A tale of two modules (with S. Riche)

Lecture by Geordie Williamson Notes by Dustan Levenstein

<u>Today</u>: Formulas for simple and tilting characters for a reductive group G/\mathbf{k} (k a field of positive characteristic) in terms of p-Kazhdan-Lusztig polynomials. These formulas have been proven for $p \ge h, p \ge 2h-2$, but are expected to hold in general.

These formulas imply many different numbers in modular representation theory, e.g., decomposition numbers for symmetric groups.

Example Billiards Conjecture by Lusztig-Williamson (see youtube!).

Let $\Phi^+ \subset \Phi$ be the positive roots, $\mathscr{X}_+ \subset \mathscr{X}$ the dominant weights, W_f the finite Weyl group. Let $W = \mathbb{Z}\Phi \rtimes W_f$ be the (dual) affine Weyl group, containing the set S of simple reflections. Let H be the affine Hecke algebra,

$$H = \bigoplus_{x \in \mathbb{N}} \mathbb{Z}[v^{\pm 1}] \delta_x$$

with $(\delta_s + v)(\delta_s - v) = 0$, and $H_f \subset H$.

Define H_f -modules $\operatorname{triv}_v : \delta_s \mapsto v^{-1}$ and $\operatorname{sgn}_v : \delta_s \mapsto -v$ for $s \in S_f$. Let

$$M^{\mathrm{sph}} = \mathrm{triv}_v \otimes_{H_f} H = \bigoplus_{x \in {}^f W} \mathbb{Z}[v^{\pm 1}] \mu_x$$

be the spherical module, and

$$M^{\operatorname{asph}} = \operatorname{sgn}_v \otimes_{H_f} H = \bigoplus_{x \in {}^f W} \mathbb{Z}[v^{\pm 1}]\eta_x$$

be the antispherical module.

Let \mathcal{A} be the alcoves in $\mathscr{X}_{\mathbb{R}} := \mathscr{X} \otimes_{\mathbb{Z}} \mathbb{R}$, with $A_0 \in \mathcal{A}$ fundamental alcove. We have

 $W \simeq \mathcal{A}$

given by $w \mapsto w(A_0)$, and ${}^{f}W \simeq \mathcal{A}^+$ dominant alcoves.

Set $b_s = \delta_s + v$ (KL generator) for $s \in S_f$.

$$\mu_x \cdot b_s = \begin{cases} \mu_{xs} + v\mu_x & \text{if } xs > x, xs \in {}^{f}W, \\ \mu_{xs} + v^{-1}\mu_x & \text{if } xs < x, xs \in {}^{f}W, \\ (v + v^{-1})\mu_x & \text{if } xs \notin {}^{f}W, \end{cases}$$

and

$$\eta_x b_s = \begin{cases} \mu_{xs} + v\mu_x & \text{if } xs > x, xs \in {}^f W, \\ \mu_{xs} + v^{-1}\mu_x & \text{if } xs < x, xs \in {}^f W, \\ 0 & \text{if } xs \notin {}^f W. \end{cases}$$

Next we define the Hecke Category:

Let \mathcal{H} be the graded (with shift $B \mapsto B(1)$) monoidal category generated by B_s , $s \in S$, presented by generators and relations. It is isomorphic to Bott-Samelson \mathbb{Z} -sheaves on the affine flag variety of the dual group. We always have $H = [\mathcal{H}]_{\oplus}$ split Grothendieck group (no Krull-Schmidt theorem, hom spaces are free of finite rank over \mathbb{Z}).

But for any field k, we can consider $\mathbf{k} \otimes \mathcal{H}$, which has Krull-Schmidt, so the indecomposable objects $\{{}^{p}B_{x} \mid x \in W\}$ give a basis of H.

So we get the <u>*p*-canonical basis</u> $\{{}^{p}b_{x}\} \subset H$. Facts:

- (0) $p = \operatorname{char} \mathbf{k}$, basis only depends on p, not on \mathbf{k} .
- (1) (hard) 0-canonical basis = Kazhdan-Lusztig basis.

(2)
$${}^{p}b_{x} = b_{x} + \sum_{y < x} {}^{p}a_{y,x}b_{y}$$
 with ${}^{p}a_{y,x} \in \mathbb{Z}_{\geq 0}[v^{\pm 1}].$

- (3) Very rich combinatorics!
- (4) Completely known for $A_{\leq 8}, D_{\leq 6}, \widetilde{A}_1, \dots$

Later we will use

$${}^{p}b_{x} = \sum h_{y,x}\delta_{x},$$

where we call the $h_{y,x}$ the *p*-Kazhdan-Lusztig polynomials.

Let w_f be the longest element of W_f . We define categorifications:

$$\mathcal{M}^{\mathrm{sph}} := B_{w_f} \cdot \mathcal{H}$$

categorifies $M^{\mathrm{sph}} = b_{w_f} \cdot H$ and

$$\mathcal{M}^{\mathrm{asph}} := \mathcal{H} / \langle B_s B_t \cdots B_u \mid s \in \mathcal{S}_f
angle_\oplus$$

categorifies $M^{\text{sph}} = H/\langle b_s H \mid s \in \mathcal{S}_f \rangle$.

