On Picard groups of blocks of finite group algebras

Lecture by Radha Kessar Notes by Dustan Levenstein

Joint with Robert Boltje and Markus Linckelmann.

Let B be an algebra. We say M a (B, B) -bimodule is **invertible** if M is a finitely generated projective module as a left/right B-module and there is a (B, B) -bimodule, f.g., left/right projective, such that

$$
M\otimes_B N\cong B\cong N\otimes_B M
$$

as (B, B) -bimodules.

We have the Picard group

 $Pic(B) = {iso-classes [M] of invertible (B, B)-bimodules},$

$$
[M] \cdot [N] = [M \otimes_b N],
$$

with unit given by $[B]$.

We have

$$
Out(B) \hookrightarrow Pic(B)
$$

$$
[\alpha] \mapsto [B_{\alpha}],
$$

where $B_{\alpha} = B$ as left module and multiplication on the right $b \cdot x = b\alpha(x)$ twisted by α for $b, x \in B$.

Let p be a prime number, $\mathcal{O} \geq \mathbb{Z}_p$ discrete valuation ring. We say \mathcal{O} is p-adic if \mathcal{O} is finitely generated as a \mathbb{Z}_p -module, equivalently $k = \mathcal{O}/J(\mathcal{O})$ is finite (of char p). (Here $J(\mathcal{O})$ denotes the maximal ideal and $\mathcal{O}/J(\mathcal{O})$ is the residue field.)

Theorem 0.1 *(Curtis-Reiner) If* O *is* p*-adic and* G *is a finite group, then* Pic(OG) *is a finite group.*

There are other versions, e.g., O can be a Dedekind domain.

Theorem 0.2 *Suppose that* $k = \overline{\mathbb{F}_p} = \mathcal{O}/J(\mathcal{O})$ *. Then* Pic($\mathcal{O}G$ *) is the colimit of* Pic(\mathcal{O}_oG *), where* \mathcal{O}_o *runs over all* p*-adic subrings of* O*.*

Brauer: If $char(K) = 0$ and K contains all p' roots of unity, then the Schur index of any absolutely irreducible character of a finite group over K is trivial.

Theorem 0.3 *(Florian Eisele, 2018)*

Suppose $k = \overline{\mathbb{F}_p}$ *and* \mathcal{O} *is unramified. Then* $Pic(\mathcal{O}G)$ *has the structure of an algebraic group over* k.

Theorem 0.4 *(Roggenkamp-Scott, 1987) Suppose P is a finite p-group. Then* $Pic(\mathcal{OP}) \cong Hom(P, \mathcal{O}^{\times}) \rtimes Out(P)$ *.*

Example $p = 2$, $P = C_2 \times C_2$, $Pic(\mathcal{O}P) \cong (C_2 \times C_2) \rtimes S_3$. Contrast: $k = \mathcal{O}/J(\mathcal{O})$ Pic $(kP) \supset GL(2, k)$.

Example $G = M_{11}$, $P = 3$, $Pic(B) = \{1\}$ is trivial for B the principal block of OG (this example is due to Charles Eaton).

Now let H be a finite group, X an indecomposable OH -module, finitely generated O -free.

Definition A vertex of X is a subgroup $R \leq H$ minimal wrt the property that X is a direct summand of

$$
\operatorname{Ind}_R^H \operatorname{Res}_R^H X,
$$

and R is a p -subgroup.

A source is an indecomposable $\mathcal{O}R$ -module such that X is a summand of $\text{Ind}_R^H V$, R vertex. We refer to (R, V) as a vertex source pair.

We say that X is **trivial source** (ts) if $V = \mathcal{O}$, **linear source** (ls) if rank_{\mathcal{O}} $V = 1$, and endopermutation source (eps) if V is an endopermutation $\mathcal{O}R$ -module, that is, $V \otimes_{\mathcal{O}} V^*$ is a permutation $\mathcal{O}R$ -module.

