
MODULI SPACES OF STABLE MAPS AND GW THEORY, II

RAHUL PANDHARIPANDE*

(*) Notes taken by Dhyan Aranha, all errors should be attributed to me and

my ignorance about the subject. Corrections and suggestions are welcome, and

should be sent to: dhyan.aranha@gmail.com.

We start where ended last time with the notion of cohomological field theory.

Take, (V, ⌘, 1) (the state space), ⌦ = {⌦g,n}2g�2+n>0. We had a set of three

axioms: (I) - ⌃n-invariance, (II)-splitting, (III)-forgetting the tail.

Where does the quantum cohomology come from? Whenever we have a co-

homological field theory, say the one above, one gets a quantum product, ⇤, on
V . We call (V, ⇤, 1) the quantum cohomology ring and the way the product, ⇤,
is defined is:

⌘(v1 ⇤ v2, v3) := ⌦0,3(v1, v2, v3) 2 C
(we can define the product in terms of the pairing because ⌘ is non-degenerate)

Exercise: Check (V, ⇤, 1) is a unital associative algebra. (Hint: Use M0,4).

Givental-Teleman: We say that CohFT is semi-simple if (V, ⇤, 1) is semi-simple.

Which means that (V, ⇤, 1) has a basis of idempotents.

In the world of CohFT’s some of them come from GW-theory, but some

don’t. Similarly some are semi-simple and some are not, and also the collection

of semi-simple ones doesn’t necessarily coincide with the collections of ones

coming from GW-Theory.

Let’s fix a CohFT, ⌦. with state space (V, ⌘, 1). Let

R(z) := id+zR1 + z
2
R2 + · · ·

where

Rm 2 End(V ).

sometimes people write

R(z) 2 id+zEnd(V )[[z]].

Anyway, they should satisfy the so called symplectic condition:

R(z) ·R⇤
(�z) = id

(where R
⇤
(z) means the adjoint with respect to ⌘).

Definition 0.0.1. The Givental group is then the collection of all such R(z) 2
id+zEnd(V )[[z]] which satisfy the symplectic condition.
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Given an element R in the Givental group we can form a new CohFT, which

we’ll denote as R⌦. So we have to say how to define R⌦g,n(v1, . . . , vn). Roughly,

R⌦g,n(v1, . . . , vn) :=
X

�2Gg,n

1

|Aut(�)| i�⇤(
Y

vertices

Cv

Y

legs

Cl

Y

edges

Ce)

where Gg,n = {all dual graphs} and we have

(i) The Cv’s are called the vertex contribution and is just

Cv := ⌦g(v),n(v)

where g(v) and n(v) denote the genus and the number of half-edges and legs of

the vertex.

(i) The Cl’s are the leg contribution is the End(V )-valued cohomology class

Cl := R( l)

where  l 2 H
2
(Mg(v),n(v),C) is the cotangent class at the marking correspond-

ing to the leg.

(iii) The edge contribution is

Ce :=
⌘
�1 �R( 

0
e)⌘

�1
R( 

00
e )

>

 0
e +  00

e

where  
0
e and  

00
e are the cotangent classes at the node which represents the

edge e. The symplectic condition guarantees that this is well defined.

Remark 0.0.2. For an in-depth explanation of the formula and definitions
I (Dhyan) recommend ”Cohomological field theory calculations” by Pandhari-
pande; arxiv: https://arxiv.org/pdf/1712.02528.pdf.

Result: The gadget R⌦ is a CohFT, without the axiom (III) for the unit.

(we’ll fix this in a moment). Also, this defines a group action of Giv on those

CohFT’s which don’t satisfy axiom (III).

There is another group action given via translation. Let

T = T2z
2
+ T3Z

3
+ · · · 2 V [[z]]

where Tm 2 V . We define T⌦g,n(v1, . . . , vn) as

T⌦g,n(v1, . . . , vn) :=

1X

m=0

1

m!
pm⇤(⌦g,n+m(v1, . . . , vn, T ( n+1), . . . , T ( n+m))

where pm : Mg,n+m �! Mg,n forgets the last m markings.

Now we can define an action of the Givental-Teleman group on CohFT’s:

R•⌦ = RT⌦ where T (z) = z((id�R(z)) ⇤ 1) the actions on the RHS are the

ones we just defined.

Result: R•⌦ is a CohFT with unit.

Statement of Givental-Teleman classification of semi-simple CohFT’s : We only
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one more notion, which is called the topological part.

Let ⌦ be a CohFT with unit (i.e. satisfies axiom (III)). Then it is possible

to define a new CohFT by taking the degree 0 part:

!g,n(v1, . . . , vn) = [⌦g,n(v1, . . . , vn)]
0 2 H

0
(Mg,n,C)

Note that !g,n is a cohomological field theory with unit (i.e. satisfies axiom

(III)).

Theorem 0.0.3. If ⌦ is a semi-simple CohFT with unit. Then there exists a
unique R 2 Giv so that

R•! = ⌦

Why is this useful? Well, because ! is much simpler than ⌦. More precisely

! is determined just by (V
0
, ⇤, 1) and ⌘. Why is that?

