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The plan

I Reciprocal linear spaces, hyperplane arrangements

I Multivariate real-rootedness and determinants

I Determinantal representations of reciprocal linear spaces

I A connection with graphic and simplicial matroids
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Reciprocal linear spaces

Let L be a d-dim’l linear space in Cn. Its reciprocal linear space is

L−1 =
{(

x−11 , . . . , x−1n

)
: x ∈ L ∩ (C∗)n

}
.

Proudfoot-Webster: C[L−1] is the intersection cohomology ring
of the complement of a hyperplane arrangement.

Proudfoot-Speyer: Give flat degeneration of C[L−1] to
Stanley-Reisner ring of broken circuit complex.

Varchenko: Critical points of products of linear forms are all real.

De Loera-Sturmfels-V: L−1 ∩ (L⊥ + v) are analytic centers
of the bounded regions in a hyperplane arrangement.
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Example: n = 5, d = 3

L = rowspan

1 0 0 1 1
0 1 0 1 0
0 0 1 0 1



The matroid corresponding to L has . . .

circuits {124, 135, 2345}
broken circuits {12, 13, 234}
broken circuit complex F = {145, 235, 245, 345}

So L−1 has degree |F| = 4.
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Example: (d , n) = (2, 4)

Take `0, `1, `2, `3 ∈ R[s, t]1.

Then L = {(`0, `1, `2, `3) : (s, t) ∈ R2} ∈ Gr(2, 4)

L intersects coord. hyperplanes ∪i{xi = 0} in 4 points (proj.)
Remove them and take inverses to get

L−1 = {[ 1
`0
, 1
`1
, 1
`2
, 1
`3

]} = {[`1`2`3, `0`2`3, `0`1`3, `0`1`2]}.

-0.5 0.0 0.5 1.0 1.5
-0.5

0.0

0.5

1.0

1.5

L−1 is a rational cubic curve.

For v ∈ R4, L⊥ + v intersects L−1 in
3 = deg(L−1) real points.
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Multivariate real-rootedness

A polynomial f ∈ R[x1, . . . , xn]d is hyperbolic
w.r.t a point v if f (v) 6= 0 and every real line
through v meets VC(f ) in only real points.

f is stable if it is hyperbolic w.r.t. all v ∈ (R+)n.

Example: f = det(
∑

i xiAi ) where A1, . . . ,An ∈ Rd×d
sym and the

matrix
∑

i viAi is positive definite

Helton Vinnikov: For n = 3, every hyperbolic/stable polynomial
f ∈ R[x1, x2, x3]d has such a determinantal representation.
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Chow forms: making varieties into hypersurfaces since 1937

Let X ⊂ Pn−1 be an irreducible variety of dimension d − 1. Then

{M : M⊥ intersects X} is a hypersurface in Gr(d , n)

defined by a polynomial in the Plücker coordinates on Gr(d , n)
called the Chow form of X .

Example: X = {(1, t, t2, t3) : t ∈ C}, M = span{a, b}

M⊥ ∩ X 6= 0 ⇔ a0 + a1t + a2t
2 + a3t

3, b0 + b1t + b2t
2 + b3t

3

have a common root

The Chow form of X is the resultant of these polynomials.
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Hyperbolicity and Chow forms

A real variety X ⊂ Pn−1(C) of codim(X ) = c is
hyperbolic with respect to a linear space L of dim
c − 1 if X ∩ L = ∅ and for all real linear spaces
L′ ⊃ L of dim(L′) = c , all points X ∩ L′ are real.

Theorem (Shamovich-Vinnikov 2015). If a curve X ⊂ Pn−1 is
hyperbolic with respect to L, then its Chow form is a determinant

det
(∑

I∈([n]2 ) pI (M)AI

)
with

∑
I∈([n]2 ) pI (L

⊥)AI � 0

for some matrices AI ∈ RD×D
sym with D = deg(X ).
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Reciprocal linear spaces are hyperbolic

Reformulated Varchenko: L−1 is hyperbolic with respect to L⊥.

Actually, L−1 is hyperbolic w.r.t. any linear space in Gr(n − d , n)
whose Plücker coordinates agree in sign with those go L⊥.

For σ ∈ {±1}(nc), let

Gr(c, n)σ = {M ∈ Gr(c , n) : σIσJpI (M)pJ(M) ≥ 0 for all I , J} .

A projective variety X of codimension c is σ-stable if it is
hyperbolic with respect to all M in Gr(c, n)σ.

Cor: If L⊥ is in the closure of Gr(n− d , n)σ, then L−1 is σ-stable.
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whose Plücker coordinates agree in sign with those go L⊥.

For σ ∈ {±1}(nc), let

Gr(c, n)σ = {M ∈ Gr(c , n) : σIσJpI (M)pJ(M) ≥ 0 for all I , J} .

A projective variety X of codimension c is σ-stable if it is
hyperbolic with respect to all M in Gr(c, n)σ.

Cor: If L⊥ is in the closure of Gr(n− d , n)σ, then L−1 is σ-stable.

