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There are too many modules; you can’t write them all down. If you have one operators on a vector
space, you can characterize it uniquely via a Jordan canonical form. If you have two operators,
then you can’t.

1 Invariants of R-modules

What if we were studying commutative algebra?

k = field, algebraically closed
R =k[z1,...,24)
Spectrum = collection of prime (or maximal) ideals with topology

Hilbert’s Nullstellensatz. A maximal ideal is the kernel of a point evaluation. (Spectrum = k™)

M an R-module
J = annihilator of M = {x € R | zM = 0}
V(M) = all maximal ideals that contain .J

The problem is that we’re NOT doing commutative algebra; we're doing representation theory.

2 Invariants of £G-modules

k = characteristic p > 0. Suppose G = (g1, - .-, gn), 9i9; = 9j9i, §¢ = 1.

= (Z/pz.)

H*(Gv k) esseiially k[Cl, ey (n]
|

When p = 2, this is precisely true. If p is odd, then there’s deg = 1 stuff that wind up being
nilpotent.



=2,n=1G = {(g). Letx = g — 1in kG. Then 22 = ¢> — 12 = 1 — 1 = 0 (because we are in
characteristic 2). So in this case,

kG = k[l‘]/(m?)
For general characteristic,

kG — k[wl,...,xn]/(xf,...,:cg)

Take the free resolution

EG —Z kG —2 kG —2 kG —2 k 0
kool k
kG kG kG

which gives us a product. Let M be a (finitely generated) kG-module.

H*(G,k) x Extjo(M, M) — Ext} (M, M)
Then Ext~(M, M) is an H*(G, k)-module.

OHkHBn_l Bl BO k 0

Recall:
e if M, N are kG-modules, then M ®;, N is also a kG-module with g(m ® n) = gm ® gn;
e kF'is a self-injective ringl
e kM= M.

Tensor the above long exact sequence:

0 —— k —— B,_19M BioM —— BpOM —— k@M —— 0

J = annihilator in H*(G, k) of Ext} (M, M)
Va(M) = maximal ideals in the spectrum of H*(G, k) that contain J.

Quillen’s Theorem.
N ker (resg.p (H* (G, k)))
E elementary
abelian

is a nilpotent ideal (thus is contained in every maximal/prime ideal). Furthermore,
spectrum of H*(G, k) = Vg (k) = lim Vg (k)
where

res: H*(G,—-) —
res* : Va(k) <« Vg(k)



3 Rank Variety

Assume G elementary abelian, kG = k[z1, ... >9Un]/(ggp co,ah)-

Given a maximal ideal in H*(G, k) ~ (a1, ..., ay), let
Vo =1+ Zaiaf;i and v?, =1+ (af2?) = 1 where z; = g1 — 1
We get a subalgebra generated by v,:
k(vy = k?[l‘]/ggp
We define a rank variety (which is closed because M is finitely generated)
Va(M) = {0} U{« | v, does NOT act freely on M} C k"
Theorem. V(M) ~ VE(M)

homeomorphic

Properties of the varieties:

1. Vg(M) = {0} < M is projective
2. for a short exact sequence 0 - L — M — N — 0, we have V(M) C Vo(L) U Vg(N)
3. V(M ® N) = Vg(M) N Vg(N)
4. Vg(M) is connected if M is indecomposible
N——

projectivize

4 Stable module category

The stable module category Stmod(kG)

objects: finitely generated kG-modules
morphisms:  Homgimod(ka) (M, N) = Homyq (M, N)/PHOmkg(Ma N)
(quotient out those that factor through a projective)

If P is projective, thensois M ® P forany M = Stmod(kG) has a tensor structure

Triangles in the stable category roughly correspond to exact sequences in the module category. We
need a translation operator:

injective —1
M= " > (M)
A—2* 4B o c—2 5 Q- 1(4)




When we go around the triangle, we get back to A with a translation.

0 A I Q1A —— 0

| | |

0 —— B —— pushout —— Q7 1(4) —— 0

A full subcategory C is called thick if it is triangulated (if two out of three objects in a triangle are
in the subcategory, then so it the third) and closed under direct summands.

Let V be a closed set in Vi (k) = spectrum of H*(G, k), and let C be the (full) collection of all kG-
modules M such that Viz(M) C V. Then C is a thick subcategory. Furthermore, C is also a tensor
ideal; that is, if M € C and N anything, then M ® N € C.

If C is any thick subcategory of Stmod(kG), let X = {V | V = V(M) for some M € C}. Then C is
the collection of all M such that V(M) = X.
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