Reciprocal linear spaces, hyperbolicity, and determinants

Cynthia Vinzant

North Carolina State University

joint work with Mario Kummer, Max Planck Institute MSRI, October 2017

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

- \triangleright Reciprocal linear spaces, hyperplane arrangements
- \triangleright Multivariate real-rootedness and determinants
- \triangleright Determinantal representations of reciprocal linear spaces

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $2Q$

 \triangleright A connection with graphic and simplicial matroids

Let $\mathcal L$ be a d-dim'l linear space in $\mathbb C^n$. Its reciprocal linear space is

$$
\mathcal{L}^{-1} = \overline{\left\{ \left(x_1^{-1}, \ldots, x_n^{-1} \right) : x \in \mathcal{L} \cap (\mathbb{C}^*)^n \right\}}
$$

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

Let $\mathcal L$ be a d-dim'l linear space in $\mathbb C^n$. Its reciprocal linear space is

$$
\mathcal{L}^{-1} = \overline{\left\{ \left(x_1^{-1}, \ldots, x_n^{-1} \right) : x \in \mathcal{L} \cap (\mathbb{C}^*)^n \right\}}.
$$

Proudfoot-Webster: $\mathbb{C}[\mathcal{L}^{-1}]$ is the intersection cohomology ring of the complement of a hyperplane arrangement.

Proudfoot-Speyer: Give flat degeneration of $\mathbb{C}[\mathcal{L}^{-1}]$ to Stanley-Reisner ring of broken circuit complex.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

Let $\mathcal L$ be a d-dim'l linear space in $\mathbb C^n$. Its reciprocal linear space is

$$
\mathcal{L}^{-1} = \overline{\left\{ \left(x_1^{-1}, \ldots, x_n^{-1} \right) : x \in \mathcal{L} \cap (\mathbb{C}^*)^n \right\}}.
$$

Proudfoot-Webster: $\mathbb{C}[\mathcal{L}^{-1}]$ is the intersection cohomology ring of the complement of a hyperplane arrangement.

Proudfoot-Speyer: Give flat degeneration of $\mathbb{C}[\mathcal{L}^{-1}]$ to Stanley-Reisner ring of broken circuit complex.

Varchenko: Critical points of products of linear forms are all real.

De Loera-Sturmfels-V: $\mathcal{L}^{-1} \cap (\mathcal{L}^{\perp} + v)$ are analytic centers of the bounded regions in a hyperplane arrangement.

Cynthia Vinzant | Reciprocal linear spaces, hyperboli

$$
\mathcal{L} = \text{rowspan}\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

Cynthia Vinzant Reciprocal linear spaces, hyperboli

K ロ X イ団 X X ミ X X モ X ミ コ Y Q Q C

$$
\mathcal{L} = \text{rowspan}\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

The matroid corresponding to $\mathcal L$ has ... circuits {124, 135, 2345} broken circuits {12, 13, 234} broken circuit complex $\mathcal{F} = \{145, 235, 245, 345\}$

Cynthia Vinzant Reciprocal linear spaces, hyperboli

$$
\mathcal{L} = \text{rowspan}\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

 298

The matroid corresponding to $\mathcal L$ has ... circuits {124, 135, 2345} broken circuits {12, 13, 234} broken circuit complex $\mathcal{F} = \{145, 235, 245, 345\}$

So \mathcal{L}^{-1} has degree $|\mathcal{F}| = 4$.

Example: $(d, n) = (2, 4)$

Take $\ell_0, \ell_1, \ell_2, \ell_3 \in \mathbb{R}[s, t]_1$.

Then $\mathcal{L} = \{(\ell_0, \ell_1, \ell_2, \ell_3) : (\mathsf{s}, \mathsf{t}) \in \mathbb{R}^2\} \in \mathsf{Gr}(2, 4)$

Cynthia Vin<u>zant</u> Reciprocal linear spaces, hyperboli

Example: $(d, n) = (2, 4)$

Take $\ell_0, \ell_1, \ell_2, \ell_3 \in \mathbb{R}[s, t]_1$.

