Intersections of Finite Sets: Geometry and Topology

Florian Frick

October 9, 2017

Cornell University

Kneser's conjecture – Lovász 1978

k-subsets of
$$[n] = \{1, \dots, n\}$$

Then $\chi(\operatorname{KG}(k, n)) = n - 2(k - 1)$

Immediate Questions

- Fewer sets? $\mathcal{F} \subsetneq {[n] \choose k}$ with $\chi(\mathrm{KG}(\mathcal{F})) = n 2(k-1)$
- Generalize to more than two disjoint sets? Graphs \longrightarrow hypergraphs
- Bounds for arbitrary set systems \mathcal{F} ?

Fewer sets?

Fewer sets?

Schrijver's theorem - 1978

$$\mathcal{F} \subset {[n] \choose k}$$
 the stable sets, i.e., no two adjacent elements in cyclic order.

Then
$$\chi(\mathrm{KG}(\mathcal{F})) = n - 2(k - 1)$$

This is optimal

Generalize to more than two disjoint sets?

Generalize to more than two disjoint sets?

Erdős conjecture

How many colors are needed to color $\binom{[n]}{k}$ such that any r pairwise disjoint sets have at least two colors?

Denote the minimal number of colors by $\chi(\mathrm{KG}^r(k, n))$

Alon, Frankl, Lovász – 1986

$$\chi(\mathrm{KG}^r(k,n)) = \left\lceil \frac{n-r(k-1)}{r-1} \right\rceil$$

Examples

 $\binom{[6]}{2}$ by 2 colors \longrightarrow no 3 monochromatic pairwise disjoint sets $\binom{[8]}{2}$ by 3 colors \longrightarrow no 3 monochromatic pairwise disjoint sets $\binom{[10]}{2}$ by 4 colors \longrightarrow no 3 monochromatic pairwise disjoint sets

Bounds for arbitrary set systems \mathcal{F} ?

Given $\mathcal{F} \subset 2^{[n]}$

Find lower bounds for $\chi(\mathrm{KG}^r(\mathcal{F}))$

Dol'nikov – 1988

Given $\mathcal{F} \subset 2^{[n]}$

Then $\chi(\mathrm{KG}(\mathcal{F})) \geq \mathrm{cd}(\mathcal{F})$

 $\operatorname{cd}(\mathcal{F}) = n - \max\{|A \cup B| : F \not\subset A \text{ and } F \not\subset B \text{ for all } F \in \mathcal{F}\}$

Colorability defect

$$\chi(\mathrm{KG}(\mathcal{F})) \ge \mathrm{cd}(\mathcal{F})$$

This generalizes Kneser's conjecture: $\operatorname{cd}(\binom{[n]}{k}) = n - 2(k - 1)$

However, if $\mathcal{F} \subset {[n] \choose k}$ is the collection of stable sets $\operatorname{cd}(\mathcal{F}) = n - 4(k-1)$

Given
$$\mathcal{F} \subset 2^{[n]}$$

Then $\chi(\mathrm{KG}^r(\mathcal{F})) \ge \left\lceil \frac{\mathrm{cd}^r(\mathcal{F})}{r-1} \right\rceil$
 $\mathrm{cd}^r(\mathcal{F}) = n - \max\{|\bigcup_{i=1}^r A_i| : F \not\subset A_i \text{ for all } F \in \mathcal{F} \text{ and } i \in [r]\}$

Kneser's conjecture and its generalizations

- Lovász: $\chi(\mathrm{KG}(k, n)) = n 2(k 1)$
- Schrijver: $\chi(\operatorname{KG}(k, n)_{\operatorname{stab}}) = n 2(k 1)$
- Alon, Frankl, Lovász: $\chi(\mathrm{KG}^r(k,n)) = \left\lceil \frac{n-r(k-1)}{r-1} \right\rceil$
- Dol'nikov, Kříž: $\chi(\mathrm{KG}^r(\mathcal{F})) \geq \left\lceil \frac{\mathrm{cd}^r(\mathcal{F})}{r-1} \right\rceil$

All imply Kneser's conjecture

Dol'nikov-Kříž implies Alon-Frankl-Lovász, but not Schrijver

Questions

- What is the general principle here?
- Is there a stable set version for $\chi(\mathrm{KG}^r(k, n))$?
- Is there a stable set version for $\chi(\mathrm{KG}^r(\mathcal{F}))$?
- Is there a common generalization of all of these results?

