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Goal

Certify the nonnegativity of a symmetric polynomial over the hypercube.

Our key result: the runtime does not depend on the number of variables
of the polynomial

1. Background

2. Our setting

3. Results

4. Flag algebras

5. Future work
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Finding sos certificates

p ∈ R[x] := R[x1, . . . , xn] such that deg(p) = 2d
[x ]d := (1, x1, . . . , xn, x

2
1 , x1x2, . . . , x

d
n )>

= vector of monomials in R[x] of degree ≤ d
p sos ⇔ ∃ Q � 0 such that p = [x ]>d Q[x ]d

= [x ]>d BB>[x ]d = ([x ]>d B)([x ]>d B)>

Example

p = x2
1 − x1x2 + x2

2 + 1 =
(
1 x1 x2

)1 0 0
0 1 − 1
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1 x1 x2
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3
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1
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1 0 0

0
√

3
2
−

√
3
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0 1
2

1
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x1

x2


= 1 +

3

4
(x1 − x2)2 +

1

4
(x1 + x2)2
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Sums of squares modulo an ideal

Goal
Certify p ≥ 0 over the solutions of a system of polynomial equations.

Example

Show that 1− y ≥ 0 whenever x2 + y 2 = 1

1− y =

(
x√
2

)2

+

(
y − 1√

2

)2

− 1

2
(x2 + y 2 − 1)

=
1

2

(
1 x y

) 1 0 −1
0 1 0
−1 0 1

1
x
y

− 1

2
(x2 + y 2 − 1)

Ideal I ⊆ R[x]

VR(I)=its real variety

p is sos modulo I if p ≡
∑l

i=1 f
2
i mod I

(i.e., if ∃ h ∈ I such that p =
∑l

i=1 f
2
i + h)

p is d-sos mod I if p ≡
∑l

i=1 f
2
i mod I where deg(fi ) ≤ d ∀ i ⇔ ∃ Q � 0 such

that p ≡ v>Qv mod I (semidefinite programming can find Q in nO(d)-time)
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Our problem

Let Vn,k= {0, 1}(
n
k) be the k-subset discrete hypercube

→ coordinates indexed by k-element subsets of [n]

Goal

Minimize a symmetric∗ polynomial over Vn,k
∗symmetric = Sn-invariant

s · xi1i2...ik = xs(i1)s(i2)...s(ik ) ∀s ∈ Sn

How?
By finding sos certificates over Vn,k that exploit symmetry, i.e., that we
can find in a runtime independent of n.

k = 1: see Blekherman, Gouveia, Pfeiffer (2014)
k ≥ 2: ?
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Examples of such problems

Turán-type problem
Given a fixed graph H, determine the limiting edge density of a
H-free graph on n vertices as n→∞

Ramsey-type problem
Color the edges of Kn ruby or sapphire. Find the smallest n for which
you are guaranteed a ruby clique of size r or a sapphire clique of size s

Focus on Vn:= Vn,2 = {0, 1}(
n
2)

→ coordinates are indexed by pairs ij , 1 ≤ i < j ≤ n
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Passing to optimization - Turán-type problem

Example

Forbidding triangles in a graph on n vertices, find

max
1(n
2

) ∑
1≤i<j≤n

xij

s.t. x2
ij = xij ∀1 ≤ i < j ≤ n

xijxjkxik = 0 ∀1 ≤ i < j < k ≤ n

In particular, show that this is at most 1
2 + O( 1

n )

→ show that 1
2 + O( 1

n )− 1

(n2)

∑
1≤i<j≤n xij ≥ 0
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Issue with passing to optimization - Turán-type problem

Example (continued)

Find Q � 0 and d ∈ Z+ such that

1

2
+ O

(
1

n

)
− 1(n

2

) ∑
1≤i<j≤n

xij ≡ v>Qv mod I

where

I = 〈x2
ij − xij ∀1 ≤ i < j ≤ n,

xijxjkxik ∀1 ≤ i < j < k ≤ n〉

Can we do this with semidefinite programming?

The runtime would be
(n

2

)O(d)→∞ as n→∞.
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Foreshadowing

Example

The following is a sos proof of Mantel’s theorem

(
1 q1

)( (n−1)2

2 −2(n−1)
n

−2(n−1)
n

8
n2

)(
1
q1

)
+ sym

((
q2

) (
8
n2

) (
q2

))
where q1 =

∑
i<j

xij and q2 =
∑
i<j

xij −
n − 2

2

n−1∑
i=1

xin

Key features of desired sos certificates:

exploits symmetry

constant size

entries are functions of n
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Representation theory needed for exploiting symmetry

(R[x ]/I)d =: V =
⊕

λ`n Vλ isotypic decomposition

I partition λ = (5, 3, 3, 1) for n = 12

Vλ =
⊕
τλ

Wτλ

I shape of λ: standard tableau τλ: 1 4 5 6 9
2 7 10
3 8 12

11
I Rτλ :=row group of τλ (fixes the rows of τλ)
I Wτλ := (Vλ)Rτλ = subspace of Vλ fixed by Rτλ
I nλ:=number of standard tableaux of shape λ
I mλ:=dimension of Wτλ

V =
⊕
λ`n

⊕
τλ

Wτλ

Note: dim(V ) =
∑
λ`n

mλnλ
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Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod I ⇔ ∃ Q � 0 s.t. p ≡ v>Qv mod I
where v =vector of basis elements of (R[x ]/I)d

Theorem (Gatermann-Parrilo, 2004)

For each λ, fix τλ and find a symmetry-adapted basis {bτλ1 , . . . , bτλmλ} for
Wτλ .

If p is symmetric and d-sos mod I, then

p ≡
∑
λ`n

sym(b>Qλb) mod I,

where b = (bτλ1 , . . . , bτλmλ)> and Qλ � 0 has size mλ ×mλ.

Gain: size of SDP is
∑
λ`n

mλ instead of
∑
λ`n

mλnλ
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Succinct SOS

Theorem (RSST, 2016)

If p is symmetric and d-sos, then it has a symmetry-reduced sos certificate
that can be obtained by solving a SDP of size independent of n by keeping
only a few partitions in Gatermann-Parrilo.

Example

In the sos proof of Mantel’s theorem

(
1 q1

)( (n−1)2

2 −2(n−1)
n

−2(n−1)
n

8
n2

)(
1
q1

)
+ sym

((
q2

) (
8
n2

) (
q2

))

→ kept partitions (n) =

n︷ ︸︸ ︷
and (n − 1, 1) =

n−1︷ ︸︸ ︷
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Bypassing symmetry-adapted basis

Theorem (RSST, 2016)

In Gatermann-Parrilo, instead of a symmetry-adapted basis, one can use

a spanning set for Wτλ for λ ≥lex

n−2d︷ ︸︸ ︷
.

of size independent of n

that is easy to generate

Examples of spanning sets containing Wτλ

symτλ
(xm) := 1

|Rτλ |
∑

s∈Rτλ
s · xm

an appropriate Möbius transformation
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Razborov’s flag algebras for Turán-type problems

Use flags (=partially labelled graphs) to certify a symmetric inequality that
gives a good upper bound for Turán-type problems

1

2

Key features:

sums of squares of graph densities

n disappears

asymptotic results for dense graphs

Theorem (Razborov, 2010)

If A = {K 3
4 }, then maxG :|V (G)|→∞ d(G ) ≤ 0.561666.

If A = {K 3
4 ,H1}, then maxG :|V (G)|→∞ d(G ) = 5/9.
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Complexity Theory at Oberwolfach in 2015

“Is there a link between sums of squares theory and flag algebras?”

“No.”
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Connection of spanning sets to flag algebras

τλ = 2 5 6 7
3 1
4

→ hook(τλ) = 2 5 6 7
3
1
4

gΘ
1

2 3

:= symhook(τλ)(x12x13x14)

=
1

4
(x12x13x14 + x15x13x14 + x16x13x14 + x17x13x14)

where Θ(1) = 1, Θ(2) = 4, Θ(3) = 3, and gΘ
1

2 3

is the density of 1
2 3 as

a subgraph in some graph on 7 vertices under Θ.

Example: gΘ
1

2 3

( 2

5
6

7

1

3

4

)

= 0
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(x12x13x14 + x15x13x14 + x16x13x14 + x17x13x14)

where Θ(1) = 1, Θ(2) = 4, Θ(3) = 3, and gΘ
1

2 3

is the density of 1
2 3 as

a subgraph in some graph on 7 vertices under Θ.

Example: gΘ
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Connection of spanning sets to flag algebras

Möbius transformation → dΘ
1

2 3

: density of 1
2 3 as an induced subgraph

in some graph on 7 vertices under Θ such that Θ(1) = 1, Θ(2) = 4,
Θ(3) = 3 → flag density.
Example:

dΘ
1

2 3

( 2

5
6

7

1

3

4

)
= 0, dΘ

1
2 3

( 2

5
6

7

1

3

4

)
= 0,

and dΘ
1

2 3

( 2

5
6

7

1

3

4

)
=

1

4
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Connection of spanning sets to flag algebras

Theorem (RSST, 2016)

Flags provide spanning sets for Wτλ of size independent of n.

If p is symmetric and d-sos, then its nonnegativity can be established
through flags on kd vertices (even in restricted cases).

Example

For the sos proof of Mantel’s theorem, need at most flags:

, ,
1

,
1

,
1
2 , and

1
2
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Connection of spanning sets to flag algebras

Theorem (R., Singh, Thomas, 2015)

Every flag sos polynomial of degree kd can be written as a succinct d-sos.

Theorem (RSST, 2016)

Flag methods are equivalent to standard symmetry-reduction methods for
finding sos certificates over discrete hypercubes.
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Consequences of this connection

Corollary (RSST, 2016)

It is possible to use flags for a fixed n, not just asymptotic situations

Example

The following flag sos yields the Ramsey number R(3, 3) ≤ 6

−1 ≡ 1

8
(6

2

)2

(
dΘ + dΘ

)2
+ EΘi

[
1

2

(
dΘi

1

− dΘi

1

)2
]

mod I

where

dΘ = 2
∑

1≤i<j≤6

xij , dΘ = 2
∑

1≤i<j≤6

(1− xij),

dΘi

1

=
∑

j∈[6]\{i}

xij , dΘi

1

=
6∑

j∈[6]\{i}

(1− xij)

Annie Raymond (UW→MSRI→UMass ) Symmetric Sums of Squares October 10, 2017 20 / 24



Consequences of this connection

Corollary (RSST, 2016)

It is possible to use flags for extremal graph theoretic problems in the
sparse setting.

Example

The following flag sos yields that the max edge density in C4-free graphs is

at most n3/2

n2−n + O
(

1
n

)
(Sós et al)

n +
2

n − 1
s− 2(n

2

)s2 ≡

EΘjk

[
n

(
d

Θjk

1 2
+ d

Θjk

1 2
+ d

Θjk

1 2

)2

+ n

(
d

Θjk

1 2
+ d

Θjk

1 2
+ d

Θjk

1 2

)2

+
1

2

(
d

Θjk

1 2
− d

Θjk

1 2

)2

+
1

2

(
d

Θjk

1 2
− d

Θjk

1 2

)2
]
mod I
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Consequences of this connection

Example (Grigoriev’s family of polynomials, 2001)

The polynomials

fn =
1(n
2

)2

 ∑
e∈E(Kn)

xe −

⌊(n
2

)
2

⌋ ∑
e∈E(Kn)

xe −

⌊(n
2

)
2

⌋
− 1


are nonnegative on Vn,2.

The degree required to write fn as a SOS is at least

⌈
(n2)
2

⌉
Certifying nonnegativity fn + O( 1

n2 ) also requires an SOS of degree

⌈
(n2)
2

⌉
(Lee, Prakesh, de Wolf, Yuen, 2016)
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Consequences of this connection

Hatami-Norin (2011) showed that the nonnegativity of graph density
inequalities in general is undecidable

Corollary (RSST, 2016)

There exists a family of symmetric nonnegative polynomials of fixed degree
that cannot be certified with any fixed set of flags, namely

1(n
2

)2

 ∑
e∈E(Kn)

xe −

⌊(n
2

)
2

⌋ ∑
e∈E(Kn)

xe −

⌊(n
2

)
2

⌋
− 1

+ O(
1

n2
)

Note: Razborov allows error of size O( 1
n ) in his setting
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Open problems

Find a concrete family of nonnegative polynomials on
(n
k

)
variables

that one cannot approximate up to an error of order O( 1
n ) with

finitely many flags or with sums of squares of fixed degree.

Provide certificates for open problems over Vn,k using symmetric sums
of squares.

Thank you!
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