STABILITY CONDITIONS AND WALL-CROSSING IN DERIVED CATEGORIES I

YOKINOBU TODA*

(*) Notes taken by Dhyan Aranha, all errors should be attributed to me and my ignorance about the subject. Corrections and suggestions are welcome, and should be sent to: dhyan.aranha@gmail.com.

These talks will be a kind of introduction to space of stability conditions on derived categories and applications to Donaldson-Thomas invariants. Let's recall Donaldson-Thomas Invariants:

DT invariants = vir # of (semi) stable sheaves on CY 3-folds

Let's recall the classical definition of stability conditions on coherent sheaves. There several versions of it, here is the definition of so called slope stability conditions:

Definition 0.0.1. Let X be a smooth projective variety over \mathbb{C} , and ω ample divisor on X. A sheaf $E \in \operatorname{Coh}(X)$ is called μ_{ω} - (semi) stable if: i) E is torsion free, ii) for all $0 \neq F \subsetneq E$ with rk(F) < rk(E), we have $\mu_{\omega} < \mu_{\omega}(E)$.

Where μ_{ω} is defined as

$$\mu_{\omega}(C) := \frac{c_1(E) \cdot \omega^{\dim X - 1}}{rk(E)} \in \mathbb{Q} \cup \{\infty\},\$$

where the value ∞ occurs when rk(E) = 0.

In the one dimensional case the definition of μ_{ω} is independent of the choice of ω but in the higher dimensional cases it will depend on the choice.

Some good things that happen by introducing stability conditions:

i) Let $v \in H^{2k}(X, \mathbb{Q})$ we have

$$M(v) \stackrel{\text{open substack}}{\supset} M^{ss}_{\omega}(v) \stackrel{\text{open}}{\supset} M^{s}_{\omega}(v).$$

Where: M(v) is the moduli stack of coherent sheaves, E, with ch(E) = v. It is not of finite type and not separated. $M^{ss}_{\omega}(v)$ is the open moduli sub-stack of μ_{ω} -semi-stable sheaves which is of finite type but still not separated. Finally $M^{s}_{\omega}(v)$ is the open sub stack of μ_{ω} -stable sheaves and if you ignore the \mathbb{C}^{*} automorphisms then it is a quasi-projective variety.

<u>Upshot:</u> If you consider (semi)-stable sheaves you get a better behaved moduli space.

YOKINOBU TODA*

ii) (Harder-Narasimhan) For all $E \in Coh(X)$ there exists a unique filtration $E_0 \subseteq E_1 \subseteq \cdots \subseteq E_n = E$

such that E_0 is 0 or torsion free, $F_i := E_i/E_{i-1}$ is μ_{ω} - semi-stable for all i, and $\mu_{\omega}(F_1) > \cdots > \mu_{\omega}(F_n)$.

Remark 0.0.2. There is another notion of stability conditions, the so called "Gieseker stability conditions" which involve using the higher chern characters.

When $M^{ss}_{\omega}(v) = M^s_{\omega}$ then you get a projective scheme. Further, if X is a Calabi-Yau 3-fold then

$$DT_{\omega}(v) := \int_{[M_{\omega}^{s}(\nu)]^{\mathrm{vir}}} 1 = \int_{[M_{\omega}^{s}(v)]} \nu \cdot de \in \mathbb{Z}$$

where ν -is the Behrend function.

Remark 0.0.3. There is a generalization of this when $M^{ss}_{\omega}(v) \supseteq M^{s}_{\omega}(v)$, which is due to Joyce-Song and Kontsevich-Soibelman: $DT_{\omega}(v) \in \mathbb{Q}$)

Example 0.0.4. (MNOP) Let $\beta \in H_2(X,\mathbb{Z})$ and $n \in \mathbb{Z}$ then we can define $I_{n,\beta} := DT_{\omega}(1,0,-\beta,-n)$ where $(1,0,-\beta,-n) \in H^0 \oplus H^2 \oplus H^4 \oplus H^6$. Then

$$I_{n,\beta} = \{ vir \ \# \ of \ C \hookrightarrow X, \ \dim C \le 1, [C] = \beta, \chi(\mathcal{O}_C) = n \}$$

You can identify $C \hookrightarrow X$ with a stable sheaf by identifying it with its ideal sheaf. Some of the properties of this invariant are:

i) $I_{n,\beta}$ is independent of ω . ii) stability \iff torsion free.

