
The Geometry of Scheduling

Caroline J. Klivans
Brown University

Joint work with Felix Breuer

1



A Scheduling Problem

n jobs to be performed:

x1

x2

x3
...

With constraints of the form:

xi ≤ xj

• x1 ≤ x2 ≤ · · · ≤ xn specified linear order

• (x1 ≤ x5) ∨ (x3 ≤ x5) job 5 can’t be done until job 1 or job 3
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Valid Schedules

Schedule the n jobs using at most t time slots.

Let S be the boolean function of constraints.

A t-schedule solving S is an integer assignment

ω : [n]→ [t]

which makes S(ω) true.

• (x1 ≤ x2 ≤ x3) (1, 1, 1), (1, 1, 2), (1, 2, 2), (3, 5, 5), . . .

• (x1 ≤ x5) ∨ (x3 ≤ x5) (1, 2, 8, 8, 4), (8, 2, 1, 8, 4), . . .
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Schedules Geometrically

If two jobs run rimultaneously,
the third job has to run first.

If jobs 1 and 2 run at the same time,
then job 3 has to run first.
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Counting Valid Schedules

Define pS(t) = the number of t-schedules solving S.

Theorem BK

pS(t) is a polynomial function in t.

Scheduling polynomials include:

• chromatic polynomial of graph

• Billera-Jia-Reiner polynomial of a matroid

• arboricity polynomial of a matroid

• zeta polynomial of a lattice

• Bergman polynomial of a matroid

(Hopf Monoids)
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Ehrhart Polynomials

Schedules are almost the integer points inside a polytope.

Schedules are the integer points inside an almost polytope.

(Integer points of inside-out polytopes. Beck-Zaslavsky)
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Braid Arrangement

Braid arrangement H ∈ Rn, H := {xi = xj , ij ∈ [n]}
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Coxeter Complex

Braid intersected with the sphere

1|2|4|3
1|4|2|3 1|4|3|2

1|3|4|21|3|2|4

1|2|3|4

2|1|4|3

2|1|3|4

2|3|1|4

2|3|4|1

2|4|3|1

2|4|1|3

3|1|2|4

3|1|4|2
3|4|1|23|4|2|1

3|2|4|1

3|2|1|4

4|3|1|24|3|2|1

4|1|3|2

4|1|2|34|2|1|3

4|2|3|1

3|1|2|4

3|1|4|2
3|4|1|23|4|2|1

3|2|4|1

3|2|1|4

4|3|1|24|3|2|1

4|1|3|2

4|1|2|34|2|1|3

4|2|3|1

1|2|4|3
1|4|2|3

1|4|3|2
1|3|4|21|3|2|4

1|2|3|4

2|1|4|3

2|1|3|4

2|3|1|4

2|3|4|1

2|4|3|1

2|4|1|3

x1=x3

x1=x2

x1=x4
x2=x3
x2=x4
x3=x4

Gives relative ordering of coordinates

x2 = x3 < x1 = x4 = x6 < x5

23|146|5 (ordered set partition)
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NCQSym

Quasisymmetric functions in non-commuting variables.

Formal power series in non-commuting variables {x1, x2, . . .}.

The coefficient of xγ1xγ2 · · ·xγn must equal the coefficient of xτ1xτ2 · · ·xτn
if the relative order of γ and τ ∈ Nn are the same.

3x1x2x1x2 + 3x1x3x1x3 + 3x2x3x2x3 + 3x3x4x3x4 + · · ·

(1, 2, 1, 2), (1, 3, 1, 3), (2, 3, 2, 3), (3, 4, 3, 4) ∈ N4

l

13|24 ordered set partition

14



NCQSym Monomials

M13|2 =
∑

0<i3=i1<i2

xi1xi2xi3

NCQSym → Quasisymmetric functions

type(Φ1|Φ2| · · · |Φn) = (|Φ1|, |Φ2|, · · · , |Φn|) type(13|24) = (2, 2)

NCQSym M
directed refinement- NCQSym L

QSym M

type
? refinement - QSym L

type
?
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NQSym Scheduling

t-schedules where t→∞, “there is no deadline.”

16



NCQSym → Polynomials

Set first t variables equal to 1, others equal to 0.

