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1. MOTIVATION.

Moving robots.

A robotic snake can move:
1. the head or tail or 2. a joint

without self-intersecting.

Snake: Moves:

  1:

  2:

How do we get the robot to navigate this space efficiently? 3 / 39
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One motivation: moving robots.

How do can I move this robotic snake (optimally) using these
moves from one position to another one?

Position 1 → Position 2

4 / 39
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Motivation: moving robots.

Well... How do I navigate the world these days?

Like this:
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Motivation: moving robots.

Well... How do I navigate the world these days?

Or like this:
(Q: What does “optimal" mean?)

Let’s do the same:
build a map for the robot problem.
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One motivation: moving robots.

Let’s build a map of all possible positions of the robot.
The moduli space or configuration space.

A small piece: (discrete model)
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Motivation: moving robots.

Let’s build a map of all possible positions of the robot.

A small piece: (continuous model)
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Motivation: moving robots.

Let’s build a map of all possible positions. A complete example:

A CAT(0) cube complex!
How can we understand them? Navigate them?

9 / 39



motivation preliminaries examples characterizations applications robots

Motivation: moving robots.

Let’s build a map of all possible positions. A complete example:

A CAT(0) cube complex!
How can we understand them? Navigate them?

9 / 39



motivation preliminaries examples characterizations applications robots

Motivation: moving robots.

Regular
CAT(0) Cube
Complexes

Rick Scott

Intro to cube
complexes
Cube complexes

CAT(0)

Vertex-regular

Key Examples
RACG’s

RAMRG’s

Growth series
Definition

Properties of CAT(0)
cube complexes

Recurrence relations

Growth formula

Examples

Remarks

Proof sketch

RACG vs. RAMRG

RACG:

RAMRG:
How can we understand CAT(0) cube complexes?
How should we navigate them?

Obstacles:
• High dimension.
• Complicated ramification.
• Too many vertices.

This is what we need to overcome.
10 / 39
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OK, but before we build a map for the robots...
there are some ethical questions we cannot ignore.

When we were about to submit the paper, this happened:

July 8, 2016

Very partial thoughts about this:
• Mathematics and science are very powerful tools.
• It is our job to help spread that power equitably.

11 / 39
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2. PRELIMINARIES. CAT(0) spaces

(É. Cartan, A. Aleksandrov, V. Toponogov)

Metric space X is CAT(0) if it has global non-positive curvature.
Roughly, it is “saddle shaped".

More precisely triangles in X are “thin". We require:

• There is a unique geodesic path between any two points of X .

• (CAT(0) inequality) Consider any triangle T in X and a
comparison triangle T ′ in R2 of the same sidelengths.
Consider any chord (of length d) in T and the corresponding
chord (of length d ′) in T ′. Then

d ≤ d ′.
RECONFIGURATION 13

a b

c

d

a b

c

d′

X R2

FIGURE 9. Comparison triangles measure curvature bounds.

4.2. The link condition. There is a well-known combinatorial approach to deter-
mining when a cubical complex is nonpositively curved due to Gromov.

Definition 4.3. Let X denote a cell complex and let v denote a vertex of X . The link
of v, !k[v], is defined to be the abstract simplicial complex whose k-dimensional
simplices are the (k + 1)-dimensional cells incident to v with the natural boundary
relationships.

Certain global topological features of a metric cubical complex are completely de-
termined by the local structure of the vertex links: a theorem of Gromov [26] asserts
that a finite dimensional Euclidean cubical complex is NPC if and only if the link
of every vertex is a flag complex without digons. Recall: a digon is a pair of ver-
tices connected by two edges, and a flag complex is a simplicial complex which
is maximal among all simplicial complexes with the same 1-dimensional skeleton.
Gromov’s theorem permits us an elementary proof of the following general result.

Theorem 4.4. The state complex of any locally finite reconfigurable system is NPC.

PROOF: Gromov’s theorem is stated for finite dimensional Euclidean cubical com-
plexes with unit length cubes. It holds, however, for non-unit length cubes when
there are a finite number of isometry classes of cubes (the finite shapes condition) [6].
Locally finite reconfigurable systems possess locally finite and finite dimensional
state complexes, which automatically satisfy the finite shapes condition (locally).

Let u denote a vertex of S. Consider the link !k[u]. The 0-cells of the !k[u] corre-
spond to all edges in S(1) incident to u; that is, actions of generators based at u. A
k-cell of !k[u] is thus a commuting set of k + 1 of these generators based at u.

