r ,n) := ∆(1,q) be the nth base-r simplex.

For r ≥ 2 and n ≥ 1 we let

f(r ,n) := (1 + z + z2 + · · ·+ z r−1)n.



More Examples: The Base-r Numeral Systems:
r = 4 and n = 2:

f(r ,n) = 1 + 2z + 3z2 + 4z3 + 3z4 + 2z5 + z6.

f(r ,n) = 1z0·(r−1)+0 + 2z0·(r−1)+1 + 3z0·(r−1)+2 + 4z1·(r−1)+0

+ 3z1·(r−1)+1 + 2z1·(r−1)+2 + 1z2·(r−1)+0.

f
(2)

(r ,n) = 3 + 2z , f
(1)

(r ,n) = 2 + 3z , f
(0)

(r ,n) = 1 + 4z + 1z2.

Theorem (LS, 2017). We have the interlacing sequence

f
(r−2)

(r ,n) ≺ f
(r−3)

(r ,n) ≺ · · · ≺ f
(1)

(r ,n) ≺ f
(0)

(r ,n).

Moreover,

h∗(B(r ,n); z) = f
(0)

(r ,n) + z
r−2∑
`=1

f
(`)

(r ,n)

Corollary (LS, 2017). h∗(B(r ,n); z) are real-rooted.



Connections to Box Polynomials:

h∗(B(r ,n); z) = f
(0)

(r ,n) + z
r−2∑
`=1

f
(`)

(r ,n)

⇓
h∗(B(r ,n); z) = a(z) + zb(z)...

Theorem (Stapledon ?). Let P is a lattice polytope containing an interior
lattice point. There exist unique polynomials a(z) and b(z) such that

h∗(P; z) = a(z) + zb(z),

where a(z) = zda
(

1
z

)
and b(z) = zd−1b

(
1
z

)
.



Since B(r ,n) is a simplex, we can express these polynomials simply as:

a(z) =
∑

∆∈B(r,n)

(1 + z + · · ·+ zn−dim(∆)−1)B(∆; z), and

b(z) =
1

z

∑
∆∈B(r,n)

(1 + z + · · ·+ zn−dim(∆)−1)B(conv(∆, 0); z).

So perhaps we should revisit box polynomials for simplices....



In Summary:
Ehrhart unimodality is a rich and challenging area of research!

Ehrhart unimodality results center around two central ideas:

decompose and apply algebraic results.
recursions and real-rootedness

The applicability and usefulness of these techniques is still not completely
understood, not even for “popular polytopes” or “simple families.”

i.e. those polytopes used as examples in this talk.
i.e. large families of simplices.

The relationship and disparity between applicability of approaches (i) and (ii)
is not so clear.

one is often easier than the other
can we better understand their relationship in the case of simplices?



Things to do:
Answer the conjecture of Hibi and Ohsugi!

Answer the question of Schepers and Van Langenhoven!

Answer the question of Braun!

I.e. better understand unimodality of box polynomials for simplices.

Work on popular examples!

Help characterize better the unimodality and applicability of these results for
the families of polytopes mentioned here!
The applicability of techniques (i) and (ii) is only characterized for a few of
the examples we discussed today!

Get creative!

Develop new families of polytopes for which to test theories in Ehrhart
unimodality.



Thank You!
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