In the field of Ehrhart theory, identification of lattice polytopes with unimodal Ehrhart h*-polynomials is a
cornerstone investigation. The study of h*-unimodality is home to numerous long-standing conjectures
within the field, and proofs thereof often reveal interesting algebra and combinatorics intrinsic to the
associated lattice polytopes. Proof techniques for h*-unimodality are plentiful, and some are apparently
more dependent on the lattice geometry of the polytope than others. In recent years, proving a
polynomial has only real-roots has gained traction as a technique for verifying unimodality of h-
polynomials in general. However, the geometric underpinnings of the real-rooted phenomena for h*-
unimodality are not well-understood. As such, more examples of this property are always noteworthy. In
this talk, we will discuss a family of lattice n-simplices that associate via their normalized volumes to the
n/th-place values of positional numeral systems. The h*-polynomials for simplices associated to special
systems such as the factoradics and the binary numerals recover ubiquitous h-polynomials, namely the
Eulerian polynomials and binomial coefficients, respectively. Simplices associated to any base-r numeral
system are also provably real-rooted. We will put the h*-real-rootedness of the simplices for numeral
systems in context with that of their cousins, the s-lecture hall simplices, and discuss their admittance of
this phenomena as it relates to other, more intrinsically geometric, reasons for h*-unimodality.
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o P C R"” an d-dimensional lattice polytope.

o The Ehrhart series of P:

hs + hiz + -+ h5z9

1+ ) | tPnzZ" | 2 =

— 7)d+1
te€Z>1 (1 Z)
The Ehrhart h*-polynomial of P:
2
h*(P;z) == by + hiz+ -+ h5z¢ P =10,1]
o Properties: o | tPNZ?|=(t+1)?
o h*(P;1) = d!vol(P) .
= normalized volume of P. ° ZtEZZU(t + 1)2 f= (11jz)3
Ohf:|PﬂZ"‘*dfl. oh*(P;z):1+Z

o hy,...,hy € Z>o [Stanley, 1980]



h*(P; z) is “combinatorial.”

If ag, a1,...,aq € Z>o then maybe they coefficients of the polynomial

p(z) = ap + a1z + a2> + - - - + agz?

count a collection of combinatorial objects Q2 as stratified by some parameter
k=0,1,...,d.

Question: When is p(z) unimodal?
i.e., when is there a j such that ag <--- < a; > -+ > a4?
o Unimodality is a distributional statement.

o Proofs can reveal hidden structure about €.
o variety of proof techniques exist [Stanley 1989, Brenti 1993, Brindén 2016]



o h*(P; z) is combinatorial.

o h*(P; z) arises via enumeration of lattice points in dilates of P.
Two natural questions:

o What different things does h*(P; z) count?

o When is h*(P; z) unimodal?

5 An(z) = Z zdes(m)
> (t+1)2 = % €S,

>0

nth Eulerian Polynomial.

P:=]0,1]"
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The Order Polytopes: [Stanley, 1980]

o Lipschitz Order Polytopes [Sanyal, Stump, 2015]
o Double Poset Polytopes [Chappell, Friedel, Sanyal, 2016]
o Twinned Order Polytopes [Hibi, Matsuda, Tsuchiya, 2015]

The (n, k)-hypersimplices: [Katzman, 2005]
o matroid polytopes [De Loera, Haws, Képpe, 2007]
o r-stable hypersimplices [Braun, LS, 2014]
o alcoved polytopes [Lam, Postnikov, 2007]

The s-lecture hall simplices: [Savage, Schuster, 2012]

o s-lecture hall order polytopes [Brindén, Leander, 2016]
o simplices for numeral systems [LS, 2017]

Lattice Parallelpipeds: [Schepers, Van Langenhoven, 2013]

o Lattice Zonotopes [Beck, Jochemko, McCullough, 2016]




When is h*(P; z) unimodal?



How to answer this question:

o Use the techniques in surveys: Stanley 1989, Brenti 1993, Brandén 2016

(Not always clear how to apply these...)

Two main philosophies arise for proving unimodality of h*(P; z):
@ Decompose P and apply algebraic results.

@ Recursions and real-rootedness.




Lattice polytopes associate naturally to semigroup algebras.

(*]

cone(P) := spang_ {(p,1): p € P} C R™™.
For v := (v1,...,Vay1) € Z"! define a
monomial

vo.— 1 ... Vn+1
X" =X Xpi1 -

C[P] := C[x" : v € cone(P)].
With the grading
deg(x") ‘= Vn+1,

C[P] is a graded semigroup algebra sometimes
called the Ehrhart ring of P.

h*(P; z)

m = the Hilbert series of C[P].



