In the field of Ehrhart theory, identification of lattice polytopes with unimodal Ehrhart h*-polynomials is a cornerstone investigation. The study of h*-unimodality is home to numerous long-standing conjectures within the field, and proofs thereof often reveal interesting algebra and combinatorics intrinsic to the associated lattice polytopes. Proof techniques for h*-unimodality are plentiful, and some are apparently more dependent on the lattice geometry of the polytope than others. In recent years, proving a polynomial has only real-roots has gained traction as a technique for verifying unimodality of h-polynomials in general. However, the geometric underpinnings of the real-rooted phenomena for h*-unimodality are not well-understood. As such, more examples of this property are always noteworthy. In this talk, we will discuss a family of lattice n-simplices that associate via their normalized volumes to the n^th-place values of positional numeral systems. The h*-polynomials for simplices associated to special systems such as the factoradics and the binary numerals recover ubiquitous h-polynomials, namely the Eulerian polynomials and binomial coefficients, respectively. Simplices associated to any base-r numeral systems in context with that of their cousins, the s-lecture hall simplices, and discuss their admittance of this phenomena as it relates to other, more intrinsically geometric, reasons for h*-unimodality.

Ehrhart Unimodality and Simplices for Numeral Systems

Liam Solus

KTH Royal Institute of Technology

solus@kth.se

6 September 2017 Introductory Workshop: Geometric and Topological Combinatorics MSRI

- $P \subset \mathbb{R}^n$ an *d*-dimensional lattice polytope.
- The Ehrhart series of *P*:

$$1 + \sum_{t \in \mathbb{Z}_{> 1}} \mid t P \cap \mathbb{Z}^n \mid z^t = rac{h_0^* + h_1^* z + \cdots + h_d^* z^d}{(1-z)^{d+1}}.$$

The Ehrhart h^* -polynomial of P:

$$h^*(P;z) := h_0^* + h_1^*z + \cdots + h_d^*z^d$$

 $\bullet \ \mid tP \cap \mathbb{Z}^2 \mid = (t+1)^2$

•
$$\sum_{t \in \mathbb{Z}_{\geq 0}} (t+1)^2 z^t = \frac{1+z}{(1-z)^3}$$

•
$$h^*(P;z) = 1 + z$$

Properties:

h*(P; 1) = d! vol(P)
 = normalized volume of P.

•
$$h_1^* = |P \cap \mathbb{Z}^n| - d - 1$$
.

• $h_0^*,\ldots,h_d^*\in\mathbb{Z}_{\geq 0}$ [Stanley, 1980]

$h^*(P; z)$ is "combinatorial."

If $a_0, a_1, \ldots, a_d \in \mathbb{Z}_{>0}$ then maybe they coefficients of the polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_d z^d$$

count a collection of combinatorial objects Ω as stratified by some parameter k = 0, 1, ..., d.

Question: When is p(z) unimodal?

i.e., when is there a j such that $a_0 \leq \cdots \leq a_j \geq \cdots \geq a_d$?

- Unimodality is a distributional statement.
- Proofs can reveal hidden structure about Ω.
- variety of proof techniques exist

[Stanley 1989, Brenti 1993, Brändén 2016]

- $h^*(P; z)$ is combinatorial.
- $h^*(P; z)$ arises via enumeration of lattice points in dilates of P.

Two natural questions:

- What different things does $h^*(P; z)$ count?
- When is $h^*(P; z)$ unimodal?

$$\sum_{t \ge 0} (t+1)^n z^t = \frac{A_n(z)}{(1-z)^{n+1}} \qquad A_n(z) = \sum_{\pi \in S_n} z^{\operatorname{des}(\pi)},$$
$$P := [0,1]^n \qquad \qquad n^{th} \text{ Eulerian Polynomial}$$

• The Order Polytopes:

- Lipschitz Order Polytopes [Sanyal, Stump, 2015]
- Double Poset Polytopes [Chappell, Friedel, Sanyal, 2016] 0
- Twinned Order Polytopes [Hibi, Matsuda, Tsuchiya, 2015]