Cynthia Vinzant Reciprocal linear spaces, hyperbolicity, and determinants



Reciprocal linear spaces are hyperbolic

Reformulated Varchenko: L−1 is hyperbolic with respect to L⊥.

Actually, L−1 is hyperbolic w.r.t. any linear space in Gr(n − d , n)
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Determinantal representation for L−1

Let L ∈ Gr(d , n) not contained in a hyperplane {xi = 0}.

Define p(L) ∈ P(
∧d Rn) and B = {I ∈

([n]
d

)
: pI (L) 6= 0}.

Thm. The Chow form of L−1 can be written as a determinant

det

(∑
I∈B

pI (M)

pI (L)
AI

)

for some rank-one, p.s.d. matrices AI = vI v
T
I of size deg(L−1).

Observations:

I Determinant is multiaffine (i.e. has degree ≤ 1 in pI (M)).

I Matrix is positive definite when sign(p(M)) = sign(p(L)).
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A few words about the proof

Useful to consider 1 = (1, . . . , 1) ∈ L−1 ∩M⊥.

Let HB ⊂
∧d Rn denote the vector space

HB = span

{
γ ∧ 1 : γ ∈

∧d−1
Rn

}
∩ span{eI : I ∈ B}

where eI = ∧i∈I ei . Then dim(HB) = deg(L−1) = |F|.

The vectors vI represent coordinate functions on HB. One can
right HB as the rowspan of a |F| × |B| matrix with columns vI .

(For experts:

HB corresponds to the d-th graded piece of the Orlik-Solomon algebra)

Cynthia Vinzant Reciprocal linear spaces, hyperbolicity, and determinants



A few words about the proof

Useful to consider 1 = (1, . . . , 1) ∈ L−1 ∩M⊥.

Let HB ⊂
∧d Rn denote the vector space

HB = span

{
γ ∧ 1 : γ ∈

∧d−1
Rn

}
∩ span{eI : I ∈ B}

where eI = ∧i∈I ei . Then dim(HB) = deg(L−1) = |F|.

The vectors vI represent coordinate functions on HB. One can
right HB as the rowspan of a |F| × |B| matrix with columns vI .

(For experts:

HB corresponds to the d-th graded piece of the Orlik-Solomon algebra)

Cynthia Vinzant Reciprocal linear spaces, hyperbolicity, and determinants



Example: d = 2, n = 4

For d = 2, n = 4, L−1 generically has degree 3 and we can take

(
v14 v24 v34 v12 v13 v23

)
=

1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1

 .

If p = p(M) and q = p(L) then the Chow form of L−1 is

det(
∑

I
pI
qI
· vI vTI ) =

det


p14
q14

+ p12
q12

+ p13
q13

−p12/q12 −p13/q13
−p12/q12 p24

q24
+ p12

q12
+ p23

q23
−p23/q23

−p13/q13 −p23/q23 p34
q34

+ p13
q13

+ p23
q23

.
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Generic case: non-zero Plücker coordinates

If B =
([n]
d

)
the vectors {vI : I ∈ B} can be taken to be

vI = eI\{n} for I 3 n and
d∑

k=1

(−1)keI\{ik} for I 63 n.

For d = 2, these vectors represent the graphic matroid of Kn.

Theorem. If L ∈ Gr(2, n) has no zero Plücker coordinates, then
the Chow form of L−1 is∑

T∈Tn

∏
{i ,j}∈T

pij(M) ·
∏

{k,`}∈T c

pk`(L),

where Tn denotes the set of spanning trees on n vertices.
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Simplicial matroids

If B =
([n]
d

)
the vectors {vI : I ∈ B} can be taken to be

vI = eI\{n} for I 3 n and
d∑

k=1

(−1)keI\{ik} for I 63 n.

More generally, (vI )I∈([n]
d ) represents the simplicial matroid

of K d−1
n , studied by Kalai, Bernardi–Klivans, . . .

6 OLIVIER BERNARDI AND CAROLINE J. KLIVANS

cycle) with R. Hence, R is relatively-generating if and only if cutting along the edges of R gives a
disjoint union of triangulated polygons without interior vertices. Thus, R is a root of G if and only
if cutting along R gives a triangulated polygon without interior vertices.

(a) (b) (c) (d)

Figure 3. Examples of rooted forests in dimension 2 (the root is indicated by thick
lines). Observe that in (c) and (d) the root contains some 1-cycles.

3. Rooted forests and their homological weights

Definition 12. Let G be a d-dimensional simplicial complex. A rooted forest of G is a pair (F, R),
where F is a forest of G, and R is a root of F 3. We call (F, R) a rooted spanning forest if moreover
F is a spanning forest of G.

Example 13. Figure 2.3 shows four examples of rooted forests. In parts (a) and (b), the root is
a graphical spanning tree of the one-dimensional faces. On the other hand, the root in part (c)
contains a cycle and the root in part (d) contains two cycles. Figure 3 (a) shows the 2-dimensional
complex which is the equatorial bipyramid. Figure 3 also shows a rooted forest of G with three 2-
faces. Again, in this case, the root is not an acyclic graph (any root must contain a non-contractible
1-cycle).

