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» Reciprocal linear spaces, hyperplane arrangements
» Multivariate real-rootedness and determinants
» Determinantal representations of reciprocal linear spaces

» A connection with graphic and simplicial matroids
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Reciprocal linear spaces

Let £ be a d-dim’l linear space in C”. Its reciprocal linear space is

Lh={(q%. ...xat) i xeLn(C)n}.
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Reciprocal linear spaces

Let £ be a d-dim’l linear space in C”. Its reciprocal linear space is

Lh={(q%. ...xat) i xeLn(C)n}.

Proudfoot-Webster: C[£71] is the intersection cohomology ring
of the complement of a hyperplane arrangement.

Proudfoot-Speyer: Give flat degeneration of C[£™!] to
Stanley-Reisner ring of broken circuit complex.
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Reciprocal linear spaces

Let £ be a d-dim’l linear space in C”. Its reciprocal linear space is

L= {(xl_l,...,xn_l) 1x € LN(CH)"}.
Proudfoot-Webster: C[£71] is the intersection cohomology ring
of the complement of a hyperplane arrangement.

Proudfoot-Speyer: Give flat degeneration of C[£™!] to
Stanley-Reisner ring of broken circuit complex.

Varchenko: Critical points of products of linear forms are all real.

De Loera-Sturmfels-V: £71 N (L+ + v) are analytic centers
of the bounded regions in a hyperplane arrangement.
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Example: n=5,d =3

L = rowspan

O O =
O = O
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Example: n=5,d =3

10011
L=rowspan [0 1 0 1 0
0 01 01

The matroid corresponding to £ has ...
circuits {124,135,2345}
broken circuits {12, 13,234}
broken circuit complex F = {145,235, 245,345}
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Example: n=5,d =3

10011
L=rowspan [0 1 0 1 0
0 01 01

The matroid corresponding to £ has ...
circuits {124,135,2345}
broken circuits {12, 13,234}
broken circuit complex F = {145,235, 245,345}

So £7! has degree |F| = 4.
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Example: (d,n) = (2,4)

Take £, l1, 02,03 € R[S, t]l.

Then L = {(fo,£1,€2,£3) : (5, t) S R2} S Gr(2,4)




Example: (d,n) = (2,4

Take £, l1, 02,03 € R[S, t]l.
Then L = {(fo,£1,€2,£3) : (5, t) S R2} S Gr(2,4)

L intersects coord. hyperplanes U;{x; = 0} in 4 points (proj.)
Remove them and take inverses to get

L= Al i 0 1) = {[lalals, Lolals, Lol s, Lolala]}.




Example: (d,n) = (2,4

Take £, l1, 02,03 € R[S, t]l.
Then L = {(fo,£1,€2,£3) : (5, t) S R2} S Gr(2,4)

L intersects coord. hyperplanes U;{x; = 0} in 4 points (proj.)
Remove them and take inverses to get

L= Al i 0 1) = {[lalals, Lolals, Lol s, Lolala]}.

L1 is a rational cubic curve.

For v € R* L+ 4 v intersects £71 in
3 = deg(L™1) real points.
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Multivariate real-rootedness

A polynomial f € R[xy,...,xs]q is hyperbolic N (/
w.r.t a point v if f(v) # 0 and every real line
through v meets Vc(f) in only real points. é

N\
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Multivariate real-rootedness

A polynomial f € R[xy,...,xs]q is hyperbolic N (/
w.r.t a point v if f(v) # 0 and every real line
through v meets Vc(f) in only real points. é

f is stable if it is hyperbolic w.r.t. all v € (R)". i
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Multivariate real-rootedness

A polynomial f € R[xy,...,xs]q is hyperbolic N (/
w.r.t a point v if f(v) # 0 and every real line
through v meets Vc(f) in only real points. é

f is stable if it is hyperbolic w.r.t. all v € (R)". i

Example: f =det(); x;A;) where Ay,..., A, € ngfnd and the
matrix ) v;A; is positive definite
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Multivariate real-rootedness

A polynomial f € R[xy,...,xs]q is hyperbolic N (/
w.r.t a point v if f(v) # 0 and every real line
through v meets Vc(f) in only real points. é

f is stable if it is hyperbolic w.r.t. all v € (R)". i

Example: f =det(); x;A;) where Ay,..., A, € ngfnd and the
matrix ) v;A; is positive definite

Helton Vinnikov: For n = 3, every hyperbolic/stable polynomial
f € R[x1, x2, x3]4 has such a determinantal representation.

ynthia Vinzant Reciprocal linear spaces, hyperbo



Chow forms: making varieties into hypersurfaces since 1937

Let X € P"~! be an irreducible variety of dimension d — 1. Then

{M : M~ intersects X} is a hypersurface in Gr(d, n)
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Chow forms: making varieties into hypersurfaces since 1937

Let X € P"~! be an irreducible variety of dimension d — 1. Then
{M : M+ intersects X} is a hypersurface in Gr(d, n)

defined by a polynomial in the Pliicker coordinates on Gr(d, n)
called the Chow form of X.
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Chow forms: making varieties into hypersurfaces since 1937

Let X € P"~! be an irreducible variety of dimension d — 1. Then
{M : M+ intersects X} is a hypersurface in Gr(d, n)

defined by a polynomial in the Pliicker coordinates on Gr(d, n)
called the Chow form of X.