• The (n, k)-hypersimplices:

- matroid polytopes
- *r*-stable hypersimplices
- alcoved polytopes

[Lam, Postnikov, 2007]

[Savage, Schuster, 2012]

[Brändén, Leander, 2016]

The *s*-lecture hall simplices:

- *s*-lecture hall order polytopes
- simplices for numeral systems
- Lattice Parallelpipeds: [Schepers, Van Langenhoven, 2013]
 - Lattice Zonotopes [Beck, Jochemko, McCullough, 2016]

[LS, 2017]

[Stanley, 1980]

When is $h^*(P; z)$ unimodal?

How to answer this question:

• Use the techniques in surveys: Stanley 1989, Brenti 1993, Brändén 2016

(Not always clear how to apply these...)

Two main philosophies arise for proving unimodality of $h^*(P; z)$:

Decompose P and apply algebraic results.

② Recursions and real-rootedness.

Lattice polytopes associate naturally to semigroup algebras.

•
$$\operatorname{cone}(P) := \operatorname{span}_{\mathbb{R}_{\geq 0}}\{(p, 1) : p \in P\} \subset \mathbb{R}^{n+1}$$

• For $v := (v_1, \dots, v_{n+1}) \in \mathbb{Z}^{n+1}$ define a monomial
 $x^v := x_1^{v_1} \cdots x_{n+1}^{v_{n+1}}$
• $\mathbb{C}[P] := \mathbb{C}[x^v : v \in \operatorname{cone}(P)]$.

• With the grading

$$\deg(x^{v}):=v_{n+1},$$

 $\mathbb{C}[P]$ is a graded semigroup algebra sometimes called the **Ehrhart ring of** *P*.

•
$$\frac{h^*(P;z)}{(1-z)^{d+1}}$$
 = the Hilbert series of $\mathbb{C}[P]$.

Algebraic Properties of $\mathbb{C}[P]$:

- $\mathbb{C}[P]$'s are examples of Cohen-Macaulay integral domains. [Hochster, 1972]
- Consequently, many conjectures on Ehrhart unimodality are related to algebraic properties of $\mathbb{C}[P]$.

P is called **IDP** or has the **Integer Decomposition Property** if for every $t \in \mathbb{Z}_{>0}$ and every $v \in tP \cap \mathbb{Z}^n$ there exist $v^{(1)}, \ldots, v^{(t)} \in P \cap \mathbb{Z}^n$ such that

$$v = v^{(1)} + \cdots + v^{(t)}.$$

• i.e. $\mathbb{C}[P]$ is integrally closed.

P is called **Gorenstein** if $h^*(P; z)$ is symmetric.

- i.e. if $\deg(h^*(P; z)) = s$ then $h_i^* = h_{s-i}^*$ for all i = 0, 1, ..., s.
- i.e. $\mathbb{C}[P]$ is a **Gorenstein ring**.
- If $deg(h^*(P; z)) = n$ then P is called **reflexive**.

[Stanley, 1978]

Conjecture (Hibi, Ohsugi, 1992). If P is Gorenstein and IDP then $h^*(P; z)$ is unimodal.

• Special case of an algebraic conjecture of Stanley (1989) about standard graded Gorenstein integral domains.

Question (Schepers, Van Langenhoven, 2013). If *P* is IDP, is it true that $h^*(P; z)$ is always unimodal?

The Major Positive Result:

- A triangulation T of P into lattice simplices is called:
 - **regular** if it is the projection of the lower hull of a lifting of the lattice points in *P* into \mathbb{R}^{n+1} .
 - unimodular if all simplices $\sigma \in T$ have unit volume (i.e. $h^*(\sigma; 1) = 1$).

#photocred [Triangulations; De Loera, Rambau, Santos, 2010]

• *P* has a regular unimodular triangulation \Rightarrow *P* is IDP.

Theorem (Bruns, Römer, 2007). If P is Gorenstein and admits a regular unimodular triangulation then $h^*(P; z)$ is unimodal.