We have to take the topology of the set systems into account

Actually, a conjecture of Ziegler states that one can restrict to *r*-stable sets

Meunier – 2011

$$\mathcal{F} \subset {[n] \choose k}$$
 the collection of almost stable k-sets,
i.e., $F \in \mathcal{F}$ never contains i and $i + 1$

Then
$$\chi(\mathrm{KG}^r(\mathcal{F})) = \left\lceil rac{n-r(k-1)}{r-1}
ight
ceil$$

Meunier - 2011

$$\mathcal{F} \subset {[n] \choose k}$$
 the collection of almost stable k-sets,
i.e., $F \in \mathcal{F}$ never contains i and $i + 1$

Then
$$\chi(\mathrm{KG}^r(\mathcal{F})) = \left\lceil \frac{n-r(k-1)}{r-1} \right\rceil$$

Meunier's theorem is off by $\binom{n-2}{k-2}$ additional sets

Alishahi and Hajiabolhassan - 2015

Let *r* be even or
$$n \not\equiv k \mod r - 1$$

Then
$$\chi(\mathrm{KG}^r(k,n)_{\mathrm{stab}}) = \left\lceil rac{n-r(k-1)}{r-1}
ight
ceil$$

$$\chi(\mathrm{KG}^r(k,n)_{\mathrm{stab}}) = \left\lceil \frac{n-r(k-1)}{r-1} \right\rceil$$

Stable set theorem for arbitrary set systems?

 $\mathcal{F} \subset 2^{[n]}$ an arbitrary set system

ls
$$\chi(\operatorname{KG}^{r}(\mathcal{F}_{\operatorname{stab}})) \geq \left\lceil \frac{\operatorname{cd}^{r}(\mathcal{F})}{r-1} \right\rceil$$
?

Stable set theorem for arbitrary set systems?

 $\mathcal{F}_{\mathrm{stab}}=\emptyset$, but $\mathrm{cd}(\mathcal{F})=1$

For
$$r \ge 3$$

 $\chi(\operatorname{KG}^r(\mathcal{F}_{\operatorname{stab}})) \ge \left\lceil \frac{\operatorname{cd}^r(\mathcal{F})}{r-1} \right\rceil$

and if $\mathcal{F}' \subset \mathcal{F}$ consists of all almost stable sets

then $\chi(\mathrm{KG}(\mathcal{F}')) \geq \mathrm{cd}(\mathcal{F})$

We will set up a dictionary

Intersection patterns of finite sets \longleftrightarrow Intersection patterns of convex sets

Elementary results on one side translate into results on the other side that were previously believed to be difficult

We will set up a dictionary

Intersection patterns of finite sets \longleftrightarrow Intersection patterns of convex sets

Elementary results on one side translate into results on the other side that were previously believed to be difficult

A proof of Kneser's conjecture

Suppose $\chi(\text{KG}(2,5)) \leq 2$

Embed [5] into ${\mathbb R}$

Extend to a continuous map $\Delta_4 \longrightarrow \mathbb{R}^3$ by mapping barycenters of any face containing a red edge to e_2 and barycenters of faces with only blue edges to e_3

No two disjoint faces intersect in the image—contradiction

Topological Radon theorem – Bárány, Bajmoczy 1978

Any continuous map $f: \Delta_{d+1} \longrightarrow \mathbb{R}^d$ identifies points from two disjoint faces

