
MODULI SPACES OF STABLE MAPS AND GW THEORY, I

RAHUL PANDHARIPANDE*

(*) Notes taken by Dhyan Aranha, all errors should be attributed to me and
my ignorance about the subject. Corrections and suggestions are welcome, and
should be sent to: dhyan.aranha@gmail.com.

We start here with X be a non-singular projective variety over C. The
beginning of this subject at least from the point of view of this talk and actually
many points of view is the definition of the moduli space of stable maps

Mg,n(X,�)

g - genus,
n - number of marked points,
� 2 H2(X,Z).

Roughly, a point in this space is an algebraic morphism

f : C �! X

from a connected, reduced, etc.. curve C with at worst nodal singularities,
whose genus is g = g(C) = h

1(OC), whose markings are distinct and are away
from the nodes, and has f⇤[C] = �. Finally there is a stability condition: finite
automorphisms (i.e. automorphisms of the domain that

The proper point of view on Mg,n(X,�) is that it is a Deligne-Mumford stack
furthermore one can show:

• Mg,n(X,�) is proper (not really di�cult)
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• Mg,n(X,�) carries a virtual fundamental class (not really easy, Li-Tian,
Behrend-Fantechi)

Now suppose you have a curve C and an algebraic morphism f : C �! X.
You can deform C and you can deform the map f . Let’s for a keep C fixed and
deform f :

Def(f) = H
0(C, f⇤

TX)

Obs(f) = H
1(C, f⇤

TX)

Vir dimC = 3g � 3 + n+ �(C, f⇤
TX)

we can rewrite this as

Vir dimC =

Z

�
c1(X) + (dimC(X)� 3)(1� g) + n

The virtual fundamental class is a cycle in AVir dimC(Mg,n(X,�)), that is

[Mg,n(X,�)]vir 2 AVir dimC(Mg,n(X,�))

Now we can make a sort of flow chart of things:

(i) Is Mg,n(X,�) pure ( e.g. all irreducible components have expected dimen-
sion) of expected dimension? // [Mg,n(X,�)]vir is just the fundamental
class [Mg,n(X,�)].

(ii) IsMg,n(X,�) non singular irreducible of wrong dimension (i.e. ¿ Vir dimC)?
// [Mg,n(X,�)]vir is ctop(Obs).

(iii) DoesX have a torus-action: C⇤ y X. // There is a localization formula
due to Graber-Pandharipande, that says roughly you can write [Mg,n(X,�)]vir

in terms of the virtual classes on the C⇤-fixed loci of Mg,n(X,�).

(iv) Lastly you can try to deform X. // Breaking:
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The virtual class [Mg,n(X,�)]vir can be expressed in terms of [Mg1,n1(X1/D,�1)]vir

and [Mg2,n2(X2/D,�2)]vir. This idea is contained in the subject of relative
Gromov-Witten theory, due to Li-Ruan, Li, Ionel-Parker, etc...

So in general if you want to know what the virtual fundamental class [Mg,n(X,�)]vir

is say for some smooth projective variety X. You might consider the following
diagram

Log Gromov-Witten theory: Gross-Siebert, Abramovich-Chen-Gross-Siebert.

Examples: Consider M1,1(X, 0) = M1,1 ⇥ X, with d := dimCX. Since
dimM1,1 = 1, the space M1,1(X, 0) has dimension d+1. Points in this moduli
space look like

What is the virtual dimension? Well we use our formula and get Vir dimC =
0 + 0 + 1 = 1.

So now where are we in our flow chart? We aren’t in case (i) because if d is
positive the dimension is unexpected but we are in case (ii), non-singular but of
the wrong dimension. This means we have an obstruction bundle on M1,1⇥X

which comes from the d-dimensional vector space H
1(C, f⇤

TX). We see that
the obstruction bundle is

Obs = E_
⌦ TX

Remark 0.0.1. Sometimes people write the tensor product appearing in the
formula above as ⇥ since it is the exterior tensor product.
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Where E is the hodge bundle over M1,1. The Hodge bundle exists for any
Mg,n and can be described fiber-wise as: Given a point in the moduli space
[C, p1, · · · , pn] the fiber is H0(C,!C).

Now since we are looking at genus 1 curves the rank of E_ will be 1. Also
since X is d-dimensional we see that TX has rank d so their tensor product will
also be rank d. Thus the virtual class is

[M1,1(X, 0)]vir = cd(TX)� �cd�1(TX)

where � = c1(E).

It turns out there’s more to say about this. A GW invariant is a pairing
against this virtual class a particular kind:

Mg,n(X,�)

forget
✏✏

//...
ev1,...,evn

//X

Mg,n(X,�)

The maps evi are just the evaluation on the marked point. The morphism ”for-
get” we only have when 2g � 2 + n > 0.

If you accept the basic claim that this subject is about the exploration of the
virtual class. The first question you could ask is: How could you possibly tell
me what the virtual class is?

One of the things you could do is consider the morphism

Mg,n(X,�)
j //Mg,n ⇥X

⇥n

and look at j⇤[Mg,n(X,�)]vir 2 H⇤(Mg,n⇥X
⇥n). This has the advantage that

you have a Künneth formula.
Given �1, . . . , �n 2 H

⇤(X,C), the Gromov-Witten invariants are

h�1, . . . , �ni
X
g,n,� :=

Z

[Mg,n(X,�)]vir
ev

⇤
1(�1) [ · · · [ ev

⇤
n(�n) 2 C.

there are fancier Gromov-Witten invariants, the so-called ”descendent” invari-
ants

h⌧k1(�1) . . . , ⌧kn(�n)i
X
... =

Z

[Mg,n(X,�)]vir
 
k1
1 ev

⇤
1(�1) [ · · · [  

kn
n ev

⇤
n(�n)

where the  i’s are the cotangent line classes.
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How might we get some numbers out of the virtual class. Consider again
M1,1(X, 0):

h c1(X)i1,1 =

Z

M1,1⇥X
(cd(X)� �cd�1(X)) · c1(X)

= �
1

24
·

Z

X
cd(X)c1(X)

The chern number
R
X cd(X)c1(X) is somewhat magical, we’ll come back to it.