MΦ(1t) =

(
t

`(t)

)

S =M1|23 +M3|21 +M2|1|3

S(1t) = 2

(
t

2

)
+

(
t

3

)
Scheduling polynomial

ps(t) = S(1t) =
∑

Φ:S(Φ)

MΦ(1t) =
∑

Φ:S(Φ)

ehrcone(Φ)∩(0,1)n(t+ 1)
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Graph Coloring

Graph G = (V,E)

t-coloring: φ(G) : V → [t], φ(vi) 6= φ(vj), ij ∈ E

All integer points off of the planes (xi = xj), ij ∈ E
(Relative interiors of graphical arrangement.)
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Graph Coloring

Chromatic NCQSym(K3)

=M1|2|3 +M2|1|3 +M2|3|1 +M1|3|2 +M3|1|2 +M3|2|1

pK3
(t) = t(t− 1)(t− 2)

Chromatic NCQSym Gebhard - Sagan

Chromatic QSym (from type map) Stanley

Chromatic polynomial (from specialization)

Note: Didn’t use contraction/deletion.
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Arboricity

The Arboricity of a graph / matroid, Nash-Williams, Tutte, Edmonds

• a(G) = min number of forests to cover the edges of G

• a(M) = min number of independent sets to cover ground set E of M

a(M) = maxX⊆Ed
|X|
rk(X)

e

Constructive version: matroid partitioning problem

Independent cover = ordered set partition of E s.t. no block contains a circuit
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Arboricity as Scheduling

AM =
∧
C∈C
¬(xi1 = xi2 = · · · = xim)

“The collection of jobs that start at a fixed time can not be dependent.”

Arboricity polynomial

pAM
(t) = number of independent covers with at most t parts.

• M free matroid: pAM
(t) = tn

• M(Cn) graphical matroid of cycle graph: pAM
(t) = tn − t

Deletion/Contraction does not hold for arboricity polynomials.

Not a Tutte invariant.
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Geometry of Scheduling

An ordered set partition Φ ←→ face σΦ of Coxeter complex

Allowed and Forbidden configurations

Allowed: Λ(S) = {σΦ |S(Φ) is true}
Forbidden: Γ(S) = {σΦ |S(Φ) is false}

Example: Graph Coloring

Forbidden configuration Γ(S) = Steingrimsson’s coloring complex

Allowable configuration Λ(S) = interiors of maximal cones of the normal

Allowable configuration Λ(S) = fan of the graphical zonotope.

Steingrimsson Theorem

Hilbert polynomial of the chromatic ideal = chromatic polynomial
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Scheduling - h-vectors

Theorem BK For any scheduling problem S:

The h-polynomial of Λ = scheduling polynomial

The h-polynomial of Γ = tail of scheduling polynomial

h(pS(k − 1)) = h(Λ(S))

1+h((k − 2)n − pS(k − 1)) = h(Γ(S))

Equivalently,

1 + t
∑
k≥0

pS(k)tk =
h(Λ(S))(t)

(1− t)d+1

1 + t
∑
k≥0

((k − 1)n − pS(k))tk =
h(Γ(S))(t)

(1− t)d+1
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Bridge

Properties of geometric spaces ←→ Properties of algebraic invariants

Example: Partitionability and Positivity

• If Λ(S) is partitionable then

Scheduling QSym is L-positive (fundamental basis)

Scheduling polynomial is h∗-positive

• If Scheduling NCQSym is L-positive then

Λ(S) is partitionable

• If S is a decision tree (nested if-then-else structure) then

Λ(S) is partitionable
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Matroid Polytopes

Allowable configuration Λ = interiors of maximal cones of the normal fan

Allowable configuration Λ = of a matroid polytope.

Forbidden configuration Γ = codimension one skeleton of the normal fan

Forbidden configuration Γ = as subdivided by the Coxeter complex.

Schedules: For each vertex v, take conjunction of hyperplanes meeting at v.

Scheduling NCQSym: Φ = Generic M -weightings

Scheduling QSym: Billera-Jia-Reiner quasisymmetric function

Scheduling Polynomial: Counts the number of generic M -weightings

Graphic zonotope → Matroid polytope → Generalized Permutahedron
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Scheduling - Flats

Rank as cost function. (Rank function of a Matroid)

“Once certain jobs are started, others in the closure can be added without

additional cost. Minimize cost by requiring that in any scheduling of jobs, at

each step we have a closed subset of jobs.”

Φ is allowable if flag(Φ) is a flag of flats.

(x7 < x4 < x3 < x1 = x2 = x5 < x6)←→ 7|4|3|125|6

←→ 7 ⊂ 47 ⊂ 347 ⊂ 123457 ⊂ 1234567

On the matroid polytope:

Weights ω: Every element is in some ω-min basis.

ω = (4, 4, 3, 2, 4, 5, 1)
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Scheduling - Bergman

Allowable Λ(M) = Bergman complex of M (tropical linear spaces)

Scheduling Qsym: Bergman quasisymmetric function

Scheduling polynomial: Counts the number of every-element-minimizing

Scheduling polynomial: M -weightings

pM (t) = Z(L(M), t) = |{0̂ = y0 ≤ y1 ≤ · · · ≤ yt = 1̂|yi ∈ L(M)}|

Zeta-polynomial of the lattice of flats of M .

Counts multi-chains of length t in lattice of flats.
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