Theorem (Bruns, Römer, 2007). If P is Gorenstein and admits a regular unimodular triangulation then $h^*(P; z)$ is unimodal.

Applied to a wide variety of polytopes to recover Ehrhart unimodality results

• Regular unimodular triangulations and/or identification of Gorenstein:

 order polytopes 	[Stanley, 1972]
 double poset polytopes 	[Chappell, Friedl, Sanyal, 2016]
 twinned poset polytopes 	[Hibi, Matsuda, Tsuchiya, 2015]
 (n,k)-hypersimplices 	[Stanley, 1977; Sturmfels, 1996]
 r-stable (n, k)-hypersimplices 	[Braun, LS, 2014]
 positroid polytopes 	[Ardila, Rincón, Williams, 2015]
 alcoved polytopes 	[Lam and Postnikov, 2007]
 s-lecture hall simplices 	[Hibi, Olsen, Tsuchiya, 2016]
	[Beck, Braun, Köppe, Savage, Zafeirakopoulos, 2016]
	[Brändén, LS, 2017]
 s-lecture hall order polytopes 	[Brändén, Leander, 2016]
e etc	

Box Polynomials and Box Unimodality:

- $\Delta := \operatorname{conv}(v^{(1)}, \dots, v^{(d)}, v^{(d+1)}) \subset \mathbb{R}^n$ a simplex.
- The box polynomial of Δ is

$$B(\Delta;z):=\sum_{v\in\Pi^{\circ}(\Delta)\cap\mathbb{Z}^{n+1}}z^{v_{n+1}},$$

where the open fundamental parallelpiped of Δ is

$$\Pi^{\circ}(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}^{(i)}, 1) : 0 < \lambda_i < 1
ight\}.$$

Theorem (Betke, McMullen, 1985). Fix a triangulation T of the boundary of a reflexive polytope P. Then

$$h^*(P;z) = \sum_{\Delta \in T} h(\operatorname{link}(\Delta);z)B(\Delta;z),$$

where $h(link(\Delta); z)$ denotes the *h*-polynomial of the link of Δ in *T*.

Box Polynomials and Box Unimodality:

Definition (Schepers and Van Langenhoven, 2013). A regular triangulation T of the boundary of an *n*-dimensional polytope P is called **box unimodal** if $B(\Delta; z)$ is unimodal for all $\Delta \in T$.

- If P is reflexive and has a box unimodal triangulation (with box polynomials of appropriate degrees...) then $h^*(P; z)$ is unimodal.
- Question (Schepers, Van Langenhoven, 2013). Does the boundary of every IDP reflexive lattice polytope admit a box unimodal triangulation?
- **Question (Braun, 2016).** Which lattice simplices have unimodal box polynomials?

Recursions and Real-rootedness:

An increasingly popular technique for proving Ehrhart unimodality is to show that all roots of $h^*(P; z)$ are real numbers.

The key to proving real-rootedness:

- Identify recursions.
- Show recursions preserve **interlacing** of real-roots.

f interlaces g, denoted $f \leq g$.

A sequence of real-rooted polynomials

$$f_1 \preceq f_2 \preceq \cdots \preceq f_m$$

is called **interlacing** if $f_i \leq f_j$ for all $1 \leq i < j \leq m$.

To prove real-rootedness we search for recursions for our polynomials that can be stated using **interlacing preservers**.

This red $m \times k$ matrix of polynomials is an interlacing preserver:

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ z & 1 & 1 & & \vdots \\ z & z & 1 & \ddots & 1 \\ \vdots & & \ddots & \ddots & 1 \\ z & z & \cdots & z & \ddots \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_k \end{pmatrix} = \begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_m \end{pmatrix}$$

 $f_1 \preceq f_2 \preceq \cdots \preceq f_k \qquad \Rightarrow \qquad g_1 \preceq g_2 \preceq \cdots \preceq g_m$