A proof of Kneser's conjecture

Suppose
$$\chi(\operatorname{KG}(k,n)) \leq n - 2(k-1) - 1$$

Embed $\Delta_{n-1}^{(k-2)}$ into \mathbb{R}^{2k-3}

Extend to a continuous map $\Delta_{n-1} \longrightarrow \mathbb{R}^{2k-3} \oplus \mathbb{R}^{n-2(k-1)-1}$

$$2k - 3 + n - 2(k - 1) - 1 = n - 2$$

No two disjoint faces intersect in the image-contradiction

Extending this approach

Given set system $\mathcal{F} \subset 2^{[n]}$ find simplicial complex K with missing faces (minimal nonfaces) \mathcal{F}

Embed K into the smallest possible \mathbb{R}^d

Extend to continuous map $\Delta_{n-1} \longrightarrow \mathbb{R}^{n-2}$ where no two disjoint faces overlap

Thus $\chi(\operatorname{KG}(\mathcal{F})) \ge n - 1 - d$

Extending this approach

Earlier such results are due to Sarkaria (with significantly more involved proofs)

Example

Example

Example

$$\chi(\mathcal{F}) \geq 6 - 1 - 2 = 3$$

r disjoint sets — avoiding r-fold intersections

Given $\mathcal{F} \subset 2^{[n]}$

Let K be the simplicial complex with missing faces \mathcal{F}

Find continuous $K \longrightarrow \mathbb{R}^d$ such that r pairwise disjoint faces of K never have overlapping images.

Tverberg-type theory

Bárány, Shlosman, Szűcs; Özaydin – 1981/87 $f: \Delta_{(r-1)(d+1)} \longrightarrow \mathbb{R}^d$ continuous, r a power of a prime then there are $\sigma_1, \ldots, \sigma_r$ pairwise disjoint with $\bigcap_i f(\sigma_i) \neq \emptyset$.

Tverberg-type results for specific families of complexes due to Van Kampen; Flores; Sarkaria; Volovikov; Vrećica and Živaljević; Hell; Engström; Blagojević, Matschke, and Ziegler, ...

Tverberg-type theory — a general principle

Blagojević, F., Ziegler – 2014 There are general combinatorial conditions on a simplicial complex Ksuch that any continuous map $K \longrightarrow \mathbb{R}^d$ must identify points from r pairwise disjoint faces of K, where r is a power of a prime.

Intersection patterns of stable sets

Color
$$\binom{[n]}{k}_{stab}$$
 such that any r pairwise disjoint sets receive at least two colors

$$\chi(\mathrm{KG}^r({\binom{[n]}{k}}_{\mathrm{stab}})) = \left\lceil \frac{n-r(k-1)}{r-1} \right\rceil$$

Intersection patterns of stable sets

The simplicial complex K with missing faces $\binom{[n]}{k}_{\text{stab}}$ is the boundary of a cyclic (2k - 2)-polytope on n vertices

Schrijver's theorem follows from: cone over K embeds into \mathbb{R}^{2k-2}

Thus
$$\chi(\mathrm{KG}({[n] \choose k}_{\mathrm{stab}})) \geq n-2(k-1)$$

Intersection patterns of stable sets

Map $\partial C_{2k-2}(n) * \Delta_t$ to \mathbb{R}^d without *r*-fold points of intersection among pairwise disjoint faces

Vertices sufficiently far apart on stretched moment curve (Bukh, Loh, Nivasch)

Use a proper extension of the topological Tverberg theorem due to Hell

Induct on prime divisors of r

Topological colorability defect

 $\operatorname{tcd}^{r}(\mathcal{F})$ is the maximum over N - (r-1)(d+1)

K has N vertices, missing faces \mathcal{F} , and there is a continuous map $K \longrightarrow \mathbb{R}^d$ without r-fold point of coincidence among pairwise disjoint faces

Topological lower bounds; F. - 2017

 $\operatorname{tcd}^r(\mathcal{F})\geq\operatorname{cd}^r(\mathcal{F})$ by a general position map

For r a power of a prime

$$\chi(\mathrm{KG}^r(\mathcal{F})) \geq \Big\lceil rac{\mathrm{tcd}^r(\mathcal{F})}{r-1} \Big\rceil$$

It follows from work of Mabillard and Wagner that this fails for every r that is not a prime power