We argue first that there are no digons in !k[u] for any u ∈ S. Assume that φ1 and φ2

are admissible generators for the state u, and that these two generators correspond
to the vertices of a digon in !k[u]. Each edge of the digon in !k[u] corresponds to
a distinct 2-cell in S having a corner at u and edges at u corresponding to φ1 and
φ2. By Definition 2.7, each such 2-cell is the equivalence class [u; (φ1, φ2)]: the two
2-cells are therefore equivalent and not distinct.

To complete the proof, we must show that the link is a flag complex. The interpre-
tation of the flag condition for a state complex is as follows: if at u ∈ S, one has
a set of k generators φαi , of which each pair of generators commutes, then the full

12 / 39



motivation preliminaries examples characterizations applications robots

PRELIMINARIES. Cube complexes

A cube complex is a space obtained by gluing cubes (of
possibly different dimensions) along their faces.

8 R. GHRIST & V. PETERSON

FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a

(Like a simplicial complex, but the building blocks are cubes.)

Metric: Euclidean inside each cube.

We are interested in cube complexes which are CAT(0).

13 / 39
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Example A. The corner of a box. CAT(0)?

Example B. The corner of a hallway. CAT(0)?

A: No. B: Yes. This triangle criterion is very impractical!
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3. EXAMPLES.

Example 1. Reconfigurable systems (e.g. discrete robots)

State complex. vertices = positions. edges = moves.
cubes = “physically independent" moves.

Theorem (Ghrist–Peterson)
This is a locally (and often globally) CAT(0) cube complex.

This works very generally for many reconfiguration systems,
where a discrete system changes according to local moves.

• non-colliding particles in a graph
• domino tilings under square moves
• permutations under Wilf equivalence (A. Chavez, J. Guo)

15 / 39
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Example 2. Geometric Group Theory. (it started here!)

A right-angled Coxeter group is a group of the form

W (G) = 〈v ∈ V | v2 = 1 for v ∈ V , (uv)2 = 1 for uv ∈ E〉Regular
CAT(0) Cube
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Rick Scott
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Example

Example
For the graph
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Example: a2 = b2 = c2 = d2 = 1
(ab)2 = (ac)2 = (bc)2 = (cd)2 = 1

Thm. (Davis) Right-angled Coxeter groups are CAT(0):
W (G) acts “very nicely" on a CAT(0) cube complex X (G).
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Use the geometry of X (G) to study the group W (G); e.g.,
• If a group G is CAT(0), the “word problem" is easy for G.
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Example 3. Phylogenetic trees (it started here!)

Goal: Predict the evolutionary tree of
n current-day species/languages/....

Approach:
• Build a space Tn of all possible trees.
• Study it, navigate it.

14 BILLERA, HOLMES AND VOGTMANN

1 42 3

0

1 42 3

0

(1,0)

(0,1) 

x+y=1

Figure 11: Constructing the link of the origin in T4

Figure 12 shows another portion of the link which forms a pentagon
embedded in its ambient quadrants.

1 2 3 4
1

2
3
4

1 2 3 41 2 3 4

1 2 3 4

0 0

0

0

0

Figure 12: A pentagon in the link

The entire link of the origin is shown in Figure 13, without the ambient
quadrants. The entire space T4 is an infinite cone on this graph, with cone
point the origin. It is interesting to note that the link of the origin inThm Billera,Holmes,Vogtmann Cor. Tn has unique geodesics.

Tn is a CAT(0) cube complex. Cor. “Average" trees exist.

17 / 39
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4. CHARACTERIZATIONS.

Which cube complexes are CAT(0)?

In general, CAT(0) is a subtle condition; but for cube complexes:

1. Gromov’s characterization.

Theorem. (Gromov, 1987)
A cube complex is CAT(0) if and only
if it is simply connected and the link of
every vertex is a flag simplicial complex.

∆ flag: if the 1-skeleton of a simplex T is in ∆, then T is in ∆.

(If a vertex sees the 2-faces of a cube, then the cube is in ∆.)
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Vertex Links

In a cubical complex, the links
of vertices are simplicial complexes.

A simplicial complex L is a
flag complex if whenever the
1-skeleton of a simplex occurs
in L, so does the entire simplex.
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Characterizations: Which cube complexes are CAT(0)?

2. Our characterization.
Regular
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RACG vs. RAMRG

RACG:

RAMRG:

Theorem. (A.–Owen–Sullivant 08)
(Pointed) CAT(0) cube complexes are in
bijection with posets with inconsistent pairs.

1

2

4

65

3

PIP: A poset P and a set of “inconsistent pairs" {x , y}, with
x , y inconsistent, y < z → x , z inconsistent.

19 / 39
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Theorem. (A.–Owen–Sullivant 08)
(Pointed) CAT(0) cube complexes are in
bijection with posets with inconsistent pairs.

