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A Scheduling Problem

n jobs to be performed:

L1
L2
L3
With constraints of the form:
X; S X
o <o << 1g, specified linear order

e (r1 <x5)V (x3 <x5) job b can’t be done until job 1 or job 3



Valid Schedules

Schedule the n jobs using at most ¢ time slots.

Let S be the boolean function of constraints.

A t-schedule solving S is an integer assignment
w: [n] = [t

which makes S(w) true.
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Schedules Geometrically

A X3 A X3
> X2 % X2
X1 X1
If jobs 1 and 2 run at the same time, If two jobs run rimultaneously,
then job 3 has to run first. the third job has to run first.
X1 = X2 = X3 < X1 (X1 = X2 = x3 < X1)

A (X1 =X3=> X2 <X1)

A (X2 =Xx3 = X1 < X2)



Counting Valid Schedules

Define pg(t) = the number of t-schedules solving S.

Theorem BK

ps(t) is a polynomial function in ¢.
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Counting Valid Schedules

Define pg(t) = the number of t-schedules solving S.

Theorem BK

ps(t) is a polynomial function in ¢.

Scheduling polynomials include:

e chromatic polynomial of graph

e zeta polynomial of a lattice H()pf

e Billera-Jia-Reiner polynomial of a matroid Monoids
e arboricity polynomial of a matroid

e Bergman polynomial of a matroid



Ehrhart Polynomials

A X3 A X3
> X2 > X2
X1 X1
“If jobs 1 and 2 run at the same time, “If two jobs runs simultaneously,
then job 3 has to run first.” the third job has to run first.”
X]=Xo > X3<X] (X1 =x2=> x3<X1)

A(X] = X3 = X2 < X1)

A (X2 = X3 = X1 < X9)

Schedules are almost the integer points inside a polytope.
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Ehrhart Polynomials

A X3 A X3
> X9 X2
x1/ X1/
“If jobs 1 and 2 run at the same time, “If two jobs runs simultaneously,
then job 3 has to run first.” the third job has to run first.”
X] = X2 > X3<X] (X1 = X2 = x3< X1)

A (X1 =x3=> X2 < X1)

A (X2 = X3 = X1 < X2)

Schedules are almost the integer points inside a polytope.

Schedules are the integer points inside an almost polytope.
Integer points of inside-out polytopes. Beck-Zaslavsky



Braid Arrangement

Braid arrangement ‘H € R", H :={x; = z;, ij € [n]}

If x,<x,
then
X3<X,
else
X3 < Xj.




Coxeter Complex

Braid intersected with the sphere
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NCQSym

Quasisymmetric functions in non-commuting variables.

Formal power series in non-commuting variables {x1, xo,...}.

The coeflicient of x., z, - - - x-, must equal the coefficient of z x,, - -

if the relative order of v and 7 € N™ are the same.

3T1T2x1T2 + 3x123T123 + 3T2T3T2x3 + 3T3T4T3T4 + - - -

(1,2,1,2),(1,3,1,3),(2,3,2,3),(3,4,3,4) € N*

)

13|24 ordered set partition

n



NCQSym Monomials

M13|2 — E Liy LigLig

0<13=11 <19

NCQSym — Quasisymmetric functions

type(®1|®a| -+ |Pr) = (| 1], [P2], -+, |Pn]) type(13|24) = (2,2)
directed refinement
NCQSym M » NCQSym L
type ltype
refinement

QSym M > QSym L




NQSym Scheduling

t-schedules where t — oo, “there is no deadline.”

\32 / Aez / “32 /

Vs Vs Vs
el el €1

M3|1|2 = E Liy LigLig M3|12 = E Ly LigLig M13|2 = E Liy LigLig

0<13<i1 <12 0<i3<i1 =12 0<1z3=11 <19



NCQSym — Polynomials

Set first ¢ variables equal to 1, others equal to O.

Mot = ()

S = Myja3 + Msja1 + Majq3

() ()

Scheduling polynomial

ps(t) =81 = Y Mg(1") = ) ehreone(@)n(o,n (t + 1)
$:S (D) $:S(P)




Graph Coloring

Graph G = (V, F)

t-coloring: ¢(G) : V = [t], o(v;) # ¢(v;), 1j € E
All integer points off of the planes (v; = z;), ij € E

(Relative interiors of graphical arrangement.)