Example: X = {(1,t,t?,t3) : t € C}, M = span{a, b}
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Chow forms: making varieties into hypersurfaces since 1937

Let X € P"~! be an irreducible variety of dimension d — 1. Then
{M : M+ intersects X} is a hypersurface in Gr(d, n)

defined by a polynomial in the Pliicker coordinates on Gr(d, n)
called the Chow form of X.
Example: X = {(1,t,t?,t3) : t € C}, M = span{a, b}

MENX#0 & ag+ art + axt? + ast3, by + byt + bot? + bst3
have a common root

inear spaces,



Chow forms: making varieties into hypersurfaces since 1937

Let X € P"~! be an irreducible variety of dimension d — 1. Then
{M : M+ intersects X} is a hypersurface in Gr(d, n)

defined by a polynomial in the Pliicker coordinates on Gr(d, n)
called the Chow form of X.
Example: X = {(1,t,t?,t3) : t € C}, M = span{a, b}

MENX#0 & ag+ art + axt? + ast3, by + byt + bot? + bst3
have a common root

The Chow form of X is the resultant of these polynomials.
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Hyperbolicity and Chow forms

A real variety X C P""1(C) of codim(X) = c is A
hyperbolic with respect to a linear space L of dim
c—1if XNL =0 and for all real linear spaces
[" > L of dim(L") = ¢, all points X N L" are real.

inear spaces,



Hyperbolicity and Chow forms

A real variety X C P""1(C) of codim(X) = c is A
hyperbolic with respect to a linear space L of dim \
c—1if XNL =0 and for all real linear spaces
[" > L of dim(L") = ¢, all points X N L" are real.

Theorem (Shamovich-Vinnikov 2015). If a curve X € P" 1 is
hyperbolic with respect to L, then its Chow form is a determinant

det(zle([g])p/(l\/l)A/) with 57, i) Pr(LH)A - 0

for some matrices A; € REXP with D = deg(X).

sym
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Reciprocal linear spaces are hyperbolic

Reformulated Varchenko: £71 is hyperbolic with respect to £=.

Actually, £71 is hyperbolic w.r.t. any linear space in Gr(n — d, n)
whose Pliicker coordinates agree in sign with those go £+
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Reciprocal linear spaces are hyperbolic

Reformulated Varchenko: £71 is hyperbolic with respect to £=.

Actually, £71 is hyperbolic w.r.t. any linear space in Gr(n — d, n)
whose Pliicker coordinates agree in sign with those go £+

For o € {jzl}(g), let
Gr(c,n)? ={M € Gr(c,n) : 1o p;(M)p;(M) > 0 for all I, J}.

A projective variety X of codimension c is o-stable if it is
hyperbolic with respect to all M in Gr(c, n)?.
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Reciprocal linear spaces are hyperbolic

Reformulated Varchenko: £71 is hyperbolic with respect to £=.

Actually, £71 is hyperbolic w.r.t. any linear space in Gr(n — d, n)
whose Pliicker coordinates agree in sign with those go £+

For o € {jzl}(g), let
Gr(c,n)? ={M € Gr(c,n) : 1o p;(M)p;(M) > 0 for all I, J}.

A projective variety X of codimension c is o-stable if it is
hyperbolic with respect to all M in Gr(c, n)?.

Cor: If £+ is in the closure of Gr(n— d, n)?, then L™ is o-stable.
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Determinantal representation for £}

Let £ € Gr(d, n) not contained in a hyperplane {x; = 0}.

Define p(£) € P(A“R") and B = {/ € ([Z]) - pi(L) # 0}
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Determinantal representation for £}

Let £ € Gr(d, n) not contained in a hyperplane {x; = 0}.
Define p(£) € P(A“R") and B = {/ € ([Z]) :pi(L) # 0}.
Thm. The Chow form of £~! can be written as a determinant
det < p’(M)A, )
— pi(L)

for some rank-one, p.s.d. matrices A; = v, v,T of size deg(L£71).
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Determinantal representation for £}

Let £ € Gr(d, n) not contained in a hyperplane {x; = 0}.
Define p(£) € P(A“R") and B = {/ € ([Z]) :pi(L) # 0}.
Thm. The Chow form of £~! can be written as a determinant
det < p’(M)A, )
— pi(L)

for some rank-one, p.s.d. matrices A; = v, v,T of size deg(L£71).

Observations:
» Determinant is multiaffine (i.e. has degree <1 in p;(M)).
» Matrix is positive definite when sign(p(M)) = sign(p(£)).
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A few words about the proof

Useful to consider 1 = (1,...,1) € £L71 N M+,

Let Hp C /\d R" denote the vector space
d—1
Hp = span {fy/\l Dy € /\ R"} N span{e; : | € B}

where e/ = Ajcjei. Then dim(Hg) = deg(L™1) = | F|.

(For experts:
‘Hp;z corresponds to the d-th graded piece of the Orlik-Solomon algebra)
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A few words about the proof

Useful to consider 1 = (1,...,1) € £L71 N M+,

Let Hp C /\d R" denote the vector space
d—1
Hp = span {’y/\l ty € /\ R"} N span{e; : | € B}

where e/ = Ajcjei. Then dim(Hg) = deg(L™1) = | F|.

The vectors v; represent coordinate functions on Hg. One can
right Hp as the rowspan of a |F| x |B| matrix with columns v;.

(For experts:
‘Hp;z corresponds to the d-th graded piece of the Orlik-Solomon algebra)
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Example: d =2, n=4

For d = 2,n =4, L1 generically has degree 3 and we can take

1 00 1 1 0
(via voa vas viz viz w3) = [0 1 0 -1 0 1
o001 0 -1 -1

inear spaces,



Example: d =2, n=4

For d = 2,n =4, L1 generically has degree 3 and we can take

1 00 1 1 0
(via voa vas viz viz w3) = [0 1 0 -1 0 1
o001 0 -1 -1

If p= p(M) and g = p(L) then the Chow form of L1 is

det(32, & - vi v') =

pep b2y Pu —p12/q12 —p13/q13
det —p12/q12 % + % + % — P23/ q23

p3a P13 P23
q3a ™ q13 T q23

—P13/Q13 —P23/CI23
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Generic case: non-zero Pliicker coordinates

If B= ([Z]) the vectors {v; : | € B} can be taken to be

d

Vi = en\{n} for I5n and Z(—l)ke/\{;k} for | % n.
k=1

For d = 2, these vectors represent the graphic matroid of K.
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Generic case: non-zero Pliicker coordinates

If B= ([Z]) the vectors {v; : | € B} can be taken to be

d

Vi = en\{n} for I5n and Z(—l)ke/\{;k} for | % n.
k=1

For d = 2, these vectors represent the graphic matroid of K.

Theorem. If £ € Gr(2, n) has no zero Pliicker coordinates, then
the Chow form of £71 is

o 00 ety T prel),

TeTa{ij}eT {kt}eTc

where T, denotes the set of spanning trees on n vertices.
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Simplicial matroids

If B= ([Z]) the vectors {v; : | € B} can be taken to be
d

vi =epgny for I>n and Z(—l)ke,\{,-k} for | % n.
k=1

More generally, (V’)Ie(["]) represents the simplicial matroid
d
of K,‘,’*l, studied by Kalai, Bernardi—Klivans, ...
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Simplicial matroids

If B= ([Z]) the vectors {v, : | € B} can be taken to be
d
vi =epgny for I>n and Z(—l)ke,\{,-k} for | % n.
k=1
More generally, (v,),e([;.]) represents the simplicial matroid

of K,‘,’*l, studied by Kalai, Bernardi—Klivans, ...

Theorem. If all Plicker coordinates of £ € Gr(d, n) are non-zero,
then the Chow form of £~%in C[p/(M*): 1 € ()] is

S [T T] pi()

F is a spanning IeF I¢F
forest of K,‘,F1

where cp € 7, depends on the relative homology of F in K97}
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Stability for varieties

The variety £71 is stable, i.e. hyperbolic with respect to all
elements of an orthant in the Grassmannian.
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Stability for varieties

The variety £71 is stable, i.e. hyperbolic with respect to all
elements of an orthant in the Grassmannian.

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the
monomials in the support of f form the bases of a matroid.
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Stability for varieties

The variety £71 is stable, i.e. hyperbolic with respect to all
elements of an orthant in the Grassmannian.

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the
monomials in the support of f form the bases of a matroid.

Ex: f= det(Z;XiViV,-T) . subsets /| C [n] for which
where v; € RY {v; :i € I} is a basis of RY
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Stability for varieties

The variety £71 is stable, i.e. hyperbolic with respect to all
elements of an orthant in the Grassmannian.

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the
monomials in the support of f form the bases of a matroid.

Ex: f=det(}y; xviv") subsets / C [n] for which
where v; € RY {vi i € 1} is a basis of R

Is there a matroidal (or polymatroidal) structure in stable varieties?
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Stability for varieties

The variety £71 is stable, i.e. hyperbolic with respect to all
elements of an orthant in the Grassmannian.

Choe, Oxley, Sokal, Wagner: If f is multiaffine and stable then the
monomials in the support of f form the bases of a matroid.

Ex: f=det(}y; xviv") . subsets /| C [n] for which

where v; € RY {vi i € I} is a basis of RY

Is there a matroidal (or polymatroidal) structure in stable varieties?
Thanks!
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