Let B be a block of OG, G a finite group, then B is indecomposable as an $\mathcal{O}[G \times G]$ -module, has a vertex and a source.

We have

$$
\tau(B) \subseteq \mathcal{L}(B) \subseteq \mathcal{E}(B) \subseteq \text{Pic}(B),
$$

where

 $\tau(B) = \{ [M] \in Pic(B) : M \text{ is ts as an } \mathcal{O}[G \times G] \text{-module} \},\$ $\mathcal{L}(B) = \{ [M] \in \text{Pic}(B) : M \text{ is } \text{As an } \mathcal{O}[G \times G] \text{-module} \},\$ $\mathcal{E}(B) = \{ [M] \in \text{Pic}(B) : M \text{ is } \text{eps} \text{ as an } \mathcal{O}[G \times G] \text{-module} \}.$

Example $Pic(\mathcal{O}P) = \mathcal{L}(\mathcal{O}P)$ in the conditions of Theorem [0.4.](#page-0-0)

Let B be a block of OG. We associate to B the **defect group** $P \leq G$, a p-subgroup, and **Inertial quotient** E, a p'-group, $E \subseteq$ Out(P).

Example If B is the principal block, then P is a Sylow-p-subgroup and $E \cong N_G(P)/PC_G(P)$.

Theorem 0.5 *(BLK '18)*

Assume $\mathcal{O}/J(\mathcal{O}) = \overline{\mathbb{F}_p}$. Suppose that B has abelian defect group P and abelian inertial quotient E acting *fixed-point-freely on* $P \setminus \{1\}$ *.*

Then $\mathcal{E}(B) = \text{Pic}(B) \hookrightarrow \text{Hom}(P \rtimes E, \mathcal{O}^{\times}) \rtimes N_{\text{Aut}(P)}(E)$.

Ingredients of proof:

- Stable equivalence (Puig 1999),
- Structure of Stable Picard group (Carlson-Rouquier 2000),
- Structure of $Pic(\mathcal{OP} \rtimes E)$ (Hertweck-Kimmerle '02, Zhou 2005). This step utilizes the Weiss criterion.

Let B be a block of OG, P defect group, E inertial quotient. Let $\mathcal{F}: \mathcal{F}_P(B)$ be the fusion system (category with objects subgroups of P, morphisms given by certain injective group homomorphisms).

Let

$$
Aut(P, \mathcal{F}) \le Aut(P)
$$

be "those automorphisms which stabilize \mathcal{F} ",

$$
Out(P, \mathcal{F}) = Aut(P, \mathcal{F})/ Inn(P),
$$

 $\mathcal{D}_{\mathcal{O}}(P)$ the Dade group of endopermutation $\mathcal{O}P$ -modules, $\mathcal{D}_{\mathcal{O}}(P, \mathcal{F}) \leq \mathcal{D}_{\mathcal{O}}(P)$ the F-stable Dade group of P. We have an action of $Out(P, \mathcal{F})$ on $\mathcal{D}_{\mathcal{O}}(P, \mathcal{F})$.

Theorem 0.6 *(BLK)* $\mathcal{O}/J(\mathcal{O}) = \overline{\mathbb{F}_p}$. There is a group homomorphism

$$
\Phi : \mathcal{E}(B) \to \mathcal{D}_{\mathcal{O}}(P, \mathcal{F}) \rtimes Out(P, \mathcal{F})
$$

with kernel isomorphic to a subgroup of $Hom(E, \mathcal{O}^{\times})$ *. Also* $\mathcal{E}(B)$ *is finite.*

•
\n
$$
\Phi(\mathcal{L}(B)) \subseteq Hom(P/Foc(\mathcal{F}), \mathcal{O}^{\times}) \rtimes Out(P, \mathcal{F}).
$$
\n•
\n
$$
\Phi(T(B)) \subseteq Out(P, \mathcal{F}).
$$

The proof of this theorem utilized results of Scott and Puig.