• The following have real-rooted *h**-polynomials:

 s-lecture hall polytopes 	[Savage, Visontai, 2014]
 Zonotopes 	[Beck, Jochemko, McCullough, 2016]
 (Sufficiently) dilated lattice polytopes 	[Jochemko, 2016]
 Some order polytopes 	[Wagner, 1992]
 Some r-stable hypersimplices 	[Braun, LS, 2014]
 Some symmetric edge polytopes 	[Higashitani, Kummer, Michałek, 2016]
 Some simplices for numeral systems 	[LS, 2017]

Key Observations so far:

- Popular techniques for proving Ehrhart unimodality:
 - (i) Prove Gorenstein and existence of regular unimodular triangulation.
 - (ii) Prove box unimodality.
 - (iii) Prove real-rootedness.

② Note that (ii) is less popular... Perhaps not well-understood?

3 Oftentimes, if (i) is easy then (iii) is hard, or vice-versa:

• For *r*-stable (*n*, *k*)-hypersimplices:

- Existence of regular unimodular triangulations [Braun, LS, 2014]
- Characterization of Gorenstein
 [Hibi, LS, 20]
- Few known to be real-rooted

• For s-lecture hall simplices:

- All real-rooted [Savage, Visontai, 2014]
 Partial results on Gorenstein [Hibi, Olsen, Tsuchiva, 2016]
- Few known to have regular unimodular triangulations [Hibi, Olsen, Tsuchiya, 2016]

[Beck, Braun, Köppe, Savage, Zafeirakopoulos, 2016]

[Brändén, LS, 2017]

- [Braun, LS, 2014] [Hibi, LS, 2014] [Braun, LS, 2014]
- [Braun, LS, 2014]

- (i) and (ii) have strong geometric ties to P.
- (iii) is increasingly popular, but removes real-rootedness proof to recursion (independent of geometry?).

Question. Can we better understand the geometric underpinnings of **Ehrhart** real-rootedness?

Where to start?

Simplices are hard enough:

Benefits:

- Simple combinatorial structure (i.e. Boolean face lattice).
- Easy-to-work-with interpretation of h^* -polynomials.

For large families of simplices still challenging to characterize:

- IDP
- Gorenstein
- Existence of Regular Unimodular Triangulations
- Box Polynomials
- Real-rootedness

Focus on simplices of the form:

$$\Delta_{(1,q)} := \operatorname{conv}(e_1, \ldots, e_n, -q) \subset \mathbb{R}^n,$$

where e_1, \ldots, e_n are the standard basis vectors and $q := (q_1, \ldots, q_n)$ is a sequence of weakly increasing positive integers.

Features:

- Toric varieties are weighted projective spaces
- Reflexivity is characterized
- Reflexivity + IDP is characterized
- Counterexamples to Ehrhart unimodality conjectures
- $h^*(\Delta_{(1,q)}; z)$ has arithmetic formula in terms of q

[Conrads, 2002]

[Braun, Davis, LS, 2016]

[Payne, 2008]

[Braun, Davis, LS, 2016]

Simplices for Numeral Systems:

Question. What do $\Delta_{(1,q)}$ with real-rooted h^* -polynomials look like?

Approach:

- Q := collection of all Δ_(1,q).
- Stratify Q by **normalized volume**.
- Recursions evolve when normalized volumes associated to place values in positional numeral systems.

Proposition (Nill, 2007). The normalized volume of $\Delta_{(1,q)}$ is

 $1+q_1+q_2+\cdots+q_n.$

Proposition (Braun, Davis, LS, 2017). The h^* -polynomial of $\Delta_{(1,q)}$ is

$$h^*(\Delta_{(1,q)};z) = \sum_{b=0}^{q_1+q_2+\cdots+q_n} z^{\omega(b)}.$$

where

$$\omega(b)=b-\sum_{i=1}^n\left\lfloorrac{q_ib}{1+q_1+q_2+\cdots+q_n}
ight
floor$$

.