Then $\mathcal{L} = \{(\ell_0, \ell_1, \ell_2, \ell_3) : (\mathsf{s}, \mathsf{t}) \in \mathbb{R}^2\} \in \mathsf{Gr}(2, 4)$

 $\mathcal L$ intersects coord. hyperplanes \cup_i { $x_i = 0$ } in 4 points (proj.) Remove them and take inverses to get

Example: $(d, n) = (2, 4)$

Take $\ell_0, \ell_1, \ell_2, \ell_3 \in \mathbb{R}[s, t]_1$.

Then $\mathcal{L} = \{(\ell_0, \ell_1, \ell_2, \ell_3) : (\mathsf{s}, \mathsf{t}) \in \mathbb{R}^2\} \in \mathsf{Gr}(2, 4)$

 $\mathcal L$ intersects coord. hyperplanes \cup_i { $x_i = 0$ } in 4 points (proj.) Remove them and take inverses to get

$$
\mathcal{L}^{-1} = \overline{\{\left[\frac{1}{\ell_0}, \frac{1}{\ell_1}, \frac{1}{\ell_2}, \frac{1}{\ell_3}\right]\}} = \overline{\{\left[\ell_1\ell_2\ell_3, \ell_0\ell_2\ell_3, \ell_0\ell_1\ell_3, \ell_0\ell_1\ell_2\right]\}}.
$$
\n
$$
\mathcal{L}^{-1}
$$
 is a rational cubic curve.
\nFor $v \in \mathbb{R}^4$, $\mathcal{L}^{\perp} + v$ intersects \mathcal{L}^{-1} in $3 = \deg(\mathcal{L}^{-1})$ real points.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $2Q$

Cynthia Vinzant | Reciprocal linear spaces, hyperboli

f is stable if it is hyperbolic w.r.t. all $v \in (\mathbb{R}_{+})^n$.

 Ω

Cynthia Vinzant | Reciprocal linear spaces, hyperboli

f is stable if it is hyperbolic w.r.t. all $v \in (\mathbb{R}_{+})^n$.

 $2Q$

Example: $f = det(\sum_i x_i A_i)$ where $A_1, \ldots, A_n \in \mathbb{R}^{d \times d}_{sym}$ and the matrix $\sum_i \mathsf{v}_i\mathsf{A}_i$ is positive definite

Cynthia Vinzant Reciprocal linear spaces, hyperboli

f is stable if it is hyperbolic w.r.t. all $v \in (\mathbb{R}_{+})^n$.

Example: $f = det(\sum_i x_i A_i)$ where $A_1, \ldots, A_n \in \mathbb{R}^{d \times d}_{sym}$ and the matrix $\sum_i \mathsf{v}_i\mathsf{A}_i$ is positive definite

Helton Vinnikov: For $n = 3$, every hyperbolic/stable polynomial $f \in \mathbb{R}[x_1, x_2, x_3]_d$ has such a determinantal representation.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $\{M : M^{\perp}$ intersects $X\}$ is a hypersurface in $Gr(d, n)$

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

 $\{M : M^{\perp}$ intersects X is a hypersurface in $Gr(d, n)$

defined by a polynomial in the Plücker coordinates on $\mathsf{Gr}(d,n)$ called the Chow form of X.

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

 $\{M : M^{\perp}$ intersects X is a hypersurface in $Gr(d, n)$

defined by a polynomial in the Plücker coordinates on $Gr(d, n)$ called the Chow form of X.

Example: $X = \{(1, t, t^2, t^3) : t \in \mathbb{C}\}, M = \text{span}\{a, b\}$

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $\{M : M^{\perp}$ intersects X is a hypersurface in $Gr(d, n)$

defined by a polynomial in the Plücker coordinates on $Gr(d, n)$ called the Chow form of X.