<u>Goal</u>: Extend Donldson-Thomas theory to derived categories of coherent sheaves, $D^b(X)$, i.e. want to count stable objects in $D^b(X)$.

Expected applications:

i) If $D^b(X) \cong D^b(Y)$ (e.g. X birational to Y) \implies compare DT invariants on X and Y.

ii) If $\varphi \in Aut(D^b(X)) \implies$ get constraints on DT invariants induced by φ .

We now recall the notion of Bridgeland stability. Let D be a triangulated category $(e.g.D = D^b(X))$.

Definition 0.0.5. A heart of a bounded t-structure on D is a subcategory $A \subset D$ such that:

i) For all i < 0, Hom(A, A[i]) = 0.

 $\mathbf{2}$

ii) For all $E \in D$ there exists

distinguished triangles such that $F_i \in A[k_i]$ where $k_1 > k_2 \cdots > k_n$.

Remark 0.0.6. If D is a triangulated category with t-structure then the heart of this t-structure is an abelian category.

Example 0.0.7. If we take $D = D^b(X)$ then the heart with resepect to the standard t-structure is A = Coh(X)E

Example 0.0.8. (Tilting) Let $T, F \subset Coh(X)$ sub-cats such that

i) $\operatorname{Hom}(T, F) = 0$

ii) For all $E \in Coh(X)$ fits into exact sequence

$$0 \longrightarrow E_1 \longrightarrow E \longrightarrow E_2 \longrightarrow 0$$

where $E_1 \in T$ and $E_2 \in F$.

Such a pair is called a torsion pair. (e.g. If $D = D^b(X)$, you could take T to be the category of torsion sheaves and F to be the category of torsion free sheaves and this would be an example of such a pair). The category

$$\mathcal{A} = \{ E \in D^b(X) | \mathcal{H}^0(E) \in T, \mathcal{H}^{-1}(E) \in F, \mathcal{H}^i(E) = 0 \text{ for } i \neq 0, 1 \},\$$

 $(= \langle F[1], T \rangle)$, is the heart of a bounded t-structure. We call this "tilting with respect to (T, F)". In particular its a procedure that breaks Coh(X) which itself was a heart of a bounded t-structure into two pieces T, F and then creates a new heart of a bounded t-structure $\langle F[1], T \rangle$.

<u>Moral</u>: In general there can exist more than one "heart of a bounded t-structure" of a triangulated category.

Remark 0.0.9. Different heart gives different "torsion free" objects.

Example 0.0.10. Let X be a 3-fold and consider the category $T := \operatorname{Coh}_0(X) \subset \operatorname{Coh}(X)$ of 0-dim sheaves (i.e. sheaves with 0-dimensional support). Let

$$F := \{E \in \operatorname{Coh}(X) \mid \operatorname{Hom}(T, E) = 0\}$$

This gives a heart $\mathcal{A} = \langle F, T[-1] \rangle$, [-1] of tilting. Then we can consider

$$\mathcal{A}_{tor} := \{ E \in \mathcal{A} \mid rk(E) = 0 \}$$

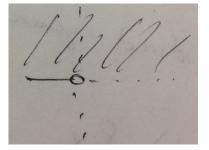
Lemma 0.0.11. $I \in \mathcal{A}, rk(I) = 1$ and $det(I) = \mathcal{O}_X$ satisfies $Hom(\mathcal{A}_{tor}, I) = 0$ if and only if $I \simeq (\mathcal{O}_X \xrightarrow{s} \mathcal{F})$ such that \mathcal{F} is pure 1-dimensional sheaf and s is surjective in dimension 1. (Pandharipande-Thomas stable pairs)

Definition 0.0.12. (Bridgeland Stability Conditions) Let D be a triangulated category. A Bridgeland stability condition on D consists of $\sigma := (Z, A)$ such that:

i) $Z: K(D) \longrightarrow \mathbb{C}$ a group homomorphism.

ii) $\mathcal{A} \subset D$ heart of bounded t-structure.