Positional Numeral Systems:

• A numeral system is a sequence of positive integers (*place values*)

$$a = (a_n)_{n=0}^{\infty}$$
 satisfying $a_0 := 1 < a_1 < a_2 < \cdots$

 $a = (2^n)_{n=0}^{\infty} = (1, 2, 4, 8, 16, \dots, 2^n, \dots)$

 $102 = \mathbf{1} \cdot 2^{6} + \mathbf{1} \cdot 2^{5} + \mathbf{0} \cdot 2^{4} + \mathbf{0} \cdot 2^{3} + \mathbf{1} \cdot 2^{2} + \mathbf{1} \cdot 2^{1} + \mathbf{0} \cdot 2^{0}$

• a numeral is our representation of a number with digits:

• the binary (base 2) representation of 102 is the numeral

 $\eta = 1100110.$

Main Idea. By associating simplices $\Delta_{(1,q)}$ for $q \in \mathbb{R}^n$ with normalized volume a_n to a numeral system $(a_n)_{n=0}^{\infty}$, we can study the combinatorics of $h^*(\Delta_{(1,q)}; z)$ recursively in terms of the numerals η w.r.t. to a.

Example: The Binary System.

- Let $a = (2^n)_{n=0}^{\infty} = (1, 2, 4, 8, 16, \dots, 2^n, \dots)$ be the binary numeral system.
- For each *n* let $q := (1, 2, 4, ..., 2^{n-1})$.
- Then $h^*(\Delta_{(1,q)}; 1) = 1 + 1 + 2 + 4 + \dots + 2^{n-1} = 2^n = a_n$.

Recall

$$h^*(\Delta_{(1,q)};1) = \sum_{b=0}^{q_1+q_2+\dots+q_n} z^{\omega(b)},$$

where

$$\omega(b) = b - \sum_{i=1}^n \left\lfloor \frac{q_i b}{1+q_1+q_2+\cdots+q_n}
ight
brace$$

• Apply some inductive reasoning...

• Discover that $\omega(b) = \#$ of 1's in base 2 representation of $b := \operatorname{supp}_2(b)$

Theorem (LS, 2017).

$$h^*(\Delta_{(1,q)};z) = \sum_{b=0}^{2^n-1} z^{\operatorname{supp}_2(b)} = (1+z)^n.$$

Another Example: The Factoradics.

- $a = ((n+1)!)_{n=0}^{\infty} = (1, 2, 6, 24, \ldots)$ is the **factoradic** numeral system.
- The factoradic representation of $0 \le b < n!$ is the Lehmer Code of $\pi^{(b)}$, the b^{th} lexicographically largest permutation in S_n .
- Define the generating polynomial

$$B_n(z) := \sum_{\pi \in S_n} z^{\max \operatorname{Des}(\pi)},$$

where maxDes(π) = 0 if Des(π) = \emptyset .

- Let $q = ([z].B_{n+1}(z), [z^2].B_{n+1}(z), \dots, [z^n].B_{n+1}(z))....$
- Discover that ω(b) = des(π^(b))....

Theorem (LS, 2017).

$$h^*(\Delta_{(1,q)};z) = \sum_{b=0}^{(n+1)!-1} z^{\operatorname{des}(\pi^{(b)})} = A_{n+1}(z).$$

- By stratifying Q by normalized volumes associated to numeral systems we are recovering classic families of real-rooted polynomials!
- The examples so far are called **reflexive systems** since all *h**-polynomials are symmetric.
- If we drop the symmetry requirement, we obtain larger families of simplices with real-rooted *h**-polynomials.
- These have intriguing connections to **box polynomials**....

More Examples: The Base-*r* Numeral Systems:

• The base-r numeral system is $a = (r^n)_{n=0}^{\infty}$.

• Here, we let

$$q = ((r-1), (r-1)r, (r-1)r^2, \dots, (r-1)r^{n-1}),$$

since then

$$h^*(\Delta_{(1,q)};1) = 1 + \sum_{k=0}^{n-1} (r-1)r^k = r^n = a_n.$$

• Let $\mathcal{B}_{(r,n)} := \Delta_{(1,q)}$ be the n^{th} base-r simplex.