Example: $X = \{(1, t, t^2, t^3) : t \in \mathbb{C}\}, M = \text{span}\{a, b\}$ $M^{\perp} \cap X \neq 0 \Leftrightarrow a_0 + a_1t + a_2t^2 + a_3t^3$, $b_0 + b_1t + b_2t^2 + b_3t^3$ have a common root

Cynthia Vinzant Reciprocal linear spaces, hyperboli

A BALL BUY

 $\{M : M^{\perp}$ intersects $X\}$ is a hypersurface in $Gr(d, n)$

defined by a polynomial in the Plücker coordinates on $Gr(d, n)$ called the Chow form of X.

Example: $X = \{(1, t, t^2, t^3) : t \in \mathbb{C}\}, M = \text{span}\{a, b\}$ $M^{\perp} \cap X \neq 0 \Leftrightarrow a_0 + a_1t + a_2t^2 + a_3t^3$, $b_0 + b_1t + b_2t^2 + b_3t^3$ have a common root

Cynthia Vinzant Reciprocal linear spaces, hyperboli

イロメ イ押 トイチ トイチャー

 $2Q$

The Chow form of X is the resultant of these polynomials.

A real variety $X \subset \mathbb{P}^{n-1}(\mathbb{C})$ of $codim(X) = c$ is hyperbolic with respect to a linear space *of dim* $c - 1$ if $X \cap L = \emptyset$ and for all real linear spaces L' ⊃ L of dim $(L') = c$, all points $X \cap L'$ are real.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

A real variety $X \subset \mathbb{P}^{n-1}(\mathbb{C})$ of $codim(X) = c$ is **hyperbolic** with respect to a linear space L of dim $c - 1$ if $X \cap L = \emptyset$ and for all real linear spaces L' ⊃ L of dim $(L') = c$, all points $X \cap L'$ are real.

Theorem (Shamovich-Vinnikov 2015). If a curve $X \subset \mathbb{P}^{n-1}$ is hyperbolic with respect to L , then its Chow form is a determinant

 $\det\left(\sum_{I\in\binom{[n]}{2}}p_I(M)A_I\right)$ with $\sum_{I\in\binom{[n]}{2}}p_I(L^\perp)A_I\succ0$

for some matrices $A_I \in \mathbb{R}_\mathrm{sym}^{D \times D}$ with $D = \deg(X).$

Cynthia Vinzant | Reciprocal linear spaces, hyperboli

 Ω

Reformulated Varchenko: \mathcal{L}^{-1} is hyperbolic with respect to \mathcal{L}^{\perp} .

Actually, \mathcal{L}^{-1} is hyperbolic w.r.t. any linear space in $Gr(n-d, n)$ whose Plücker coordinates agree in sign with those go $\mathcal{L}^\perp.$

Reformulated Varchenko: \mathcal{L}^{-1} is hyperbolic with respect to \mathcal{L}^{\perp} .

Actually, \mathcal{L}^{-1} is hyperbolic w.r.t. any linear space in $Gr(n-d, n)$ whose Plücker coordinates agree in sign with those go $\mathcal{L}^\perp.$

For $\sigma \in {\pm 1\}}^{{n \choose c}}$, let $Gr(c, n)^{\sigma} = \{M \in Gr(c, n) : \sigma_I \sigma_J p_I(M) p_J(M) \geq 0 \text{ for all } I, J\}$.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $2Q$

A projective variety X of codimension c is σ -stable if it is hyperbolic with respect to all M in $Gr(c, n)^{\sigma}$.

Reformulated Varchenko: \mathcal{L}^{-1} is hyperbolic with respect to \mathcal{L}^{\perp} .