(a) (b)

24

1

4

3

Figure 4. (a) The equatorial bipyramid G containing all 7 triangles supported on
the 1-skeleton. (b) A rooted forest (F, R): the forest F is made of the three shaded
triangles while the root R is made of the bold edges.

Next we reproduce two lemmas which already appeared in [10]. We include the results here in
order to give proofs obtained from our linear algebra definitions.

Lemma 14. [10, Proposition 3.2] Let G be a d-dimensional simplicial complex, let F be a set of
d-faces, and let R be a set of (d � 1)-faces. Let R = Gd�1 \ R and @R,F be the submatrix of @G

d

obtained by keeping the rows corresponding to R and the columns corresponding to F . Then, (F, R)
is a rooted forest if and only if |F | = |R| and det(@R,F ) 6= 0.

3Formally, R is a root of the simplicial complex generated by F : the subcomplex containing all the faces and
subfaces of F .

Theorem. If all Plücker coordinates of L ∈ Gr(d , n) are non-zero,

then the Chow form of L−1 in C[pI (M
⊥) : I ∈

([n]
d

)
] is∑

F is a spanning

forest of Kd−1
n

cF ·
∏
I∈F

pI (M) ·
∏
I 6∈F

pI (L)

where cF ∈ Z+ depends on the relative homology of F in Kd−1
n−1 .
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disjoint union of triangulated polygons without interior vertices. Thus, R is a root of G if and only
if cutting along R gives a triangulated polygon without interior vertices.

(a) (b) (c) (d)

Figure 3. Examples of rooted forests in dimension 2 (the root is indicated by thick
lines). Observe that in (c) and (d) the root contains some 1-cycles.

3. Rooted forests and their homological weights

Definition 12. Let G be a d-dimensional simplicial complex. A rooted forest of G is a pair (F, R),
where F is a forest of G, and R is a root of F 3. We call (F, R) a rooted spanning forest if moreover
F is a spanning forest of G.

Example 13. Figure 2.3 shows four examples of rooted forests. In parts (a) and (b), the root is
a graphical spanning tree of the one-dimensional faces. On the other hand, the root in part (c)
contains a cycle and the root in part (d) contains two cycles. Figure 3 (a) shows the 2-dimensional
complex which is the equatorial bipyramid. Figure 3 also shows a rooted forest of G with three 2-
faces. Again, in this case, the root is not an acyclic graph (any root must contain a non-contractible
1-cycle).

(a) (b)

24

1

4

3

Figure 4. (a) The equatorial bipyramid G containing all 7 triangles supported on
the 1-skeleton. (b) A rooted forest (F, R): the forest F is made of the three shaded
triangles while the root R is made of the bold edges.

Next we reproduce two lemmas which already appeared in [10]. We include the results here in
order to give proofs obtained from our linear algebra definitions.

Lemma 14. [10, Proposition 3.2] Let G be a d-dimensional simplicial complex, let F be a set of
d-faces, and let R be a set of (d � 1)-faces. Let R = Gd�1 \ R and @R,F be the submatrix of @G

d

obtained by keeping the rows corresponding to R and the columns corresponding to F . Then, (F, R)
is a rooted forest if and only if |F | = |R| and det(@R,F ) 6= 0.

3Formally, R is a root of the simplicial complex generated by F : the subcomplex containing all the faces and
subfaces of F .

Theorem. If all Plücker coordinates of L ∈ Gr(d , n) are non-zero,

then the Chow form of L−1 in C[pI (M
⊥) : I ∈

([n]
d

)
] is∑

F is a spanning

forest of Kd−1
n

cF ·
∏
I∈F

pI (M) ·
∏
I 6∈F

pI (L)

where cF ∈ Z+ depends on the relative homology of F in Kd−1
n−1 .
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Stability for varieties

The variety L−1 is stable, i.e. hyperbolic with respect to all
elements of an orthant in the Grassmannian.

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the
monomials in the support of f form the bases of a matroid.

Ex: f = det(
∑

i xiviv
T
i )

where vi ∈ Rd
−→ subsets I ⊂ [n] for which

{vi : i ∈ I} is a basis of Rd

Is there a matroidal (or polymatroidal) structure in stable varieties?

Thanks!
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E. Shamovich and V. Vinnikov. Livšic-type determinantal representations
and hyperbolicity, Preprint, available at
http://arxiv.org/abs/1410.2826, 2014.

A. Varchenko. Critical points of the product of powers of linear functions
and families of bases of singular vectors. Compositio Math.,
97(3):385–401, 1995.

Cynthia Vinzant Reciprocal linear spaces, hyperbolicity, and determinants

http://arxiv.org/abs/1512.07757
http://arxiv.org/abs/1610.04584
http://arxiv.org/abs/1410.2826