Algebraic Properties of C[P]:

o C[P]'s are examples of Cohen-Macaulay integral domains.  [Hochster, 1972]

o Consequently, many conjectures on Ehrhart unimodality are related to
algebraic properties of C[P].

P is called IDP or has the Integer Decomposition Property if for every t € Z~¢
and every v € tP N Z" there exist v(Y ... v(t) € PN Z" such that

o i.e. C[P] is integrally closed.

P is called Gorenstein if h*(P; z) is symmetric.
o i.e. if deg(h*(P;z)) = s then hf = h%_, for all i =0,1,...,s.
o i.e. C[P] is a Gorenstein ring. [Stanley, 1978]
o If deg(h*(P;z)) = n then P is called reflexive.




Two Major Open Problems:

Conjecture (Hibi, Ohsugi, 1992). If P is Gorenstein and IDP then h*(P;z) is
unimodal.

o Special case of an algebraic conjecture of Stanley (1989) about standard
graded Gorenstein integral domains.

Question (Schepers, Van Langenhoven, 2013). If P is IDP, is it true that
h*(P; z) is always unimodal?



The Major Positive Result:

o A triangulation T of P into lattice simplices is called:
o regular if it is the projection of the lower hull of a lifting of the lattice points
in P into R"".
o unimodular if all simplices 0 € T have unit volume (i.e. h*(o;1) =1).

#photocred [Triangulations; De Loera, Rambau, Santos, 2010]

o P has a regular unimodular triangulation = P is IDP.

Theorem (Bruns, Romer, 2007). If P is Gorenstein and admits a regular
unimodular triangulation then h*(P; z) is unimodal.




Theorem (Bruns, Romer, 2007). If P is Gorenstein and admits a regular
unimodular triangulation then h*(P; z) is unimodal.

o Applied to a wide variety of polytopes to recover Ehrhart unimodality results

o Regular unimodular triangulations and/or identification of Gorenstein:

Q
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order polytopes

double poset polytopes
twinned poset polytopes
(n,k)-hypersimplices

r-stable (n, k)-hypersimplices
positroid polytopes

alcoved polytopes

s-lecture hall simplices

s-lecture hall order polytopes

o etc...

[Stanley, 1972]

[Chappell, Friedl, Sanyal, 2016]
[Hibi, Matsuda, Tsuchiya, 2015]
[Stanley, 1977; Sturmfels, 1996]
[Braun, LS, 2014]

[Ardila, Rincén, Williams, 2015]
[Lam and Postnikov, 2007]
[Hibi, Olsen, Tsuchiya, 2016]
[Beck, Braun, Képpe, Savage, Zafeirakopoulos, 2016]
[Brandén, LS, 2017]

[Brandén, Leander, 2016]



Box Polynomials and Box Unimodality:

o A= conv(v®, ... v(® v@+D) c R 3 simplex.

o The box polynomial of A is

B(A; z) := Z z¥m1

vene(A)Nzm+

where the open fundamental parallelpiped of A is

d+1
{Z/\ S0 <\ <1}

Theorem (Betke, McMullen, 1985). Fix a triangulation T of the boundary of a
reflexive polytope P. Then

h*(P;z) =Y h(link(A); 2)B(A; 2),

AeT

where h(link(A); z) denotes the h-polynomial of the link of A in T.




Box Polynomials and Box Unimodality:

Definition (Schepers and Van Langenhoven, 2013). A regular triangulation T
of the boundary of an n-dimensional polytope P is called box unimodal if
B(A; z) is unimodal for all A € T.

o If P is reflexive and has a box unimodal triangulation (with box polynomials
of appropriate degrees...) then h*(P; z) is unimodal.

o Question (Schepers, Van Langenhoven, 2013). Does the boundary of
every IDP reflexive lattice polytope admit a box unimodal triangulation?

o Question (Braun, 2016). Which lattice simplices have unimodal box
polynomials?



Recursions and Real-rootedness:

An increasingly popular technique for proving Ehrhart unimodality is to show that
all roots of h*(P; z) are real numbers.

Lemma. Suppose
p(z) = a0+ a1z + -+ agz’

satisfies ap, ..., aqd € R>o.
@ If p(z) has only real-roots then it is log-concave, i.e., a> > a;_1a;41 for all /.

@ If p(z) is log-concave and a; are all positive the p(z) is unimodal.

The key to proving real-rootedness:
o ldentify recursions.
o Show recursions preserve interlacing of real-roots.
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f interlaces g, denoted f < g.