!g,n(v1, . . . , vn) = [⌦g,n(v1, . . . , vn)]
0
=

Z

Mg,n

⌦g,n(v1, . . . , vn) · [C, p1, . . . , pn].

Then we can use the splitting axiom to compute. In the Gromov-Witten case

this is the GW-theory with fixed complex structure on the domain.

How to find R?

Example: Solution of r-spin theory.

Let r � 2 integer, V a vector space of dimension r� 1 with basis {e0, . . . , er�2}
and ⌘(ea, eb) = �a+b,r�2, e0 = 1. This information determines the state space.

Let W
r
g,n denote the r-spin CohFT.

W
r
g,n(ea1 , . . . , ean) 2 H

⇤
(Mg,n)

which is usually called a Witten’s class of degree

D
r
g,n(a1, . . . an) :=

(r � 2)(g � 1) +
P

ai

r

(if it the numerator is not divisible by r then the class is zero). We have a

moduli space of r-spin curves

Mr
g,(a1,...,an)

✏✏

[C, p1, . . . , pn,L⌦r ' !C(�
Pr

i=1 aipi)]

Mg,n [C, p1, . . . pn]

Now take g = 0, we have (A. Pixton):

# =

Z

M0,n

W
r
n(A) =

(n� 1)!

rn�3
dim[⇢r�2�a1 ⌦ · · ·⌦ ⇢r�2�an ]

sl2

where A = (a1, . . . , an), D
r
0,n(A) = n� 3 and the ⇢k is the k

th
symmetric power

of the standard 2-dimensional representation, ⇢1, of sl2, that is ⇢k = Sym
k
(⇢1).



4 RAHUL PANDHARIPANDE*

It turns out as defined W
r
g,n is not semi-simple. But there is a way to get

around it. Let � 2 V we can define a shifted r-spin theory

W
r,�
g,n(v1 ⌦ · · ·⌦ vn) =

X 1

m!
pm⇤(W

r
g,n+m(v1, . . . , vn, �, . . . �)

Now take � = (0, . . . , 0, rer�2). Then we get a new CohFT: W
r,rer�2
g,n .

Theorem 0.0.4. (Pandharipande, Pixton, Zvonkine) The CohFT, W r,rer�2
g,n is

semi-simple.

The way you prove it you calculate the algebra (V, ⇤̂, 1) ' Verlinde algebra of level r for sl2.
We can write down the idempotent basis for this algebra:

Vk =

r
2

r

r�2X

a=0

sin(
(a+ 1)k⇡

r
)ea

and multiplcation

Vk⇤̂Vl =

p
r
2

sin(
k⇡
r )

Vk�k,l

where

⌘(Vk, Vl) = (�1)
k�1

�k,l.

Finally you can write down the topological part of the shifted thing:

!̂
r
g,n(ea1 , . . . , ean) = (

r

2
)
g�1

r�1X

k=1

(�1)
(k�1)(g�1)Qn

i=1 sin(
(ai+1)k⇡

r )

sin(
k⇡
r )2g�2+n

.

Now how to get the R matrix (This boils down to solving a di↵erential equa-

tion)? We will give a characterization which is explicit in terms of hypergeo-

metric series. If you do the case when r = 3 you get exactly 2 hyper geometric

series that appear in Faber-Zagier, and Pixton’s relations.

There is an Euler field:

⇠ =

0

BB@

2

2

2

2

1

CCA ,

and then theres a grading operator:

µ =
1

2r

0

BBB@

�(r � 2)

�(r � 4)

. . .

r � 2

1

CCCA
.

The equation that determines the R matrix is

[Rm+1, ⇠] = (m� µ)Rm.

So to find the unique R matrix you have solve the last formula explicitly. You

can almost never do this but in this example you can. Here is a hyper-geometric

series

Br,a(z) =

1X

m=0

(

mY

1

((2i � 1)r � 2(a+ 1))((2i � 1)r + 2(a+ 1))

i
)(

�z

16r2
)
m
.
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there is an even part, B
even
r,a and an odd part B

odd
r,a and

R
a
a(z) = B

even
r,a (z) R

r�2�a
a (z) = B

odd
r,a (z).

We see for r = 3 :

R(z) =

✓
B

even
3,0 B

odd
3,1

B
odd
3,0 B

even
3,1

◆

Conjecture: (Janda, Pandharipande, Pixton, Zvonkine)

r
g�1

W
r
g,n(a1, . . . , an) 2 H

2(g�1)
(Mg,n)

such that
P

ai = 2g � 2.

Theorem 0.0.5. For all large r the expression above is a polynomial in r.

Take constant term of r
g�1

W
r
g,n(a1, . . . , an). This is a class inH

2(g�1)
(Mg,n).

The conjecture is that this class is Hg,a1,...,an ⇢ Mg,n.

This conjecture is going to be proved using results of Janda and Zvonkine.