Actually, \mathcal{L}^{-1} is hyperbolic w.r.t. any linear space in $Gr(n-d, n)$ whose Plücker coordinates agree in sign with those go $\mathcal{L}^\perp.$

For $\sigma \in {\pm 1\}}^{{n \choose c}}$, let $Gr(c, n)^{\sigma} = \{M \in Gr(c, n) : \sigma_I \sigma_J p_I(M) p_J(M) \geq 0 \text{ for all } I, J\}$.

A projective variety X of codimension c is σ -stable if it is hyperbolic with respect to all M in $Gr(c, n)^{\sigma}$.

Cor: If \mathcal{L}^{\perp} is in the closure of $Gr(n-d, n)^{\sigma}$, then \mathcal{L}^{-1} is σ -stable.

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

Determinantal representation for \mathcal{L}^{-1}

Let $\mathcal{L} \in \mathsf{Gr}(d, n)$ not contained in a hyperplane $\{x_i = 0\}$.

Define
$$
p(\mathcal{L}) \in \mathbb{P}(\bigwedge^d \mathbb{R}^n)
$$
 and $\mathcal{B} = \{I \in \binom{[n]}{d} : p_I(\mathcal{L}) \neq 0\}.$

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

Determinantal representation for \mathcal{L}^{-1}

Let $\mathcal{L} \in \mathsf{Gr}(d, n)$ not contained in a hyperplane $\{x_i = 0\}$.

Define
$$
p(\mathcal{L}) \in \mathbb{P}(\bigwedge^d \mathbb{R}^n)
$$
 and $\mathcal{B} = \{I \in \binom{[n]}{d} : p_I(\mathcal{L}) \neq 0\}.$

Thm. The Chow form of \mathcal{L}^{-1} can be written as a determinant

$$
\det \left(\sum_{I \in \mathcal{B}} \frac{p_I(M)}{p_I(\mathcal{L})} A_I \right)
$$

for some rank-one, p.s.d. matrices $A_I = v_I v_I^T$ of size $deg(\mathcal{L}^{-1})$.

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

Determinantal representation for \mathcal{L}^{-1}

Let $\mathcal{L} \in \mathsf{Gr}(d, n)$ not contained in a hyperplane $\{x_i = 0\}$.

Define
$$
p(\mathcal{L}) \in \mathbb{P}(\bigwedge^d \mathbb{R}^n)
$$
 and $\mathcal{B} = \{I \in \binom{[n]}{d} : p_I(\mathcal{L}) \neq 0\}.$

Thm. The Chow form of \mathcal{L}^{-1} can be written as a determinant

$$
\det \left(\sum_{I \in \mathcal{B}} \frac{p_I(M)}{p_I(\mathcal{L})} A_I \right)
$$

for some rank-one, p.s.d. matrices $A_I = v_I v_I^T$ of size $deg(\mathcal{L}^{-1})$.

Observations:

- ▶ Determinant is multiaffine (i.e. has degree ≤ 1 in $p_1(M)$).
- In Matrix is positive definite when $sign(p(M)) = sign(p(\mathcal{L}))$.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

A few words about the proof

Useful to consider $\mathbf{1} = (1, \ldots, 1) \in \mathcal{L}^{-1} \cap M^{\perp}$.

Let $\mathcal{H}_{\mathcal{B}} \subset \bigwedge^d \mathbb{R}^n$ denote the vector space

$$
\mathcal{H}_{\mathcal{B}} = \text{ span}\left\{\gamma \wedge \mathbf{1} \;:\; \gamma \in \bigwedge^{d-1} \mathbb{R}^n \right\} \; \cap \; \text{span}\{e_I : I \in \mathcal{B}\}
$$

where
$$
e_I = \wedge_{i \in I} e_i
$$
. Then $\dim(\mathcal{H}_{\mathcal{B}}) = \deg(\mathcal{L}^{-1}) = |\mathcal{F}|$.