{

graphical zonotope graphical arrangement




Graph Coloring

Chromatic NCQSym(K3)
— M1|2|3 + ./\/l2|1|3 + ./\/l2|3|1 + M1|3|2 + M3|1|2 + M3|2|1

Prcs (t) = t(t — 1)(t = 2)

Chromatic NCQSym Gebhard - Sagan
Chromatic QSym (from type map) Stanley

Chromatic polynomial (from specialization)

Note: Didn’t use contraction/deletion.



Arboricity

The Arboricity of a graph / matroid, Nash-Williams, Tutte, Edmonds
¢ a((G) = min number of forests to cover the edges of G

e a(M) = min number of independent sets to cover ground set E of M

X ]
rk(X)

CL(M) = maXXgE(

Constructive version: matroid partitioning problem

Independent cover = ordered set partition of £ s.t. no block contains a circuit



Arboricity as Scheduling

“The collection of jobs that start at a fixed time can not be dependent.”

Arboricity polynomial

pa,, (t) = number of independent covers with at most t parts.

e M free matroid: pa,,(t) =t"
e M (C,) graphical matroid of cycle graph: pa,,(t) =t" —t

Deletion /Contraction does not hold for arboricity polynomials.

Not a Tutte invariant.



Geometry of Scheduling

An ordered set partition ¢ +— face o4 of Coxeter complex

Allowed and Forbidden configurations
Allowed: A(S) = {0 | S(P) is true}
Forbidden: I'(S) = {og | S(®) is false}

Example: Graph Coloring
Forbidden configuration I'(S) = Steingrimsson’s coloring complex
Allowable configuration A(S) = interiors of maximal cones of the normal

fan of the graphical zonotope.

Steingrimsson Theorem

Hilbert polynomial of the chromatic ideal = chromatic polynomial



Scheduling - h-vectors

Theorem BK For any scheduling problem S:

The h-polynomial of A = scheduling polynomial
The h-polynomial of I' = tail of scheduling polynomial

Equivalently,

_ hrsy (9)

L) ((k=1)" = ps®" = 757




Bridge

Properties of geometric spaces <— Properties of algebraic invariants

Example: Partitionability and Positivity

e If A(S) is partitionable then
Scheduling QSym is L-positive (fundamental basis)

Scheduling polynomial is h*-positive

e If Scheduling NCQSym is L-positive then
A(S) is partitionable

e If S is a decision tree (nested if-then-else structure) then
A(S) is partitionable



Matroid Polytopes

Allowable configuration A = interiors of maximal cones of the normal fan

of a matroid polytope.

Forbidden configuration I' = codimension one skeleton of the normal fan

as subdivided by the Coxeter complex.

Schedules: For each vertex v, take conjunction of hyperplanes meeting at v.
Scheduling NCQSym: & = Generic M-weightings
Scheduling QSym: Billera-Jia-Reiner quasisymmetric function

Scheduling Polynomial: Counts the number of generic M-weightings

Graphic zonotope — Matroid polytope — Generalized Permutahedron



Scheduling - Flats

Rank as cost function. (Rank function of a Matroid)

“Once certain jobs are started, others in the closure can be added without
additional cost. Minimize cost by requiring that in any scheduling of jobs, at

each step we have a closed subset of jobs.”

¢ is allowable if flag(®) is a flag of flats.
(x7 < x4 <3 <x1 =129 =125 < Tg) < 7|4|3[125|6
—— 7 C 47 C 347 C 123457 C 1234567

On the matroid polytope:

Weights w: Every element is in some w-min basis.

w=(4,4,3,2,4,5,1)



Scheduling - Bergman

Allowable A(M) = Bergman complex of M (tropical linear spaces)
Scheduling Qsym: Bergman quasisymmetric function

Scheduling polynomial: Counts the number of every-element-minimizing
M-weightings
pu(t) = Z(L(M),t) ={0=yo <y <--- <y = 1ly; € L(M)}

Zeta-polynomial of the lattice of flats of M.
Counts multi-chains of length ¢ in lattice of flats.