We have $[\mathcal{M}^{\text{sph}}]_{\oplus} = M^{\text{sph}}$ and $[\mathcal{M}^{\text{asph}}]_{\oplus} = M^{\text{asph}}$, from which we obtain *p*-canonical bases, ${}^{p}b_{x}^{\text{asph}}$, ${}^{p}b_{x}^{\text{sph}}$, and *p*-Kazhdan-Lusztig polynomials ${}^{p}m_{y,x}$ (spherical) and ${}^{p}n_{y,x}$ (anti-spherical).

Let G/\mathbf{k} be split semisimple, simply connected with root system Φ . For $\lambda \in \mathscr{X}$ we associate L_{λ} simple, Δ_{λ} standard, T_{λ} tilting modules. We assume char $\mathbf{k} \ge h$.

We have $W \simeq p\mathbb{Z}\Phi \rtimes W$ acting on \mathscr{X} via the *p*-dot action $(x, \lambda) \mapsto x \bullet_p \lambda$.

$$\operatorname{Rep}_0 := \langle L_{x \bullet 0} \mid x \in^f W \rangle$$

principal block, containing Tilt₀. There is a well crossing functor Θ_s acting on this as well.

We relabel $L_x := L_{x \bullet 0}, T_x := T_{x \bullet 0}$, etc., also L_A and T_A for $A \in \mathcal{A}^+$.

We have

$$[\Delta_x \cdot \Theta_s] = \begin{cases} [\Delta_x] + [\Delta_{x \bullet s}] & \text{if } xs \in {}^f W\\ 0 & else. \end{cases}$$

Hence

$$[\operatorname{Rep}_0] \cong M_{v=1}^{\operatorname{asph}}$$

Theorem 0.1 (*Riche-Williamson, Elias-Losev, Achar-Makisumik-Riche-Williamson*)

$$\mathbf{k} \otimes \mathcal{M}^{\mathrm{asph}} \simeq \mathrm{Tilt}_0$$
$$B_r^{\mathrm{asph}} \mapsto T_r.$$

when we forget the grading.

Remark The proof in general uses Achar-Riche and Koszul duality, $\mathcal{M}^{asph} \leftrightarrow \mathcal{M}^{sph}$.

 $p \ge h$:

Corollary 0.2

$$(T_x:\Delta_y) =^p n_{y,x}(1)$$

True for all p in type A, Elias-Losev. We conjecture true in general. Consider GT-modules $(GT = (\mathfrak{g}, T))$: $\hat{L}_{\lambda}, \hat{\Delta}_{\lambda}, \hat{Q}_{\lambda}$ indecomposable/projective hull/cover of \hat{L}_{λ} , for $\lambda \in \mathscr{X}$.

Type D: $\hat{Q}_{\hat{\lambda}} = T_{\lambda}|_{G,T}$ (known for $p \ge 2h - 2$). This gives a formula for simple characters in principle. Problem: not practical.

$$c = \sum_{\alpha \in \Phi} \operatorname{ht}(\alpha) = \langle \rho, \rho^{\vee} \rangle$$

We need to calculate *p*-canonical elements ℓ hom C: $2C - \ell(w_f)$. We wish to explain how to use the spherical module to reduce to ℓ : $0 - C - \ell(w_f)$.

Consider:

$$T_{A_0+\rho} = \operatorname{Trans}_{(p-1)\rho}^{p\rho}(\text{Steinberg module}).$$

Hence we get a map

$$\begin{split} M^{\mathrm{sph}}_{v=1} &\hookrightarrow [\mathrm{Tilt}_0] = [\mathrm{Rep}_0] \\ \mu_{id} &\mapsto [T_{A_0+\rho}] \end{split}$$

This categorifies

$$\mathbf{k} \otimes \mathcal{M}^{\mathrm{sph}} \to \mathbf{k} \otimes \mathcal{M}^{\mathrm{asph}} \cong \mathrm{Tilt}_0$$

 T_A is the image of $\varphi \iff A \in \mathcal{A}^{++}$

$$J: \begin{bmatrix} \mathbf{k} \otimes \mathcal{M}^{\mathrm{sph}} \\ \text{with grading forgotten} \end{bmatrix} \hookrightarrow \mathbb{Z}W$$

(full but not faithful)

Lemma 0.3 Suppose $\varphi(m) = [T_A]$, $p \ge 2h - 2$, $x(A_0)$ is in the fundamental box:

$$\left(\widehat{Q}_{(\rho+A_0)w_0x}:\widehat{\Delta}_{(\rho+A_0)y}\right) =^p h_{y,w_0x}(1).$$

Remark (1) Because $w_0 x$ is maximal in its left W_f -coset, all polynomials on RHS are seen in the spherical module.

- (2) Suitable singular versions have a chance to hold for all p.
- (3) Generalizes and represents Fiebig (MSRI, 2008).

$${}^{p}m_{y,x} = m_{y,x}$$

for all x, y in the fundamental box implies Lusztig's character formula.

Slogan: Original formulation of Lusztig character formula does not hold with KL replaced by p-KL. G, T version does!

Remark Should be a tale of three modules; periodic module is missing.