A tale of two modules (with S. Riche)

Lecture by Geordie Williamson Notes by Dustan Levenstein

Today: Formulas for simple and tilting characters for a reductive group G/k (k a field of positive characteristic) in terms of p-Kazhdan-Lusztig polynomials. These formulas have been proven for $p \ge h, p \ge 2h-2$, but are expected to hold in general.

These formulas imply many different numbers in modular representation theory, e.g., decomposition numbers for symmetric groups.

Example Billiards Conjecture by Lusztig-Williamson (see youtube!).

Let $\Phi^+ \subset \Phi$ be the positive roots, $\mathscr{X}_+ \subset \mathscr{X}$ the dominant weights, W_f the finite Weyl group. Let $W = \mathbb{Z}\Phi \rtimes W_f$ be the (dual) affine Weyl group, containing the set S of simple reflections. Let H be the affine Hecke algebra,

$$
H=\bigoplus_{x\in\mathbb{N}}\mathbb{Z}[v^{\pm 1}]\delta_x
$$

with $(\delta_s + v)(\delta_s - v) = 0$, and $H_f \subset H$. Define H_f -modules $\text{triv}_v : \delta_s \mapsto v^{-1}$ and $\text{sgn}_v : \delta_s \mapsto -v$ for $s \in \mathcal{S}_f$. Let

$$
M^{\rm sph}={\rm triv}_v\mathop{\otimes}_{H_f} H=\bigoplus_{x\in^f W}{\mathbb{Z}}[v^{\pm 1}] \mu_x
$$

be the spherical module, and

$$
M^{\mathrm{asph}} = \mathrm{sgn}_v \otimes_{H_f} H = \bigoplus_{x \in fW} \mathbb{Z}[v^{\pm 1}] \eta_x
$$

be the antispherical module.

Let A be the alcoves in $\mathscr{X}_{\mathbb{R}} := \mathscr{X} \otimes_{\mathbb{Z}} \mathbb{R}$, with $A_0 \in \mathcal{A}$ fundamental alcove. We have

 $W \simeq \mathcal{A}$

given by $w \mapsto w(A_0)$, and $^fW \simeq A^+$ dominant alcoves.

Set $b_s = \delta_s + v$ (KL generator) for $s \in S_f$.

$$
\mu_x \cdot b_s = \begin{cases} \mu_{xs} + v\mu_x & \text{if } xs > x, xs \in \textit{fW}, \\ \mu_{xs} + v^{-1}\mu_x & \text{if } xs < x, xs \in \textit{fW}, \\ (v + v^{-1})\mu_x & \text{if } xs \notin \textit{fW}, \end{cases}
$$

and

$$
\eta_x b_s = \begin{cases} \mu_{xs} + v\mu_x & \text{if } xs > x, xs \in {}^f W, \\ \mu_{xs} + v^{-1}\mu_x & \text{if } xs < x, xs \in {}^f W, \\ 0 & \text{if } xs \notin {}^f W. \end{cases}
$$

Next we define the Hecke Category:

Let H be the graded (with shift $B \mapsto B(1)$) monoidal category generated by B_s , $s \in S$, presented by generators and relations. It is isomorphic to Bott-Samelson Z-sheaves on the affine flag variety of the dual group. We always have $H = [\mathcal{H}]_{\oplus}$ split Grothendieck group (no Krull-Schmidt theorem, hom spaces are free of finite rank over \mathbb{Z}).

But for any field k, we can consider $k \otimes H$, which has Krull-Schmidt, so the indecomposable objects $\{^pB_x \mid x \in$ W } give a basis of H.

So we get the *p*-canonical basis $\{^p b_x \} \subset H$. Facts:

- (0) $p = \text{char } \mathbf{k}$, basis only depends on p, not on **k**.
- (1) (hard) 0-canonical basis $=$ Kazhdan-Lusztig basis.

(2)
$$
{}^{p}b_x = b_x + \sum_{y with ${}^{p}a_{y,x} \in \mathbb{Z}_{\geq 0}[v^{\pm 1}].$
$$

- (3) Very rich combinatorics!
- (4) Completely known for $A_{\leq 8}$, $D_{\leq 6}$, \widetilde{A}_1 , ...

Later we will use

$$
^p b_x = \sum h_{y,x} \delta_x,
$$

where we call the $h_{y,x}$ the p-Kazhdan-Lusztig polynomials.

Let w_f be the longest element of W_f . We define categorifications:

$$
\mathcal{M}^{\mathrm{sph}}:=B_{w_f}\cdot \mathcal{H}
$$

categorifies $M^{\text{sph}} = b_{w_f} \cdot H$ and

$$
\mathcal{M}^{\mathrm{asph}}:=\mathcal{H}/\langle B_sB_t\cdots B_u \mid s\in \mathcal{S}_f\rangle_\oplus
$$

categorifies $M^{\text{sph}} = H/\langle b_s H | s \in S_f \rangle$.