(For experts:

 $\mathcal{H}_{\mathcal{B}}$ corresponds to the d-th graded piece of the Orlik-Solomon algebra)

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

A few words about the proof

Useful to consider $\mathbf{1} = (1, \ldots, 1) \in \mathcal{L}^{-1} \cap M^{\perp}$.

Let $\mathcal{H}_{\mathcal{B}} \subset \bigwedge^d \mathbb{R}^n$ denote the vector space

$$
\mathcal{H}_{\mathcal{B}} = \text{ span}\left\{\gamma \wedge \mathbf{1} \;:\; \gamma \in \bigwedge^{d-1} \mathbb{R}^n \right\} \; \cap \; \text{span}\{e_I : I \in \mathcal{B}\}
$$

where
$$
e_l = \wedge_{i \in I} e_i
$$
. Then $\dim(\mathcal{H}_{\mathcal{B}}) = \deg(\mathcal{L}^{-1}) = |\mathcal{F}|$.

The vectors v_I represent coordinate functions on \mathcal{H}_B . One can right $\mathcal{H}_{\mathcal{B}}$ as the rowspan of a $|\mathcal{F}| \times |\mathcal{B}|$ matrix with columns v_I .

(For experts:

 $\mathcal{H}_{\mathcal{B}}$ corresponds to the d-th graded piece of the Orlik-Solomon algebra)

Cynthia Vinzant Reciprocal linear spaces, hyperboli

For $d = 2, n = 4, \mathcal{L}^{-1}$ generically has degree 3 and we can take

$$
\begin{pmatrix} v_{14} & v_{24} & v_{34} & v_{12} & v_{13} & v_{23}\end{pmatrix} \; = \; \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix}.
$$

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

 \equiv \rightarrow 重

For $d = 2, n = 4, \mathcal{L}^{-1}$ generically has degree 3 and we can take

$$
\begin{pmatrix} v_{14} & v_{24} & v_{34} & v_{12} & v_{13} & v_{23} \end{pmatrix} \; = \; \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix}.
$$

If $p = p(M)$ and $q = p(\mathcal{L})$ then the Chow form of \mathcal{L}^{-1} is

$$
\det\left(\sum_{1} \frac{p_1}{q_1} \cdot v_1 v_1^T\right) = \\ \det\begin{pmatrix} \frac{p_{14}}{q_{14}} + \frac{p_{12}}{q_{12}} + \frac{p_{13}}{q_{13}} & -p_{12}/q_{12} & -p_{13}/q_{13} \\ -p_{12}/q_{12} & \frac{p_{24}}{q_{24}} + \frac{p_{12}}{q_{12}} + \frac{p_{23}}{q_{23}} & -p_{23}/q_{23} \\ -p_{13}/q_{13} & -p_{23}/q_{23} & \frac{p_{34}}{q_{34}} + \frac{p_{13}}{q_{13}} + \frac{p_{23}}{q_{23}} \end{pmatrix}.
$$

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

KEY E DAG

Generic case: non-zero Plücker coordinates

 \overline{r} \overline{r} .

If
$$
B = \begin{pmatrix} |I| \ d \end{pmatrix}
$$
 the vectors $\{v_i : I \in B\}$ can be taken to be

$$
v_i = 0 \text{ for all for } i > n \text{ and } \sum_{i=1}^{d} (-1)^k \cos(i) \text{ for } i \neq j
$$

$$
v_I = e_{I \setminus \{n\}}
$$
 for $I \ni n$ and $\sum_{k=1}^{\infty} (-1)^k e_{I \setminus \{i_k\}}$ for $I \not\ni n$.

For $d = 2$, these vectors represent the graphic matroid of K_n .

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

Generic case: non-zero Plücker coordinates

If
$$
\mathcal{B} = \begin{pmatrix} [n] \\ d \end{pmatrix}
$$
 the vectors $\{v_i : l \in \mathcal{B}\}$ can be taken to be

$$
v_I = e_{I \setminus \{n\}} \text{ for } I \ni n \text{ and } \sum_{k=1}^d (-1)^k e_{I \setminus \{i_k\}} \text{ for } I \not\ni n.
$$

For $d = 2$, these vectors represent the graphic matroid of K_n .