Transversal extension; F. - 2017

Let r be a prime. Partition [n] such that each part has size at most r - 1

Then
$$\chi(\mathrm{KG}^r(\mathcal{F}_{\mathrm{transversal}})) \geq \left\lceil \frac{\mathrm{tcd}^r(\mathcal{F})}{r-1} \right\rceil$$

Key idea: use optimal colored Tverberg theorem of Blagojević, Matschke, and Ziegler

This is a common generalization of the results of Schrijver, Alon–Frankl–Lovász, Dol'nikov, and Kříž

s-stable sets

 $\sigma \subset [n]$ is *s-stable* if any two elements in σ are at distance at least *s* in cyclic order

Conjecture (Ziegler):
$$\chi(\mathrm{KG}^r(k,n)_{r-\mathrm{stab}}) = \left\lceil \frac{n-r(k-1)}{r-1} \right\rceil$$

Known if r = 2 (Schrijver) and thus if $r = 2^t$ (Alon-Drewnowski-Łuczak)

Apart from this reduction, nothing was known for *s*-stable sets, s > 2

s-stable sets

F. – 2017:

$$r > 6s - 6$$
 a prime power, then
 $\chi(\mathrm{KG}^r(k, n)_{s-\mathrm{stab}}) = \left[\frac{n-r(k-1)}{r-1}\right]^2$

Relies on a topological connectivity result due to Engström

In fact, for the same parameters and
$$\mathcal{F} \subset 2^{[n]}$$

 $\chi(\operatorname{KG}^r(\mathcal{F}_{s-\operatorname{stab}})) \geq \left\lceil \frac{\operatorname{tcd}^r(\mathcal{F})}{r-1} \right\rceil$

Kneser conjecture seeks to split $\binom{[n]}{k}$ into color classes such that sets of the same color intersect pairwise.

What if we want any collection of r not necessarily distinct sets that is s-wise disjoint to receive at least 2 colors? $\longrightarrow \mathrm{KG}_{s-1}^r(k,n)$

Generalized Kneser conjecture (Sarkaria):

$$\chi(\mathrm{KG}_{s-1}^{r}(k,n)) = \left\lceil \frac{(s-1)n - r(k-1)}{r-1} \right\rceil$$

Generalized Kneser conjecture (Sarkaria): $\chi(\mathrm{KG}_{s-1}^{r}(k,n)) = \left\lceil \frac{(s-1)n-r(k-1)}{r-1} \right\rceil$

True if r is prime (Sarkaria – 1990)

True for any r if $s \le 5$ and for $r = 2^t$ (Aslam, Chen, Coldren, F., Setiabrata – 2017)

Partition
$$[(s-1)n]$$
 into P_1, \ldots, P_n such that
 $\ell \in P_i \iff \ell \equiv i \mod n$
Then $\chi(\operatorname{KG}_{s-1}^r(k, n)) \ge \chi(\operatorname{KG}^r(\binom{[(s-1)n]}{k}_{\operatorname{transversal}}))$
This is at least $\lceil \frac{(s-1)n-r(k-1)}{r-1} \rceil$ for r a prime.
There is an induction on prime divisors that gives the result for
 $s \le 5$.

Aslam, Chen, Coldren, F., Setiabrata – 2017:
Let
$$r = 2^{\alpha_0} p_1^{\alpha_1} \cdots p_d^{\alpha_d}$$
 with the odd primes p_1, \ldots, p_d distinct,
 $\alpha_i \ge 0$. Let $b := 2^{\alpha_0} (p_1 - 1)^{\alpha_1} \cdots (p_d - 1)^{\alpha_d}$.

Then for all
$$2 \le s \le \min\{r, b+1\}$$
,

$$\chi(\mathsf{KG}_{s-1}^r(n,k)) = \Big\lceil \frac{(s-1)n - r(k-1)}{r-1} \Big\rceil.$$

Geometry of vertex-critical subgraphs

$\chi(\text{KG}(k, n)_{\text{stab}}) = n - 2(k - 1)$ follows from the existence of cyclic polytopes

More generally, every even-dimensional neighborly polytope gives a small subgraph of KG(k, n) of the same chromatic number