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(*) Notes taken by Dhyan Aranha, all errors should be attributed to me and
my ignorance about the subject. Corrections and suggestions are welcome, and
should be sent to: dhyan.aranha@gmail.com.

These talks will be a kind of introduction to space of stability conditions on de-
rived categories and applications to Donaldson-Thomas invariants. Let’s recall
Donaldson-Thomas Invariants:

DT invariants = vir # of (semi) stable sheaves on CY 3-folds

Let’s recall the classical definition of stability conditions on coherent sheaves.
There several versions of it, here is the definition of so called slope stability
conditions:

Definition 0.0.1. Let X be a smooth projective variety over C, and w ample

divisor on X. A sheaf E € Coh(X) is called p, - (semi) stable if: i) E is

torsion free, i) for all 0 # F C E with rk(F) < rk(E), we have p, (<) U (E).
<

Where p, is defined as
Cl(E) _wdimX—l
L (C) =
ol ©) rk(E)

where the value oo occurs when rk(E) = 0.

€ QU {oo},

In the one dimensional case the definition of p,, is independent of the choice
of w but in the higher dimensional cases it will depend on the choice.

Some good things that happen by introducing stability conditions:

i) Let v € H?*(X,Q) we have

open substack open
M (v) D M3 (v) D MS(v).

Where: M (v) is the moduli stack of of coherent sheaves, E, with ch(E) = v.
It is not of finite type and not separated. M>*(v) is the open moduli sub-stack
of u,,-semi-stable sheaves which is of finite type but still not separated. Finally
Mg (v) is the open sub stack of pug-stable sheaves and if you ignore the C*
automorphisms then it is a quasi-projective variety.

Upshot: If you consider (semi)-stable sheaves you get a better behaved mod-
uli space.
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ii) (Harder-Narasimhan) For all E € Coh(X) there exists a unique filtration
EyCE1C---CEy,=E

such that Ej is 0 or torsion free, F; := E;/FE;_ is .- semi-stable for all 4, and
oo (F1) > - > e (Fy).

Remark 0.0.2. There is another notion of stability conditions, the so called
”Gieseker stability conditions” which involve using the higher chern characters.

When M?2%(v) = MS then you get a projective scheme. Further, if X is a
Calabi-Yau 3-fold then

DTw(v)::/ 1:/ v-de€Z
(M (w)]¥ (M (v)]

where v-is the Behrend function.

Remark 0.0.3. There is a generalization of this when M5%(v) 2 M35 (v), which
is due to Joyce-Song and Kontsevich-Soibelman: DT, (v) € Q)

Example 0.0.4. (MNOP) Let f € Ho(X,Z) and n € Z then we can define
I3 = DT,(1,0,—8,—n) where (1,0,—B,—n) € H' ® H?> & H* ® H®. Then

I g ={vir # of C = X, dimC < 1,[C] = ,x(O¢) = n}.
You can identify C — X with a stable sheaf by identifying it with its ideal sheaf.
Some of the properties of this invariant are:
i) I, g is independent of w.
ii) stability <= torsion free.
Goal: Extend Donldson-Thomas theory to derived categories of coherent

sheaves, D’(X), i.e. want to count stable objects in D*(X).

Expected applications:

i) If D*(X) = DY) (e.g. X birational to Y) == compare DT invari-
ants on X and Y.

i) If ¢ € Aut(D°(X)) == get constraints on DT invariants induced by
®.

We now recall the notion of Bridgeland stability. Let D be a triangulated
category (e.g.D = D*(X)).

Definition 0.0.5. A heart of a bounded t-structure on D is a subcategory
A C D such that:

i) For all i < 0, Hom(A, A[i]) = 0.
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ii) For all E € D there exists

OZEOHE&H-“ EnflﬂEn:E

distinguished triangles such that F; € Alk;] where ki > ko -+ > ky,.

Remark 0.0.6. If D is a triangulated category with t-structure then the heart
of this t-structure is an abelian category.

Example 0.0.7. If we take D = DY(X) then the heart with resepect to the
standard t-structure is A = Coh(X)E

Example 0.0.8. (Tilting) Let T, F C Coh(X) sub-cats such that
i) Hom(T, F) =0

ii) For all E € Coh(X) fits into exact sequence
0 E E Es 0

where B4 € T and Fy € F.