Theorem. If $\mathcal{L} \in \mathsf{Gr}(2, n)$ has no zero Plücker coordinates, then the Chow form of \mathcal{L}^{-1} is

$$
\sum_{\mathcal{T}\in\mathcal{T}_n}\prod_{\{i,j\}\in\mathcal{T}}p_{ij}(M)\cdot\prod_{\{k,\ell\}\in\mathcal{T}^c}p_{k\ell}(\mathcal{L}),
$$

where \mathcal{T}_n denotes the set of spanning trees on *n* vertices.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

Simplicial matroids

If
$$
B = \begin{pmatrix} [n] \\ d \end{pmatrix}
$$
 the vectors $\{v_i : I \in B\}$ can be taken to be
\n
$$
v_I = e_{I \setminus \{n\}} \text{ for } I \ni n \text{ and } \sum_{k=1}^d (-1)^k e_{I \setminus \{i_k\}} \text{ for } I \not\ni n.
$$

More generally, $\left(\mathsf{v}_{\mathsf{I}}\right)_{\mathsf{I}\in\left(\mathsf{I}_d^{\mathsf{I}}\right)}$ represents the simplicial matroid of \mathcal{K}_n^{d-1} , studied by Kalai, Bernardi–Klivans, \dots

complex which is the equatorial bip[yra](#page-33-0)[mid.](#page-35-0) [F](#page-33-0)[i](#page-34-0)[gu](#page-35-0)[re](#page-36-0) [3 a](#page-0-0)[lso](#page-41-0) [sho](#page-0-0)[ws a](#page-41-0) [ro](#page-0-0)[oted](#page-41-0) for ϵ and ϵ Cynthia Vinzant Reciprocal linear spaces, hyperboli **Cynthia Vinzant**

Simplicial matroids

If
$$
B = \begin{pmatrix} [n] \\ d \end{pmatrix}
$$
 the vectors $\{v_i : I \in B\}$ can be taken to be
\n
$$
v_I = e_{I \setminus \{n\}} \text{ for } I \ni n \text{ and } \sum_{k=1}^d (-1)^k e_{I \setminus \{i_k\}} \text{ for } I \not\ni n.
$$

More generally, $\left(\mathsf{v}_{\mathsf{I}}\right)_{\mathsf{I}\in\left(\mathsf{I}_d^{\mathsf{I}}\right)}$ represents the simplicial matroid of \mathcal{K}_n^{d-1} , studied by Kalai, Bernardi–Klivans, \dots

Theorem. If all Plücker coordinates of $\mathcal{L} \in \mathsf{Gr}(d,n)$ are non-zero, then the Chow form of \mathcal{L}^{-1} in $\mathbb{C}[p_I(M^\perp)$: $I\in\binom{[n]}{d}]$ is $\binom{n}{d}$] is

$$
\sum_{\substack{F \text{ is a spanning} \\ \text{forest of } K_n^{d-1}}} c_F \cdot \prod_{I \in F} p_I(M) \cdot \prod_{I \notin F} p_I(\mathcal{L})
$$

where $c_{\mathsf{F}}\in\mathbb{Z}_+$ depends on the relative homology of $\mathsf F$ in $\mathsf K^{d-1}_{n-1}.$

Cynthia Vinzant Reciprocal linear spaces, hyperboli Cynthia Vinzant

complex which is the equatorial bip[yra](#page-34-0)[mid.](#page-36-0) [F](#page-33-0)[i](#page-34-0)[gu](#page-35-0)[re](#page-36-0) [3 a](#page-0-0)[lso](#page-41-0) [sho](#page-0-0)[ws a](#page-41-0) [ro](#page-0-0)[oted](#page-41-0) for ϵ and ϵ

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the monomials in the support of f form the bases of a matroid.

