RATIONALITY OF BLOCKS OF QUASI-SIMPLE FINITE GROUPS

NIAMH FARRELL

Joint work with Radha Kessar

Let ℓ be a prime, $k = \overline{\mathbb{F}}_{\ell}$, G a finite group. Form the group algebra,

$$kG = B_1 \times \cdots \times B_r.$$

Each B_i is a "block" – an indecomposable algebra, and a 2-sided ideal. This decomposition into algebra factors is unique.

Let A be a finite dimensional k-algebra. Then A is defined over a subfield F of k if there exists an F-algebra A_0 such that $A \cong k \otimes_F A_0$. A basic algebra of A is a k-algebra which is Morita equivalent to A and whose simple modules all have dimension 1.

Theorem 0.1 (F. 2017, F.-Kessar). Let A be a basic algebra of a block of kG for a quasi-simple finite group G. Then A is defined over \mathbb{F}_{ℓ^4} .

1. CONNECTION TO DONOVAN'S CONJECTURE

A defect group D of a block B is a finite ℓ -subgroup of G which measures how far B is from being semisimple.

D trivial $\iff B$ semisimple

Suppose we are given a finite ℓ -group P. Define

 $\mathbb{B}_P := \{ \text{blocks of finite group algebras with defect groups isomorphic to } P \}.$

Conjecture 1.1 (Donovan's Conjecture). There are finitely many Morita equivalence classes of blocks in \mathbb{B}_P .

Theorem 1.2 (Kessar, 2004). Donovan's Conjecture holds if and only if the following two conjectures hold:

Conjecture 1.3 (Weak Donovan's Conjecture). There exists a bound on the entries of the Cartan matrices of the blocks in \mathbb{B}_P which depends only on |P|.

Conjecture 1.4 (Rationality Conjecture). There exists a bound on the minimum positive integer a such that the basic algebras of the blocks of \mathbb{B}_P are defined over \mathbb{F}_{ℓ^a} , and this bound depends only on |P|.

2. Using Galois Conjugation

Let $\sigma: kG \to kG$ denote the Galois Conjugation map,

$$\sigma\left(\sum_{g\in G}\alpha_g g\right) = \sum_{g\in G}\alpha_g^\ell g$$

This map permutes the blocks of kG. $B \cong \sigma(B)$ as rings, but they may not even be Morita equivalent as k-algebras.

Definition 2.1. The Morita Frobenius number of B is the minimum positive integer a such that $\sigma^a(B)$ is Morita equivalent to B. Denoted by mf(B).

NIAMH FARRELL

Proposition 2.2 (Kessar, 2004). The Morita Frobenius number of B is the minimum positive integer a such that the basic algebras of B are defined over $\mathbb{F}_{\ell^{\alpha}}$.

We work over an ℓ -modular system (K, \mathcal{O}, k) :

 $\mathcal{O}=\mathrm{a}$ discrete valuation ring with max. ideal \mathfrak{m}

 $K = \operatorname{frac}(\mathcal{O}) \to \operatorname{char}(K) = 0$, assume K is "large enough"

 $k = \mathcal{O}/\mathfrak{m} \to$ assume char $(k) = \ell$, algebraically closed

Let B be a block of kG. Then B = kGb where $b \in Z(kG)$ is a primitive idempotent. Let $\pi : \mathcal{O}G \to kG$ be induced by the quotient map. Then $\exists!$ primitive idempotent $\hat{b} \in Z(\mathcal{O}G)$ st $\pi(\hat{b}) = b$.

Irr(G) := K-valued irreducible characters of G

 $\operatorname{Irr}(B) := \{ \chi \in \operatorname{Irr}(G) \mid \hat{b}V = V \text{ for a } KG \text{ module } V \text{ affording } \chi \}.$

$$\to \operatorname{Irr}(G) = \bigcup_{\substack{B \text{ a block of } kG}} \operatorname{Irr}(B)$$

We can fix an automorphism $\hat{\sigma}: K \to K$ and define an action of $\hat{\sigma}$ on Irr(G) by

$$\hat{\sigma}\chi(g) = \hat{\sigma}(\chi(g)),$$

such that $\operatorname{Irr}(\sigma(B)) = \{ \hat{\sigma}\chi \mid \chi \in \operatorname{Irr}(B) \}.$

2.1. Facts about mf(B).

- (1) If $\sigma(B) \cong B$ then mf(B) = 1.
- (2) If $\exists \chi \in \operatorname{Irr}(B)$ such that $\chi(g) \in \mathbb{Q}$ for all $g \in G$, then $\hat{\sigma}\chi = \chi \Rightarrow \sigma(B) = B \Rightarrow mf(B) = 1$.
- (3) If B has cyclic defect \Rightarrow the basic algebras of B are Brauer tree algebras \Rightarrow they are defined over \mathbb{F}_{ℓ} ... i.e. mf(B) = 1.

3. Results

Let B be a block of kG.

Proposition 3.1 (F., 2017). If G is an alternating or sporadic group, then mf(B) = 1.

Alternating groups: characters of symmetric groups are rational valued Sporadic groups: GAP

3.1. Finite groups of Lie type. Let p be a prime. Let \mathbf{G} be a simple, simply connected algebraic group over $\overline{\mathbb{F}}_p$, $F : \mathbf{G} \to \mathbf{G}$ a Steinberg endomorphism, and $G := \mathbf{G}^F$ the finite group of fixed points.

3.1.1. Case 1: $\ell = p$.

Proposition 3.2 (F., 2017). mf(B) = 1

By a result of Humphreys we know there are 1+|Z(G)| blocks in kG, one of trivial defect and the rest of full defect. Can construct explicit k-algebra isomorphism $B \cong \sigma(B)$.

3.1.2. Case 1: $\ell \neq p$. By results of Broué-Michel and Hiss, $B \mapsto$ a collection of pairs (\mathbf{T}, θ) such that

T is an *F*-stable maximal torus of **G** $\theta \in \operatorname{Irr} (\mathbf{T}^F)$ is an ℓ' character $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$ has an irreducible constituent in $\operatorname{Irr}(B)$.

Suppose $\theta = 1$. Then B is unipotent. Unipotent characters of classical groups are rational valued.

Proposition 3.3 (F., 2017). mf(B) = 1 except for two cases of E_8 where $mf(B) \leq 2$.

Suppose $\theta \neq 1$.

Theorem 3.4 (F.-Kessar). $mf(B) \leq 4$. Moreover, if **G** is not of type E_8 , then $mf(B) \leq 2$ and if **G** is of type A, B or C then mf(B) = 1.

Can bound mf(B) in terms of the order of θ

A result of Bonnafé-Dat-Rouquier (2017) allows us to reduce to a situation where the order of θ is small (≤ 6).

Theorem 3.5 (F.-Kessar). Donovan's Conjecture holds for the blocks of kG where $G = SL_n(q)$ $(q = p^a \text{ and } p \neq \ell)$.