Such a pair is called a torsion pair. (e.g. If D = D*(X), you could take T
to be the category of torsion sheaves and F to be the category of torsion free
sheaves and this would be an example of such a pair). The category

A={E e D"X)|HE) e T,H Y(E) e F,H'(E) =0 fori+#0,1},

(= (F[1],T)), is the heart of a bounded t-structure. We call this "tilting with
respect to (T, F)”. In particular its a procedure that breaks Coh(X) which itself
was a heart of a bonded t-structure into two pieces T', F' and then creates a new
heart of a bounded t-structure (F[1],T).

Moral: In general there can exist more than one "heart of a bounded t-
structure” of a triangulated category.

Remark 0.0.9. Different heart gives different “torsion free” objects.

Example 0.0.10. Let X be a 3-fold and consider the category T := Cohy(X) C
Coh(X) of 0-dim sheaves (i.e. sheaves with 0-dimensional support). Let
F :={F € Coh(X) | Hom(T, E) = 0}
This gives a heart A = (F,T[-1]), [-1] of tilting. Then we can consider
Aior ={E € A | rk(E) =0}
Lemma 0.0.11. I € A, rk(I) =1 and det(I) = Ox satisfies Hom( Ao, I) =0

if and only if I ~ (Ox — F) such that F is pure 1-dimensional sheaf and s
is surjective in dimension 1. (Pandharipande-Thomas stable pairs)

Definition 0.0.12. (Bridgeland Stability Conditions) Let D be a triangulated
category. A Bridgeland stability condition on D consists of o := (Z, A) such
that:



4 YOKINOBU TODA*
i) Z : K(D) — C a group homomorphism.
it) A C D heart of bounded t-structure.

(iii) Z(A —{0}) is contained in:

~~~>F € &, o-(semi)stable if for all 0 # F C E in A arg(Z) (<) arg(E)
<
in (0,7].

(iv) There exists HN filtrations.

Example 0.0.13. Let D = D*(A — mod) where A is a finite dimensional C-
algebra. Then the standard heart is A = A —mod. In this case we have a finite
number of simple objects, S1,...,Sn, which generate A. For the central charge
we may take any

N
Z:K(D)=@Pz[s]—C (0.1)
=1
such that Z(S;) is contained in
[picture]

The pair (Z,A) gives a stability condition.

Example 0.0.14. Let X be a smooth projective variety, w, ample divisor. Let
D = D*X) and A = Coh(X). Define

Z:K(X) — C
E — —c(B)wi™mX=t 4. rk(E).

The pair (Z,A) is a stability condition if and only if dim X = 1. The reason
is that in the higher dimensional case we don’t capture the higher chern classes
in the central charge, indeed we have when dim X > 2 then Z(Ox) = 0 which
violates the definition of stability condition.

The last example shows that Bridgeland stability is not exactly a direct
generalization of the classical notion of stability.

Theorem 0.0.15. (Bridgeland) Fiz ¢l : K(D) — T group homomorphism.
Stabr (D) :={(Z,A) | Z: K(D) 41 C, support property}
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is a complex manifold such that the forgetful map:
Stabr(D) — Homg(T,C)
(Z,A) — Z.
is a local homeomorphism if Stabr(D) # 0.
Let X be a smooth projective variety and D = D’(X), and ' := I'm(ch :
K(X) — H?*(X,Q), cl := ch. Then Stab(X) := Stabr (D).
Fact: #(Z, Z) € Stab(X) such that A = Coh(X).

Conjecture: Stab(X) # 0 (true if dim(X) < 2, open in dim(X) > 2.)

Application to DT: Let X be a CY 3-fold with Stab(X) non-empty. We
expect

DTy (v) : Stab(X) — Q
o +— DT,(v)
where DT (v) is the virtual number of o-stable sheaves E, ch(E) = v. We also
expect Jo, (depending on v) with
DT, (v) = DT,(v).
where DT,,(v) should count DT
Suppose now you have an equivalence D?(X) ~ D’(Y), then Stab(X) =~

Stab(Y') and then wall crossing formula = relation of DT invariants of X
and Y:




