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Shellable complexes

All 0-complexes are shellable. A single simplex is shellable.
Inductively: A pure simplicial d-complex with N facets is shellable
if it is obtained from some shellable d-complex with N − 1 facets
by attaching a new d-simplex ∆ along a pure (d − 1)-dimensional
subcomplex of ∂∆.

Fact (Bruggesser–Mani 1971, also Schläfli 1850)

The boundaries of simplicial polytopes are shellable: “Lift off”
from a facet, and moving along a generic line, record the facets in
the order in which they appear at the horizon (“rocket shelling”).
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The boundaries of simplicial polytopes are shellable: “Lift off”
from a facet, and moving along a generic line, record the facets in
the order in which they appear at the horizon (“rocket shelling”).

2 / 14



Shellable complexes

All 0-complexes are shellable. A single simplex is shellable.
Inductively: A pure simplicial d-complex with N facets is shellable
if it is obtained from some shellable d-complex with N − 1 facets
by attaching a new d-simplex ∆ along a pure (d − 1)-dimensional
subcomplex of ∂∆.

Fact (Bruggesser–Mani 1971, also Schläfli 1850)
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Trees of d-simplices

A tree of N d-simplices is a triangulation
of the d-ball whose dual graph is a tree.

Inductively: A tree of N d-simplices is obtained from a tree of
N − 1 d-simplices by attaching a new d-simplex along 1 facet.

By induction, every tree of N d-simplices has exactly
dN − N + 2 boundary facets.

Fact

Rooted trees of N d-simplices ←→ rooted planted plane d-ary
trees with N non-leaf vertices, counted by Fuss–Catalan numbers,

Cd(N) =
1

(d − 1)N + 1

(
dN

N

)
< (de)N .
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From trees of simplices to manifolds

Figure: Gluing boundary edges according to red matching  octahedron

Every (connected!) triangulated manifold, with or without
boundary, has connected dual graph.

Picking a spanning tree of the dual graph “selects” a tree of
simplices sitting in your manifold.

Manifold can be recovered by some matching (partial or
complete) of the boundary facets of the tree of simplices.

Fact

Triangulations of connected d-manifolds with N facets are at most
Cd(N) · (dN − N + 1)!! < (de)N · f (d)N logN .
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What if we want an exponential bound (in N, for fixed d)

From now on, d ≥ 2.

Mogami (respectively, LC) manifolds are those obtainable
from a tree of d-simplices by recursively gluing two incident
(resp. adjacent) boundary facets.

Since ‘adjacent’ implies ‘incident’, LC implies Mogami.

Theorem [Durhuus–Jonsson 1995, Mogami 1995, B.–Ziegler 2011]

LC triangulations of d-manifolds with N facets are at most 2d
2N .

In dimension d ≤ 3, also Mogami d-manifolds are exp. many.
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Connection to topology

Proposition

Every Mogami manifold is simply connected.

Proof by intimidation (d = 3): A tree of tetrahedra is
contractible. How are we supposed to get a new loop with a
Mogami gluing?!

Theorem [B., 2015]

Every simply connected smooth d-manifold, if d 6= 4, admits a
Mogami and even LC triangulation.

Proof uses: regular neighborhoods, diff. geometry, Wall’s
“geometric connectivity” (for more: BADG Day, Oct. 28, here)

So LC/Mogami triangulations = combinatorial way to capture
simple connectedness (for manifolds).
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Connection to shellability

Gluing Lemma

Let A,B be two d-pseudomanifolds. Let C ⊂ ∂A be a pure
(d − 1)-dimensional complex combinatorially equivalent to a
subcomplex C ′ ⊂ ∂B. Let A ∪ B be the complex obtained from
the disjoint union A t B by identifying C ≡ C ′.

If A,B are LC and C is strongly connected, A ∪ B is LC.

If A,B are Mogami and C is connected, A ∪ B is Mogami.

Consequence (B.-Ziegler 2011)

Shellable spheres are LC. In particular, simplicial polytopes and
shellable spheres are exponentially many. (Fixed d)
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Connection to physics

OPEN (important for the meaningfulness of a branch of physics,
“discrete quantum gravity”):

Question (Gromov et al)

How many (triangulated) 3-balls can we sew with N tetrahedra,
only exponentially many? or more?

FACT: All 2-balls are shellable, so also LC/Mogami.

Conjecture (Durhuus–Jonsson 1995)

All 3-balls & 3-spheres are LC.

Conjecture (Mogami 1995)

All 3-balls & 3-spheres are Mogami.

If any is true, then 3-balls are exponentially many!
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Simplicial collapsibility

The conjecture by Durhuus and Jonsson was disproved in 2009.

Key for this was this modern technique and method from 1939:

A free face in a simplicial complex is a nonempty face that is
strictly contained in only 1 other face. (Like leaves in graphs.)

An elementary collapse is the deletion of a free face.s

We say that C collapses to a subcomplex D, if some
sequence of elementary collapses reduces C to D.

Theorem (B.–Ziegler, 2011)

A 3-sphere S is LC if and only if S minus some tetrahedron
collapses to some vertex.

A 3-ball B is LC if and only if B minus some tetrahedron
collapses to ∂B.

... unfortunately, this characterization does not extend to Mogami.
So Mogami’s conjecture stayed open.
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INTERMEZZO: Where to look for counterexamples
3-balls with ‘knotted spanning edge’: a wealth of counterexamples,
because

(1) we never think of them when we make conjectures,
and (2) most 3-balls have knotted spanning edges!

Fact (essentially Furch 1924)

Any (smooth) knot can be realized in some triangulated 3-ball B,
as one interior edge [x , y ] plus a boundary path from x to y .
Without loss, one can assume that all vertices of B are on ∂B.

 New idea: The Mogami construction of a 3-ball without interior
vertices, could be spartan... ‘Chic’ gluings may cost interior
vertices!
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Example of gluing that we cannot afford

Say that in constructing a 3-ball, after some Mogami steps (which
could take us out of the world of simplicial complexes), we see two
boundary triangles that share one edge plus the opposite vertex.
What happens if we decide to glue them?

Effect on boundary :
2-sphere  wedge of 2-spheres.
What we’ll have to do to fix it:
Kill one of the two 2-spheres, by sinking its vertices into the
interior. (So in the Mogami construction of a 3-ball without
interior vertices, this type of step cannot occur!)
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Example of gluing we can afford, but can also renounce to

Imagine in the boundary of a finely triangulated 3-ball, we see this:

Effect of green gluing : Mogami step, creates a singularity.

If later we do also the pink gluing : Singularity is removed.
Idea: But we could have done pink first, then green! In this
order the topology stays the same: After the pink gluing, we still
have a 3-ball without interior vertices.
So maybe steps of this type can occur, but it is possible to
rearrange the construction. Lots of details to check (have to
predict how the 2 components of the boundary link behave during
the construction; do they expand? do they stay disjoint?...)
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Main Result

Theorem (B. 2017)

Every Mogami 3-ball without interior vertices is obtainable from a
tree of tetrahedra using only FOLD moves.

But every FOLD move introduces an interior edge e3 that is
unknotted: together with the boundary path e1 ∪ e2, the edge e3
bounds a disk! (namely, the grey triangle.)

Corollary

Every 3-ball with knotted spanning edges and without interior
vertices, is not Mogami.
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Cones

Proposition 2

Let C be a (pseudo)manifold. A cone v ∗ C is Mogami if and only
if C is strongly-connected.

Reason. “Only if”: by induction, every vertex link in a Mogami manifold
is strongly connected.
“If”: take a spanning tree of simplices for C . Then C is obtained from it
by a matching of boundary facets, not necessarily incident. Cone over
everything (with apex v): you get a spanning tree of simplices for v ∗ C ,
whence v ∗ C is obtained by matching boundary facets that contain v.

Note: This behavior is completely different for the LC property.

Theorem [B.–Ziegler, 2011]

A cone v ∗ C is LC if and only if C is LC.

So the cone over an annulus, say, is Mogami but not LC. (Annulus
is not simply connected, so not Mogami, so not LC.)
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Surfaces are more than exponentially many

The bound we saw is coarse. E.g. many matchings result in
no surface; also, the same surface can be obtained from a lot
of trees of triangles.
Even for d = 2, we cannot expect an exponential upper
bound.

Take a path of 2g + 3 triangles as above. Cone and take the boundary:
It’s a 2-sphere with (2g + 3) + (2g + 5) triangles. Take out the interior
of the triangles labeled by 1, . . . , g , 1′, . . . , g ′. Choose a bijection
π : {1, . . . , g} → {1′, . . . , g ′} and attach g prisms according to π. Each
prism can be triangulated with 12 triangles. We have obtained a
triangulation with N = (4g + 8)− 2g + 12g = 14g + 8 facets of the
genus-g surface. The triangulation depends injectively on π, so we built
g ! = N−8

14 ! surfaces with N triangles.
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Future work and open problems

Can one generalize Mogami’s work all dimensions, i.e. by
showing that for all d ≥ 2, Mogami d-(pseudo)manifolds are
only exponentially many?

Can you give examples of Mogami manifolds that are not LC?

Can you give an example of a non-Mogami 3-sphere?

Can you significantly improve on the upper bound 2d
2N for

how many simplicial polytopes there are with N facets? (We
largely overcounted.)

And of course, i can copy-paste the main question, still unsolved:

Question

How many 3-balls can we sew with N tetrahedra, exponentially
many? or more?
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