• For $r \ge 2$ and $n \ge 1$ we let

$$f_{(r,n)} := (1 + z + z^2 + \cdots + z^{r-1})^n.$$

More Examples: The Base-r Numeral Systems: • r = 4 and n = 2:

$$f_{(r,n)} = 1 + 2z + 3z^2 + 4z^3 + 3z^4 + 2z^5 + z^6.$$

$$f_{(r,n)} = 1z^{0 \cdot (r-1)+0} + 2z^{0 \cdot (r-1)+1} + 3z^{0 \cdot (r-1)+2} + 4z^{1 \cdot (r-1)+0} + 3z^{1 \cdot (r-1)+1} + 2z^{1 \cdot (r-1)+2} + 1z^{2 \cdot (r-1)+0}$$

• $f_{(r,n)}^{(2)} = 3 + 2z, \quad f_{(r,n)}^{(1)} = 2 + 3z, \quad f_{(r,n)}^{(0)} = 1 + 4z + 1z^{2}.$

Theorem (LS, 2017). We have the interlacing sequence

$$f_{(r,n)}^{(r-2)} \prec f_{(r,n)}^{(r-3)} \prec \cdots \prec f_{(r,n)}^{(1)} \prec f_{(r,n)}^{(0)}$$

Moreover,

$$h^*(\mathcal{B}_{(r,n)};z) = f_{(r,n)}^{(0)} + z \sum_{\ell=1}^{r-2} f_{(r,n)}^{(\ell)}$$

Corollary (LS, 2017). $h^*(\mathcal{B}_{(r,n)}; z)$ are real-rooted.

Connections to Box Polynomials:

$$h^{*}(\mathcal{B}_{(r,n)};z) = f_{(r,n)}^{(0)} + z \sum_{\ell=1}^{r-2} f_{(r,n)}^{(\ell)}$$

$$\Downarrow$$

$$h^{*}(\mathcal{B}_{(r,n)};z) = a(z) + zb(z)...$$

Theorem (Stapledon ?). Let P is a lattice polytope containing an interior lattice point. There exist unique polynomials a(z) and b(z) such that

$$h^*(P;z) = a(z) + zb(z),$$

where $a(z) = z^d a\left(\frac{1}{z}\right)$ and $b(z) = z^{d-1} b\left(\frac{1}{z}\right)$.

Since $\mathcal{B}_{(r,n)}$ is a simplex, we can express these polynomials simply as:

$$egin{aligned} &a(z) = \sum_{\Delta \in \mathcal{B}_{(r,n)}} (1+z+\cdots+z^{n-\dim(\Delta)-1})B(\Delta;z), & ext{and} \ &b(z) = rac{1}{z}\sum_{\Delta \in \mathcal{B}_{(r,n)}} (1+z+\cdots+z^{n-\dim(\Delta)-1})B(ext{conv}(\Delta,\mathbf{0});z). \end{aligned}$$

So perhaps we should revisit box polynomials for simplices....

In Summary:

- Ehrhart unimodality is a rich and challenging area of research!
- Ehrhart unimodality results center around two central ideas:
 - decompose and apply algebraic results.
 - recursions and real-rootedness
- The applicability and usefulness of these techniques is still not completely understood, not even for "popular polytopes" or "simple families."
 - i.e. those polytopes used as examples in this talk.
 - i.e. large families of simplices.
- The relationship and disparity between applicability of approaches (i) and (ii) is not so clear.
 - one is often easier than the other
 - can we better understand their relationship in the case of simplices?

Things to do:

- Answer the conjecture of Hibi and Ohsugi!
- Answer the question of Schepers and Van Langenhoven!
- Answer the question of Braun!
 - I.e. better understand unimodality of box polynomials for simplices.
- Work on popular examples!
 - Help characterize better the unimodality and applicability of these results for the families of polytopes mentioned here!
 - The applicability of techniques (i) and (ii) is only characterized for a few of the examples we discussed today!
- Get creative!
 - Develop new families of polytopes for which to test theories in Ehrhart unimodality.

Thank You!