We have $[\mathcal{M}^{\text{sph}}]_{\oplus} = M^{\text{sph}}$ and $[\mathcal{M}^{\text{asph}}]_{\oplus} = M^{\text{sph}}$, from which we obtain p-canonical bases, $^p b_x^{\text{asph}}$, $^p b_x^{\text{sph}}$, and p-Kazhdan-Lusztig polynomials $^{p}m_{y,x}$ (spherical) and $^{p}n_{y,x}$ (anti-spherical).

Let G/\mathbf{k} be split semisimple, simply connected with root system Φ . For $\lambda \in \mathscr{X}$ we associate L_{λ} simple, Δ_{λ} standard, T_{λ} tilting modules. We assume char $k \geq h$.

We have $W \simeq p\mathbb{Z}\Phi \rtimes W$ acting on $\mathscr X$ via the p-dot action $(x, \lambda) \mapsto x \bullet_p \lambda$.

$$
\text{Rep}_0 := \langle L_{x\bullet 0} \mid x \in^f W \rangle
$$

principal block, containing Tilt₀. There is a well crossing functor Θ_s acting on this as well.

We relabel $L_x := L_{x\bullet 0}$, $T_x := T_{x\bullet 0}$, etc., also L_A and T_A for $A \in \mathcal{A}^+$.

We have

$$
[\Delta_x \cdot \Theta_s] = \begin{cases} [\Delta_x] + [\Delta_{x \bullet s}] & \text{if } xs \in f \ W \\ 0 & else. \end{cases}
$$

Hence

$$
[\text{Rep}_0] \cong M_{v=1}^{\text{asph}}.
$$

Theorem 0.1 *(Riche-Williamson, Elias-Losev, Achar-Makisumik-Riche-Williamson)*

$$
\mathbf{k} \otimes \mathcal{M}^{\mathrm{asph}} \simeq \mathrm{Tilt}_0
$$

$$
B_x^{\mathrm{asph}} \mapsto T_x.
$$

when we forget the grading.

Remark The proof in general uses Achar-Riche and Koszul duality, $\mathcal{M}^{\text{asph}} \leftrightarrow \mathcal{M}^{\text{spl}}$.

 $p \geq h$:

Corollary 0.2

$$
(T_x : \Delta_y) =^p n_{y,x}(1)
$$

True for all p in type A, Elias-Losev. We conjecture true in general. Consider GT-modules $(GT = (\mathfrak{g}, T))$: $\widehat{L}_{\lambda}, \widehat{\Delta}_{\lambda}, \widehat{Q}_{\lambda}$ indecomposable/projective hull/cover of \widehat{L}_{λ} , for $\lambda \in \mathcal{X}$.

Type D: $Q_{\hat{\lambda}} = T_{\lambda}|_{G,T}$ (known for $p \ge 2h - 2$). This gives a formula for simple characters in principle. Problem: not practical.

$$
c=\sum_{\alpha\in\Phi}\operatorname{ht}(\alpha)=\langle\rho,\rho^\vee\rangle
$$

We need to calculate p-canonical elements ℓ hom C: $2C - \ell(w_f)$. We wish to explain how to use the spherical module to reduce to $\ell: 0 - C - \ell(w_f)$.

Consider:

$$
T_{A_0+\rho} = \text{Trans}_{(p-1)\rho}^{p\rho}(\text{Steinberg module}).
$$

Hence we get a map

$$
M^{\mathrm{sph}}_{v=1}\hookrightarrow [\mathrm{Tilt}_0]=[\mathrm{Rep}_0]
$$

$$
\mu_{id}\mapsto [T_{A_0+\rho}]
$$

This categorifies

$$
\mathbf{k}\otimes\mathcal{M}^{\mathrm{sph}}\to\mathbf{k}\otimes M^{\mathrm{asph}}\cong\mathrm{Tilt}_0\,.
$$

 T_A is the image of $\varphi \iff A \in \mathcal{A}^{++}$

$$
J:\begin{bmatrix} \mathbf{k}\otimes \mathcal{M}^{\mathrm{sph}} \\ \text{with grading forgotten} \end{bmatrix}\hookrightarrow \mathbb{Z}W
$$

(full but not faithful)

Lemma 0.3 Suppose $\varphi(m) = [T_A]$, $p \ge 2h - 2$, $x(A_0)$ *is in the fundamental box:*

$$
\left(\widehat{Q}_{(\rho+A_0)w_0x}:\widehat{\Delta}_{(\rho+A_0)y}\right)=^p h_{y,w_0x}(1).
$$

Remark (1) Because w_0x is maximal in its left W_f -coset, all polynomials on RHS are seen in the spherical module.

- (2) Suitable singular versions have a chance to hold for all p .
- (3) Generalizes and represents Fiebig (MSRI, 2008).

$$
{}^p m_{y,x} = m_{y,x}
$$

for all x, y in the fundamental box implies Lusztig's character formula.

Slogan: Original formulation of Lusztig character formula does not hold with KL replaced by p-KL. G, T version does!

Remark Should be a tale of three modules; periodic module is missing.