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the monomials in the support of f form the bases of a matroid.

Cynthia Vinzant Reciprocal linear spaces, hyperbolic

$$
\begin{array}{ccc}\n\text{Ex:} & f = \det(\sum_{i} x_{i} v_{i} v_{i}^{T}) \\
\text{where } v_{i} \in \mathbb{R}^{d} & \rightarrow & \{v_{i} : i \in I\} \text{ is a basis of } \mathbb{R}^{d}\n\end{array}
$$

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the monomials in the support of f form the bases of a matroid.

$$
\begin{array}{rcl}\n\text{Ex:} & f = \det(\sum_{i} x_{i} v_{i} v_{i}^{T}) \\
\text{where } v_{i} \in \mathbb{R}^{d} \\
\end{array}\n\quad \longrightarrow\n\quad\n\begin{array}{rcl}\n\text{subsets } I \subset [n] \text{ for which} \\
\{v_{i} : i \in I\} \text{ is a basis of } \mathbb{R}^{d}\n\end{array}
$$

Is there a matroidal (or polymatroidal) structure in stable varieties?

Cynthia Vinzant Reciprocal linear spaces, hyperboli

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the monomials in the support of f form the bases of a matroid.

$$
\begin{array}{rcl}\n\text{Ex:} & f = \det(\sum_{i} x_{i} v_{i} v_{i}^{T}) \\
\text{where } v_{i} \in \mathbb{R}^{d} \\
\end{array}\n\quad \longrightarrow\n\quad\n\begin{array}{rcl}\n\text{subsets } I \subset [n] \text{ for which} \\
\{v_{i} : i \in I\} \text{ is a basis of } \mathbb{R}^{d}\n\end{array}
$$

Is there a matroidal (or polymatroidal) structure in stable varieties?

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $2Q$

Thanks!

References

- 暈 O. Bernardi and C. Klivans. Directed rooted forests in higher dimension, Preprint, available at <http://arxiv.org/abs/1512.07757>, 2015.
- 螶

晶

- Y.-B. Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner. Homogeneous multivariate polynomials with the half-plane property. Adv. in Appl. Math., 32(1-2):88–187, 2004. Special issue on the Tutte polynomial.
- 量 J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Comm. Pure Appl. Math., 60(5):654–674, 2007.
- 畐 M. Kummer and C. Vinzant. The Chow form of a reciprocal linear space. Preprint, available at <http://arxiv.org/abs/1610.04584>, 2015.
- 靠 E. Shamovich and V. Vinnikov. Livšic-type determinantal representations and hyperbolicity, Preprint, available at <http://arxiv.org/abs/1410.2826>, 2014.
	- A. Varchenko. Critical points of the product of powers of linear functions and families of bases of singular vectors. Compositio Math., 97(3):385–401, 1995.

Cynthia Vinzant Reciprocal linear spaces, hyperboli

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 \equiv

I d-din (real) linear space in \mathbb{C}^m $L^{2} = \{ (x_{1}^{-1}, ..., x_{m}^{-1}) : x \in \mathcal{L} \cap (\mathbb{C}^{*})^{m} \}$ $Y = V(x_1 + x_2 + x_3) = \text{rowspan} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$ Example: $\mathcal{L}^{-1} = \bigvee (x_2x_3 + x_1x_3 + x_2x_3)$ Circuits: 123 Brokencircuits: 12
Brokencircuit complex: L^{+} +v = { (t+v, t+vz, t+vs) : te C } $\mathcal{L} \left(\mathcal{L}_{\mathcal{L}} \right)$ $\frac{1}{\sqrt{3}}$ correspond to the
roots of $\frac{d}{dt} \prod_{i=1}^{3} (t+v_i)$ $X_3 = O$ $X_1 = 0 \qquad X_2 = 0$