(iii) $Z(\mathcal{A} - \{0\})$ is contained in:



 $\longrightarrow E \in \mathcal{E}, \ \sigma$ -(semi)stable if for all $0 \neq F \subsetneq E$ in $\mathcal{A} \ arg(Z) \underset{(\leq)}{<} arg(E)$ in $(0, \pi]$.

(iv) There exists HN filtrations.

Example 0.0.13. Let $D = D^b(A - mod)$ where A is a finite dimensional \mathbb{C} -algebra. Then the standard heart is $\mathcal{A} = A - mod$. In this case we have a finite number of simple objects, S_1, \ldots, S_N , which generate \mathcal{A} . For the central charge we may take any

$$Z: K(D) = \bigoplus_{i=1}^{N} \mathbb{Z}[S_i] \longrightarrow \mathbb{C}$$

$$(0.1)$$

such that $Z(S_i)$ is contained in

[picture]

The pair (Z, \mathcal{A}) gives a stability condition.

Example 0.0.14. Let X be a smooth projective variety, ω , ample divisor. Let $D = D^b(X)$ and $\mathcal{A} = \operatorname{Coh}(X)$. Define

$$\begin{array}{rcl} Z:K(X) & \longrightarrow & \mathbb{C} \\ & E & \mapsto & -c_1(E)\omega^{\dim X-1} + i \cdot rk(E). \end{array}$$

The pair (Z, \mathcal{A}) is a stability condition if and only if dim X = 1. The reason is that in the higher dimensional case we don't capture the higher chern classes in the central charge, indeed we have when dim $X \ge 2$ then $Z(\mathcal{O}_X) = 0$ which violates the definition of stability condition.

The last example shows that Bridgeland stability is not exactly a direct generalization of the classical notion of stability.

Theorem 0.0.15. (Bridgeland) Fix $cl: K(D) \longrightarrow \Gamma$ group homomorphism.

$$Stab_{\Gamma}(D) := \{ (Z, \mathcal{A}) \mid Z : K(D) \xrightarrow{cl} \Gamma \to \mathbb{C}, \text{ support property} \}$$

4

is a complex manifold such that the forgetful map:

$$\begin{array}{rcl} Stab_{\Gamma}(D) & \longrightarrow & \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \\ (Z, \mathcal{A}) & \mapsto & Z. \end{array}$$

is a local homeomorphism if $Stab_{\Gamma}(D) \neq \emptyset$.

Let X be a smooth projective variety and $D = D^b(X)$, and $\Gamma := Im(ch : K(X) \longrightarrow H^{2k}(X, \mathbb{Q}), cl := ch$. Then $Stab(X) := Stab_{\Gamma}(D)$.

<u>Fact:</u> $\nexists(Z, Z) \in Stab(X)$ such that $\mathcal{A} = Coh(X)$.

<u>Conjecture</u>: $Stab(X) \neq \emptyset$ (true if dim $(X) \leq 2$, open in dim $(X) \geq 2$.)

<u>Application to DT:</u> Let X be a CY 3-fold with Stab(X) non-empty. We expect

$$DT_*(v) : Stab(X) \longrightarrow \mathbb{Q}$$

$$\sigma \mapsto DT_{\sigma}(v)$$

where $DT_{\sigma}(v)$ is the virtual number of σ -stable sheaves E, ch(E) = v. We also expect $\exists \sigma_x$ (depending on v) with

$$DT_{\sigma_x}(v) = DT_{\omega}(v).$$

where $DT_{\omega}(v)$ should count DT.

Suppose now you have an equivalence $D^b(X) \simeq D^b(Y)$, then $Stab(X) \simeq Stab(Y)$ and then wall crossing formula \implies relation of DT invariants of X and Y:

