INFINITESIMAL DEFORMATIONS OF VARIETIES WITH TRANSVERSAL RPDS

BARBARA FANTECHI*

(*) Notes taken by Dhyan Aranha, all errors should be attributed to me and my ignorance about the subject. Corrections and suggestions are welcome, and should be sent to: dhyan.aranha@gmail.com.

The talk is about joint work in progress with Alex Massarenti. We will work over C. Also in case you were wondering: RDP - Rational Double Point.

Definition 0.0.1. A surface *S* has $p \in S$ as RDP if étale locally it is isomorphic *to* \mathbb{C}^2/G *, for* $G \subseteq SL(2,\mathbb{C})$ *finite subgroup.*

RDP's are classified and they are of the following types:

$$
(A_n)_{n\geq 1}
$$
, $(D_n)_{n\geq 4}$, E_6 , E_7 , E_8 .

If our surface *S* has a RDP then it also has a minimal resolution

$$
\epsilon_S: \tilde{S} \longrightarrow S
$$

with exceptional divisor with simple normal crossings. Moreover *S* is Gorenstein and ϵ_S is a crepant resolution so the canonical line bundle on \tilde{S} is the pullback of the dualizing sheaf on *S*. The problem of relating the infinitesimal deformations of *S* with those of the resolution has been studied extensively in the 70's by a number of people to name a few: Artin, Brieskorn, Burns, Wall, etc...

Let *X* be a variety such that $Sing(X)$ is non-singular closed subvariety, and such that (X, Z) is étale locally isomorphic to $(S \times Z, Z)$ with *S* a fixed \mathbb{C}^2/G .

Remark 0.0.2. *One could think of a variety having multiple transversal loci, but for today we will focus on the case when there is only one.*

To *X* we can associate two non-singular objects

Where $f: Y \longrightarrow X$ is the minimal resolution of the singularity. The other one $\epsilon : \mathcal{X} \longrightarrow X$ is the canonical smooth Deligne-Mumford stack with X as its coarse moduli space. Both maps are crepant and

$$
f^*\omega_X = K_Y, \quad \epsilon_X^* = K_X.
$$

Let's recall what deformation functors are: Consider the category

 $(Art) = \{\text{local Artinian finitely generated }\mathbb{C}\text{-algebras with residue field }\mathbb{C}\}.$

Lemma 0.0.3. $A \in (Art) \iff \text{Spec}(A)$ *is a scheme of finite type over* $\mathbb C$ *such that* $Spec(A)_{red} = Spec(\mathbb{C})$ *.*

Definition 0.0.4. Let $Def_X : (Art) \longrightarrow (Set)$ be the functor which sends a $A \in (Art)$ *to the collection of diagrams of the form*

modulo isomorphism.

Notice: If $U \subseteq X$ open, then we get a functor $Def_X \longrightarrow Def_U$. This is essentially because the map $X \longrightarrow X_A$ is a homeomorphism.

Definition 0.0.5. We say a deformation is trivial if it is isomorphic to $X \times$ $Spec(A)$.

Remark 0.0.6. *(Dhyan) I think when people refer to a specific deformation as we did in the above definition it simply means a flat morphism* $Y \longrightarrow \text{Spec}(A)$ *such that there exists a cartesian diagram*

Now we introduce a subfunctor of $LTDef_X \subseteq Def_X$ the so called, locally trivial deformations functor. It means that: there is an affine Zariski open cover of *X* on which the induced deformation becomes trivial.

For smooth var/ orbifolds/ DM-stacks - all deformations are locally trivial but this is not the case for singular varieties.

We have the following diagram

$$
LTDef_X \longrightarrow Def_X
$$

\n
$$
Def_X \cong \bigcap_{\substack{\simeq \\ \sim \\ \text{Def}_Y}} \bigcap_{\substack{\simeq \\ \sim \\ \sim \\ \text{Def}_Y}} \longrightarrow Def_X
$$

where $E \subseteq Y$ is the exceptional divisor i.e. $E = f^{-1}(Z)_{red}$, it is in general a normal crossing divisor.

Let's say a few words about how the map $Def_Y \longrightarrow Def_X$ is defined: If you have a deformation *Y^A* this is the same thing as giving a sheaf of flat *A*-algebras, \mathcal{O}_{Y_A} , on the topological space *Y* plus a surjection $r : \mathcal{O}_{Y_A} \rightarrow \mathcal{O}_Y$ with a few good local properties. Thus if you have a deformation of *Y* in this way, you just push-forward the map *r* via *f* to get a map $f_*\mathcal{O}_{Y_A} \longrightarrow \mathcal{O}_X$.

Question: When is $LTDef_X \simeq Def_X$? Similarly when is $LTDef_X \simeq Def_Y$?

Definition 0.0.7. $F: (Art) \longrightarrow (Set)$ *is a deformation functor with tangentobstructions* T^1F *, and* T^2F *. If* T^1F *and* T^2F *are vector spaces over* \mathbb{C} *, and*

for every surjection in (Art) *,* $A \rightarrow B$ *with kernel I such that* $m_A I = 0$ *we have an exact sequence*

$$
T^1 F \otimes_C I \longrightarrow F(A) \longrightarrow F(B) \longrightarrow T^2 F \otimes_C I
$$

which is functorial and exact on the left if $\mathfrak{m}_A^2 = 0$.

Our functors *Def* and *LT Def* have tangent spaces and they are:

$$
T^{i}Def_X = Ext^{i}(\Omega_X, \mathcal{O}_X)
$$

$$
T^{i}LTDef_X = H^{i}(X, T_X).
$$

Criterion: Given $\alpha : F \longrightarrow G$ of deformation functors. If α induces an isomorphism on T^1 and is injective on T^2 then it is an equivalence. (proved via induction on the vanishing of the power of the maximal ideal)

We now recall 2 useful spectral sequences:

i) (Local to global for Ext)

$$
H^q(\mathcal{E}xt^p) \Rightarrow Ext^{p+q}.
$$

ii) (Leray)

$$
H^q(R^p f_*) \Rightarrow H^{p+q}.
$$

These give the exact sequences

$$
0 \longrightarrow H^{1}(T_{X}) \longrightarrow Ext^{1}(\Omega_{X}, \mathcal{O}_{X}) \longrightarrow H^{0}(\mathcal{E}xt^{1}) \longrightarrow H^{2}(T_{X}) \longrightarrow Ext^{2}(\Omega_{X}, \mathcal{O}_{X})
$$

\n
$$
\downarrow 0 \longrightarrow H^{1}(T_{X}) \longrightarrow H^{1}(T_{Y}) \longrightarrow H^{0}(R^{1}f_{*}T_{Y}) \longrightarrow H^{2}(T_{X}) \longrightarrow H^{2}(T_{Y})
$$

\nIt's an easy fact to check that $T_{X} = f_{*}T_{Y}$.

Concrete Aim: Compute $\mathcal{E}xt^1(\Omega_X, \mathcal{O}_X)$ and $R^1f_*T_Y$ as coherent sheaves set theoretically supported on *Z*.

If $Z = pt$, $R^1 f_* T_Y \cong \mathcal{O}_{Z}^{\oplus n}$, $\mathcal{E}xt^1(\Omega_X, \mathcal{O}_X)$ is an invertible sheaf on $Z_n \subseteq X$ closed sub-scheme such that $(Z_n)_{red} = Z$ and $length Z_n = n$. This implies that $h^0(R^1f_*T_Y) = h^0(\mathscr{E}xt^1(\Omega_X,\mathcal{O}_X)) = n.$

In the general case $R^1 f_* T_Y$ is a rank *n* loc. free sheaf on *Z* and $\mathscr{E}xt^1(\Omega_X, \mathcal{O}_X)$ is a line bundle on a closed sub-scheme $Z_n \subseteq X$ such that $(Z_n)_{red} = Z$ and $[Z_n] = n[Z].$

In order to do the computation there is a useful trick: Degenerate $\mathcal{Z} \hookrightarrow \mathcal{X}$, $f = \epsilon(Z)_{red}$ into $\mathcal{Z} \hookrightarrow C_{\mathcal{Z}/\mathcal{X}} = \mathcal{N} := \mathcal{N}_{\mathcal{Z}/\mathcal{X}}$. This gives us induced degenerations:

$$
Z \hookrightarrow X
$$
 to $Z \hookrightarrow X_0$ = Coarse space of N

once of have this you can take the minimal resolution:

*A*1: Because line bundles don't degenerate (since the picard scheme is separated) you can compute $\mathscr{E}xt^1(\Omega_X, \mathcal{O}_X)$ and $R^1f_*T_Y$ as $\mathscr{E}xt^1(\Omega_{X_0}, \mathcal{O}_{X_0})$ and $R^1f_{0*}T_{Y_0}$.

What is the advantage of this? Well you have much simpler situation because N is a rank two bundle on a gerbe Z , On this gerbe every point has an automorphism group, *G*, and so the group acts on the fibers on the bundle. In particular we have a map

 $\epsilon_Z : \mathcal{Z} \longrightarrow Z$

so we can pull back sheaves on *Z* to the gerbe, and if we have a sheaf on *Z* how do we recognize if it's a pullback? The answer is: if and only if the action of the group *G* is trivial.

Now if you look at N , remember that our group acted via SL_2 . So there is certainly one line bundle which comes from *Z* and that is the determinant of *N*. i.e. There exists a unique $L \in Pic(Z)$ such that $\epsilon_Z^* L = det \mathcal{N}$.

Lemma 0.0.8. *(Fantechi-Massarenti) In the A*¹ *case*

$$
\mathscr{E}xt^1(\Omega_X, \mathcal{O}_X) \simeq L^{\otimes 2}
$$

and

$$
R^1f_*T_Y=L.
$$

What can we say in the general case? Well let's say something first about the exceptional divisor *E*.Consider the map $E \longrightarrow Z$, étale locally in *Z* this is a product of a configuration of curves indexed by the Dynkin diagram.

We will say that we are in an Easy situation if the action of the fundamental group of *Z* on the Dynkin diagram is trivial. (This is true in particular if *Z* is simply connected)

Theorem 0.0.9. *(Fantechi-Massarenti) Let X have easy transversal RPD along Z (again: what we mean by easy is that fundamental group of Z acts trivially on the Dynkin diagram). Then*

$$
R^1f_*T_Y \cong \bigoplus_{i=1}^n L.
$$

Remark 0.0.10. In the non-easy case, you get induced $Z' \longrightarrow Z$ un-ramified *cover. For example if the cover is (2:1) then* $\pi_* \mathcal{O}_{Z'} = \mathcal{O}_Z \oplus M$, and $M^{\otimes 2} \cong \mathcal{O}_Z$ *(i.e. it is 2-torsion). Then what you get is that* $R^1 f_* T_Y$ *has summands* $L, L \otimes M$.

Theorem 0.0.11. *(Fantechi-Massarenti) In the* A_n *easy case* $\mathscr{E}xt^1(\Omega_X, \mathcal{O}_X)$ *has a natural filtration with associated graded* $\bigoplus_{i=2}^{n+1} L^{\otimes i}$

Expectation: In easy D_n case there exists a filtration and all summands are $L^{\otimes i}$ for $2 \leq i \leq n$.

Sketch of proof: First you prove there exists a natural filtration with line bundle quotients. (Aside: in the A_n case this is really easy because locally your equation is $xy = z^{n+1}$ so you have $Z_n = (x, y, z^n)$ so the filtration is given by just taking lower and lower powers of *z*). Once you have them then you can go to do the degeneration.

For the other case you take $\nu : \tilde{E} \longrightarrow E$ be the normalization of exceptional divisor.

$$
0 \longrightarrow T_{\tilde{E}} \longrightarrow \nu^* T_Y \longrightarrow N_{\nu} \longrightarrow 0
$$

On E , which gives

$$
T_Y \longrightarrow \nu_* N_\nu
$$

which gives a map

$$
R^1f_*T_Y \longrightarrow R^1f_*\nu_*N_\nu
$$

Burns-Wall: The map $R^1 f_* T_Y \longrightarrow R^1 f_* \nu_* N_\nu$ is an isomorphism in the surface case. But once is true in the surface case its true in the product case.

If you are in the easy case \implies E_1, \ldots, E_n irreducible components of *E* are non singular and $\nu_* N_\nu = \bigoplus_{i=1}^n N_{E_i/Y}$. This implies that $R^1 f_* T_Y \cong \bigoplus_{i=1}^n R^1 f_* N_{E_i/Y}$ where $R^1 f_* N_{E_i/Y}$ are line bundles. Now you can use that *f* $\bigoplus_{i=1}^n R^1 f_* N_{E_i/Y}$ where $R^1 f_* N_{E_i/Y}$ are line bundles. Now you can use that *f* is crepent. (i.e. you play around with exact sequences and you get something like $R^1 f_* \Omega_{E_i/Z}$ of course this is trivial, with this you do the computation)

<u>Recall:</u> *L* was defined as the only line bundle on *Z* such that $\epsilon_Z^* L \cong \det \mathcal{N}$. Remember though that $\mathcal{N} = \mathcal{N}_{\mathcal{Z}/\mathcal{X}}$, now you have that $\det \mathcal{N} = K_{\mathcal{Z}} \otimes K_{\mathcal{X}}^{\vee}|_{\mathcal{Z}} =$ $\epsilon_Z^* K_Z \otimes \epsilon_Z^* (\omega_X^{\vee}|_Z)$ it follows that $L \cong K_Z \otimes \omega_X^{\vee}|Z$.

Now consider $\overline{\mathcal{M}}_{g,n}$ and its coarse moduli space $\overline{\mathcal{M}}_{g,n}$ for $2g-2+n>0$. Then yo know that $Def_{\overline{\mathcal{M}}_{g,n}}^{\overline{\mathcal{M}}}$ is trivial (Hacking) and $LTDef_{\overline{\mathcal{M}}_{g,n}}^{\overline{\mathcal{M}}}$ trivial (Hacking). How about without "LT"?

Theorem 0.0.12. *(Fantechi-Massarenti)* $LTDef_{\overline{M}_{g,n}} = Def_{\overline{M}_{g,n}}$ *unless* $(g, n) =$ (1*,* 2)*.*