Sketch of proof.
CAT(0) cube complexes “look like" distributive lattices.

So imitate Birkhoff’s bijection: distributive lattices↔ posets

“→ ”: X has hyperplanes which split cubes in half. (Sageev)
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Theorem. (A.–Owen–Sullivant 08)
(Pointed) CAT(0) cube complexes are in
bijection with posets with inconsistent pairs.

Bijection. “→ ”: Fix a “home" vertex v .

v

1

2 4

6

3

5 12345

12

123

124

234 1246

24

1234

2

2

12

1

2

4

65

3

If i , j are hyperplanes, declare:
i < j if one needs to cross i before crossing j

i , j inconsistent if it is impossible to cross them both.

Key Fact: This is enough to recover the cubical complex!

Equivalent models: Winskel (87) and Sageev (95) and Roller (98)
21 / 39
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APPLICATION 1: Geometric Group Theory

Embeddability conjecture.

Conjecture. (Niblo, Sageev, Wise) Any d-dimensional interval in
a CAT(0) cube complex can be embedded in the cubing Zd .

v

1

2 4

6

3

5 12345

12

123

124

234 1246

24

1234

2

2

12

1

2

4

65

3

Proof. (A-Owen-Sullivant)

Dilworth already showed (in 1950!) how to embed J(Q) in Zd :
•Write Q as a union of d disjoint chains. (Example: 246, 35, 1)
• “Straighten" the cube complex along each chain.

(Proof also by Brodzki, Campbell, Guentner, Niblo, Wright (08).)
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APPLICATION 2. Moving CAT(0) robots efficiently.

Two motivations / inspirations:

Geometric Group Theory. (Niblo-Reeves 98)
In a CAT(0) cube complex, the normal cube path
finds the shortest cube path between two points.

Biostatistics. (Owen-Provan 09) A polynomial-time algorithm to
find the geodesic between two trees in the space of trees Tn.

This allows us to
• find distances between trees
• “average" trees.

14 BILLERA, HOLMES AND VOGTMANN
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Figure 11: Constructing the link of the origin in T4

Figure 12 shows another portion of the link which forms a pentagon
embedded in its ambient quadrants.
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Figure 12: A pentagon in the link

The entire link of the origin is shown in Figure 13, without the ambient
quadrants. The entire space T4 is an infinite cone on this graph, with cone
point the origin. It is interesting to note that the link of the origin in
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APPLICATION 2. Moving CAT(0) robots efficiently.

We use the PIP (“remote control") of X to get:

Algorithm. (A.–Owen–Sullivant 12, A.–Baker–Yatchak 14,
A.–Bastidas–Ceballos–Guo 16) We can find the geodesic
between two points in any CAT(0) cube complex X , w.r.t.:
• Time
• Number of moves.
• Number of steps of simultaneous moves.
• Euclidean length (harder)

For CAT(0) robots we can find the optimal robotic motion
between any two positions.

For non-CAT(0) robots we do not know what to do!
(For example, the robotic snake we started with.)

So we should hope our robots are CAT(0)!

24 / 39
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6. MOVING ROBOTS.
Robot 1. A (pinned-down) robotic arm in a tunnel of width 1.

Map for arm of length 5: (A., Tia Baker, Rika Yatchak, 2014)

Question. Is it CAT(0)?
25 / 39
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Robot 1. A robotic arm in a tunnel of width 1.

Maps: length 1,2,3,4,5,6,7 (A., Tia Baker, Rika Yatchak, 2014)

# of vertices: 2,3,5,8,13,21,34,. . .
Fibonacci numbers! Very nice but very large!

For length 100:
• vertices: 354’ 224,848’ 179,261’ 915,075
• dimension: 34

Without a good idea, navigating these is impossible.
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Robot 1. A robotic arm in a tunnel of width 1.

Theorem. (A.-Baker-Yatchak, 2014)
The state complex is a CAT(0) cubical complex.
Its PIP (“remote control") is as shown: −→

Map: exponential size and linear in dimension.
• 354’ 224,848’ 179,261’ 915,075 vertices, dimension 34

PIP (Remote control): quadratic size and two-dimensional.
• 251,001 vertices, dimension 2

27 / 39
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Robot 2. A robotic arm in a tunnel of width 2.

Question. (A.-Bastidas-Ceballos-Guo, 2015)
Is the configuration space a CAT(0) complex?

This space is much larger and more complicated.

28 / 39
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Robot 2. A robotic arm in a tunnel of width 2.

Question. (A.-Bastidas-Ceballos-Guo, 2015)
Is the configuration space a CAT(0) cubical complex?

Preliminary evidence:
Gromov: This space is CAT(0)⇐⇒ it is contractible.
Idea: Let’s compute the Euler characteristic.

29 / 39
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Robot 2.. A robotic arm in a tunnel of width 2.

Idea: Let’s compute the Euler characteristic.

Preliminary step: the f -vector

Theorem. (A.-Bastidas-Ceballos-Guo, 2015) Let tn,d be the
number of d-dimensional cubes in the configuration space for
the robotic arm of length n in a tunnel of width 2. Then

∑
n,d≥0

tn,d xnyd =
1− x + x2 + x4 − x5 + x2y + x3y + 2x4y − x5y + x4y2 + x5y2

1− 2x + x2 − x3 − x4 − 2x4y − 2x5y − x5y2 − x6y2
.
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Robot 2. A robotic arm in a tunnel of width 2.

Idea: Let’s compute the Euler characteristic.
Theorem. (ABCG, 2015) tn,d = # d-cubes for arm of length n.

∑
n,d≥0

tn,d xnyd =
1− x + x2 + x4 − x5 + x2y + x3y + 2x4y − x5y + x4y2 + x5y2

1− 2x + x2 − x3 − x4 − 2x4y − 2x5y − x5y2 − x6y2
.

Corollary. The configuration space has Euler characteristic 1.
(This is the correct Euler characteristic for a CAT(0) space.)

Proof. The Euler characteristic is tn,0 − tn,1 + · · · and

∑
n,d≥0

tn,d xn(−1)d =
1− x − x3 + x5

1− 2x + x2 − x3 + x4 − x5 − x6
=

1
1− x

= 1 + x + x2 + ....
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Robot 2. A robotic arm in a tunnel of width 2.

This computation convinced us the space is probably CAT(0).

This is the coral PIP for length 6: −→

How do we describe it in general?

This PIP is much more complicated.
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Robot 2. A robotic arm in a tunnel of width 2.

This computation convinced us the space is probably CAT(0).

How do we describe the PIP?
A hint came from the Pacific:

Guess. (ABCG, 2015)
The configuration space is CAT(0).
Its PIP is the CORAL PIP −→
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Robot w: A robotic arm in a tunnel of any width w .

Theorem. (A. - Bastidas - Ceballos - Guo ’16)
For any width, the configuration space of this robot IS CAT(0).
Its PIP is the coral PIP shown. −→

• Elements of the coral PIP:
Pairs (λ, s) where

– λ is a coral snake with h(λ) ≤ w
– s ∈ [w(λ)− 1,n − l(λ)]

• Order:
(λ, s) ≤ (µ, t) if λ ⊆ µ , s ≥ t .

• Inconsistency:
(λ, s) = (µ, t) if λ 6⊂ µ and λ 6⊃ µ

2

2

2 3

3 4 5 6 7

7 8
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More generally: A robotic arm in a tunnel of any width w .

Theorem. (A. - Bastidas - Ceballos - Guo ’16)
The configuration space IS CAT(0).
Its PIP is the coral PIP shown: −→

Key Idea: A bijection

states of the arm ←→ coral snake tableau

A coral snake tableau is a filling of λ with integers which are:
– strictly increasing horizontally
– weakly increasing vertically

in the direction of the snake.

1

3

4 6

8

8 10

11 12

13
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6. SO, HOW DO WE MOVE THE ROBOTS?

These robotic arms are CAT(0); we can move them efficiently!

We have implemented this algorithm in Python:
(FA,Cesar Ceballos,Hanner Bastidas,John Guo,2016)

Let’s watch a video.
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5. SO, HOW DO WE MOVE THE ROBOTS?
Clubes de Ciencia Colombia (July, 2016)
Cesar Ceballos (U. Viena), Olga Salazar (U. Nal. Medellín)
Arlys Asprilla, Cristian Lopez, Daniel Betancur,
Diego Penagos, Dubenis López, Felipe Hoyos,
Juan C. Cuervo, Juan E. Zabala, Juan M. Patiño,
Manuel Ramos, María F. Gualero, Santiago Martínez,
Sebastián Ramírez, Sebastián Sánchez, Wolsey Rubio.

texto
texto
texto
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5. SO, HOW DO WE MOVE THE ROBOTS?

Arlys Javier Asprilla
Istmina, Chocó −→ ITM Medellín, Colombia −→ · · ·

Let’s watch another video.
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8 R. GHRIST & V. PETERSON

FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a

muchas gracias
The articles and slides are at:

Advances in Applied Mathematics 48 (2012) 142-163.
SIAM J. Discrete Math. 28-2 (2014), pp. 986-1007

SIAM J. Discrete Math. (2017) To appear.

http://arxiv.org/

http://math.sfsu.edu/federico
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