What’s the other thing you can do? Well you could pull back a point class
via

M1,1(X, 0)

✏✏
M1,1.

In other words you can fix a particular complex structure and write

ME,1(X, 0)

for E an elliptic curve. (This will also cut the dimension by 1) We get a number

h1iE,1 =

Z

X
cd(X)

the Chern number
R
X cd(X) is just the Euler characteristic (determined by the

Betti # ’s). You can ask which Chern numbers are determined by the Betti
numbers, the answer it turns out is only

R
X cd(X). So then you might as which

Chern numbers are determined by the Hodge numbers, and the answer is that
there are two:

R
X cd(X) and

R
X cd(X)c1(X). This is actually very important,

it has to do with how to write the Virasoro constraints.

Another example with an elliptic curve: Let X = E, we can consider

M1(E, d)

which has Vir dimC = 0. So where are we in the flow chart? It turns out that
this space is pure of dimension 0, so we are in (i). So this is a counting problem:
counting covers of elliptic curves. We can write down a generating series

X

d

h1iE1,0,dq
d = q +

3

2
q
2 + · · ·

it turns out its a little bit better to consider the exponential of the above
formula:

Z = exp(
X

d

h1iE1,0,d q
d) = 1 + q + (

3

2
+

1

2
)q2 + · · ·

=
X

µ partitions

q
|µ|
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We can ask: Is there a generalization of the above formula? It turns out
that we can and it the subject of some work of Pandharipande-Cooper: The
generalization we want to consider is

M1(E ⇥ P1
, (d1, d2)).

This space has Vir dimC = 2d2. The answer

Z
E⇥P1

1 = exp(
X

d1

X

d2

Q
d1
1 Q

d2
2 hpt, . . . , pti

pure 1
g=1,(d1,d2)

)

=
X

u,v partitions

Q
|u|+|v|
1 e

|u|�|v|
p
Q2

Now we move to cohomological field theories. (Kontsevich-Manin)

Definition 0.0.2. A cohomological field theory (CohFT) consists of the data
of a finite dimensional vector space V , over C. A symmetric, nondegenerate,
bilinear form ⌘ : V ⌦ V �! C (sometimes called the metric and often written
as h i 2 C). Finally we also ask for a distinguished element of V we denote by
1 called the unit. We call (V, ⌘, 1) state space. We define the CohFT on top of
the state space, that is it is a system of tensors

⌦ = {⌦g,n}2g�2+n>0

where

⌦g,n 2 H
⇤(Mg,n,C)⌦ (V ⌦n)⇤

= Hom(V ⌦n
, H

⇤(Mg,n,C))
which satisfy certain axioms:

(I) ⌦g,n is ⌃n-invariant: The moduli space of stable curves Mg,n has an action
of ⌃n by permuting the markings which induces an action on the cohomology
H

⇤(Mg,n,C). We also have a ⌃n action on V
⌦n by permutation. We ask that

if we have an action of ⌃n on the ⌦g,n it should respect these two actions.

(II) Splitting axiom: First we need to discuss boundary maps: There are bound-
ary maps of two flavors. Firstly, there’s

q : Mg�1,n+2 �! Mg,n

which glues two special points to create a node. Secondly, there’s

r : Mg1,n1+1 ⇥Mg2,n2+1 �! Mg,n

where g1 + g2 = g and n1 + n2 = n, which is given by connecting curves. We
will just describe what happens for q (the one for r is the same). The axiom is
that

q
⇤⌦g,n(v1, . . . , vn) =

X

i,j

⌦g�1,n+2(v1, . . . , vn.ei, ej)⌘
i,j

where we take a basis e1, . . . , en of V then hei, eji = ⌘i,j then write ⌘i,j for the
inverse matrix.
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(III) Forgetting the tails: If you have an extra point, you can forget it, that
is you have a map

Mg,n+1

p
✏✏

Mg,n

then we ask that

⌦g,n+1(v1, . . . , vn, 1) = p
⇤⌦g,n(v1, . . . , vn).

(There is a degenerate part to this axiom, namely ⌦0,3(v1, v2, 1) = hv1, v2i.)

Gromov-Witten furnishes us with an example of a CohFT: V := H
⇤(X,C),

⌘ := Poincare, 1 = 1 2 H
⇤(X,C),

⌦g,n(�1, . . . , �n) =
X

�

jMg,n⇤(
Y

ev
⇤
i (�i) \ [Mg,n(X,�)]vir)q� 2 H

⇤(Mg,n)

where �i 2 H
⇤(X,C) .

Remark 0.0.3. Actually if you want to do this correctly you should work in
the ”super” context. But we wont do this.

This was all kind of old stu↵. Whats new? This past year:

K3⇥ E // Igusa cusp form: Oberdieck - Pixton, Oberdeick-Shen

Quintic // Janda-Ruan, Q. Chen, S. Guo; Holomorphic anomaly equation
for quintic.

quintic formal quintic

Givental-Teleman classification