A sequence of real-rooted polynomials
ihh= =My

is called interlacing if f; < f; forall 1 </ <j<m.

To prove real-rootedness we search for recursions for our polynomials that can be
stated using interlacing preservers.




This red m x k matrix of polynomials is

11 1 1
z 1 1
z z 1 1
1
z z z
hh= 2y =

an interlacing preserver:

f &
f | &
fk Em

g1 238 = =gnm

o The following have real-rooted h*-polynomials:

Qo

Qo
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s-lecture hall polytopes

Zonotopes

(Sufficiently) dilated lattice polytopes
Some order polytopes

Some r-stable hypersimplices

Some symmetric edge polytopes

Some simplices for numeral systems

[Savage, Visontai,

[Beck, Jochemko, McCullough,
[Jochemko,

[Wagner,

[Braun, LS,

[Higashitani, Kummer, Michatek,
[LS,

2014]
2016]
2016]
1992]
2014]
2016]
2017]



Key Observations so far:

@ Popular techniques for proving Ehrhart unimodality:

(i) Prove Gorenstein and existence of regular unimodular triangulation.
(i) Prove box unimodality.
(iii) Prove real-rootedness.

@ Note that (ii) is less popular... Perhaps not well-understood?

@ Oftentimes, if (i) is easy then (iii) is hard, or vice-versa:
o For r-stable (n, k)-hypersimplices:

o Existence of regular unimodular triangulations [Braun, LS, 2014]
o Characterization of Gorenstein [Hibi, LS, 2014]
o Few known to be real-rooted [Braun, LS, 2014]

o For s-lecture hall simplices:

o All real-rooted [Savage, Visontai, 2014]
o Partial results on Gorenstein [Hibi, Olsen, Tsuchiya, 2016]
o Few known to have regular unimodular triangulations [Hibi, Olsen, Tsuchiya, 2016]
[Beck, Braun, Képpe, Savage, Zafeirakopoulos, 2016]

[Brandén, LS, 2017]



o (i) and (ii) have strong geometric ties to P.

o (iii) is increasingly popular, but removes real-rootedness proof to recursion
(independent of geometry?).

Question. Can we better understand the geometric underpinnings of Ehrhart
real-rootedness?

Where to start?



Simplices are hard enough:

Benefits:
o Simple combinatorial structure (i.e. Boolean face lattice).

o Easy-to-work-with interpretation of h*-polynomials.

For large families of simplices still challenging to characterize:
IDP

Gorenstein

©
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Existence of Regular Unimodular Triangulations

©

Box Polynomials

Real-rootedness

©



Focus on simplices of the form:
A1,q) i= conv(er, ..., e, —q) C R

where ey, ..., e, are the standard basis vectors and q := (g1, ..., g,) is a sequence
of weakly increasing positive integers.

g=(1,2,3)
Features:
o Toric varieties are weighted projective spaces
o Reflexivity is characterized [Conrads, 2002]
o Reflexivity + IDP is characterized [Braun, Davis, LS, 2016]
o Counterexamples to Ehrhart unimodality conjectures [Payne, 2008]
o h*(A(1,q); 2) has arithmetic formula in terms of g [Braun, Davis, LS, 2016]



Simplices for Numeral Systems:

Question. What do A(; 4) with real-rooted h*-polynomials look like?

Approach:
o Q := collection of all AR
o Stratify @ by normalized volume.

o Recursions evolve when normalized volumes associated to place values in
positional numeral systems.



Proposition (Nill, 2007). The normalized volume of A q) is

I+ qi+q+-+qn

Proposition (Braun, Davis, LS, 2017). The h*-polynomial of Ay g) is

qi1+g2+--+qn

h*(A(l,q); Z) — Z ZUJ(b)7

b=0

where
n

gib
w(b) = b— :
2 ;LJrqﬁ—qur +q J




Positional Numeral Systems:

o A numeral system is a sequence of positive integers (place values)

a=(an)izo satisfying Pp=l<a<a< .

a= (2" =(1,2,4,8,16,...,2",...)
102=1-2641-2540-240-22+1-2241-2140-2°

o a numeral is our representation of a number with digits:

o the binary (base 2) representation of 102 is the numeral

n = 1100110.

Main Idea. By associating simplices Ay o) for g € R" with normalized volume a,
to a numeral system (a,)72,, we can study the combinatorics of h*(A(1,q); 2)
recursively in terms of the numerals 1 w.r.t. to a.




Example: The Binary System.
o Let a=(2")%2,=(1,2,4,8,16,...,2",...) be the binary numeral system.
o For each nlet g :=(1,2,4,...,2"1).

o Then h*(A(qu);l) = 1+1+2+4++2n71 —on — a,.
o Recall
qitqe+-+qn
h*(A(l,q); 1) = Z Z‘*’(b)’
b=0

where

. qib
w(b) =b— .
®) ;L+%+%+---+%J

©

Apply some inductive reasoning...
Discover that w(b) = # of 1's in base 2 representation of b := supp,(b)

©

Theorem (LS, 2017).

2"—1

W (Bpgiz) = Y 2270 = (1 +2)",
b=0




Another Example: The Factoradics.
o a=((n+1)N%2,=(1,2,6,24,...) is the factoradic numeral system.

o The factoradic representation of 0 < b < n! is the Lehmer Code of 7(P) the
bt lexicographically largest permutation in S,,.

o Define the generating polynomial

Z) — Z ZmaxDes(ﬂ')

TES,

where maxDes(7) = 0 if Des(w) = 0.

Let q= ([Z]'BnJrl(Z)v [22]'Bn+1(z)7 LR [Zn]‘anLl(z))""

Discover that w(b) = des(n()....

(4]

©

Theorem (LS, 2017).

(n+1)1—1

W (Aggiz)= Y 22 = AL (2).

b=0




By stratifying Q by normalized volumes associated to numeral systems we are
recovering classic families of real-rooted polynomials!

The examples so far are called reflexive systems since all h*-polynomials are
symmetric.

If we drop the symmetry requirement, we obtain larger families of simplices
with real-rooted h*-polynomials.

These have intriguing connections to box polynomials....



More Examples: The Base-r Numeral Systems:

o The base-r numeral system is a = (r")%2,.

o Here, we let

9= ((r - 1)’ (r o 1)r’ (r - 1)[’2, R (r - 1)""71)7
since then

n—1
h*(A(l,q); 1) =1+ Z(r — l)l’k =r" = a.
k=0

o Let By, n) := A(,q) be the n base-r simplex.

o Forr>2and n>1 we let

f(r,n) =14z 42244 erl)n.



More Examples: The Base-r Numeral Systems:

or=4and n=2:
firm=1+2z+ 32° 4 42° + 3% + 22° + 25,
f(r = 1ZO-(r71)+O + 220-(r71)+1 + 320-(r71)+ + 421-(r71)+0
+ 321»(r—1)+1 + Zl~(r—1)+ + 1Z2-(r—1)+0.

o f0) =342z, £ =243z, £ =1+4z+12

Theorem (LS, 2017). We have the interlacing sequence

D <0 < < 0 < £ O

(r,n) (r,n)

Moreover,

h*(B( n)iZ) = f(o)) +ZZ (r.n)

Corollary (LS, 2017). h*(B,,s); z) are real-rooted.




Connections to Box Polynomials:

h*(B(r.n)i 2 —f(°>+ZZf<“n>

4
h*(B(r,ny; z) = a(z) + zb(z)...

Theorem (Stapledon ?). Let P is a lattice polytope containing an interior
lattice point. There exist unique polynomials a(z) and b(z) such that

h*(P; z) = a(z) + zb(z),

where a(z) = z%a (1) and b(z) = z77'b (1).




Since B, ,) is a simplex, we can express these polynomials simply as:

a(z)= Y (Utzt -+ NBA ), and
AEB(r,n)

b(z) = 1

Z (1+z+-+ 2" 9mA)"1)B(conv(A, 0); 2).
AEB( n)

So perhaps we should revisit box polynomials for simplices....



In Summary:

o Ehrhart unimodality is a rich and challenging area of research!

o Ehrhart unimodality results center around two central ideas:

o decompose and apply algebraic results.
o recursions and real-rootedness

©

The applicability and usefulness of these techniques is still not completely
understood, not even for “popular polytopes” or “simple families.”

o i.e. those polytopes used as examples in this talk.

o i.e. large families of simplices.

o The relationship and disparity between applicability of approaches (i) and (ii)
is not so clear.
o one is often easier than the other
o can we better understand their relationship in the case of simplices?



Things to do:

o Answer the conjecture of Hibi and Ohsugi!
o Answer the question of Schepers and Van Langenhoven!

o Answer the question of Braun!
o l.e. better understand unimodality of box polynomials for simplices.

o Work on popular examples!
o Help characterize better the unimodality and applicability of these results for
the families of polytopes mentioned here!
o The applicability of techniques (i) and (ii) is only characterized for a few of
the examples we discussed today!

o Get creative!
o Develop new families of polytopes for which to test theories in Ehrhart
unimodality.



Thank Youl
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