On Picard groups of blocks of finite group algebras

Lecture by Radha Kessar Notes by Dustan Levenstein

Joint with Robert Boltje and Markus Linckelmann.

Let B be an algebra. We say M a (B, B)-bimodule is **invertible** if M is a finitely generated projective module as a left/right B-module and there is a (B, B)-bimodule, f.g., left/right projective, such that

$$M \otimes_B N \cong B \cong N \otimes_B M$$

as (B, B)-bimodules.

We have the Picard group

 $Pic(B) = \{iso-classes [M] of invertible (B, B)-bimodules\},\$

$$[M] \cdot [N] = [M \otimes_b N],$$

with unit given by [B].

We have

$$\operatorname{Out}(B) \hookrightarrow \operatorname{Pic}(B)$$
$$[\alpha] \mapsto [B_{\alpha}],$$

where $B_{\alpha} = B$ as left module and multiplication on the right $b \cdot x = b\alpha(x)$ twisted by α for $b, x \in B$.

Let p be a prime number, $\mathcal{O} \geq \mathbb{Z}_p$ discrete valuation ring. We say \mathcal{O} is <u>p</u>-adic if \mathcal{O} is finitely generated as a \mathbb{Z}_p -module, equivalently $k = \mathcal{O}/J(\mathcal{O})$ is finite (of char p). (Here $J(\mathcal{O})$ denotes the maximal ideal and $\mathcal{O}/J(\mathcal{O})$ is the residue field.)

Theorem 0.1 (*Curtis-Reiner*) If \mathcal{O} is *p*-adic and *G* is a finite group, then $Pic(\mathcal{O}G)$ is a finite group.

There are other versions, e.g., \mathcal{O} can be a Dedekind domain.

Theorem 0.2 Suppose that $k = \overline{\mathbb{F}_p} = \mathcal{O}/J(\mathcal{O})$. Then $\operatorname{Pic}(\mathcal{O}G)$ is the colimit of $\operatorname{Pic}(\mathcal{O}_oG)$, where \mathcal{O}_o runs over all *p*-adic subrings of \mathcal{O} .

Brauer: If char(K) = 0 and K contains all p' roots of unity, then the Schur index of any absolutely irreducible character of a finite group over K is trivial.

Theorem 0.3 (Florian Eisele, 2018)

Suppose $k = \overline{\mathbb{F}_p}$ and \mathcal{O} is unramified. Then $\operatorname{Pic}(\mathcal{O}G)$ has the structure of an algebraic group over k.

Theorem 0.4 (Roggenkamp-Scott, 1987) Suppose P is a finite p-group. Then $\operatorname{Pic}(\mathcal{O}P) \cong \operatorname{Hom}(P, \mathcal{O}^{\times}) \rtimes \operatorname{Out}(P)$.

Example $p = 2, P = C_2 \times C_2, \operatorname{Pic}(\mathcal{O}P) \cong (C_2 \times C_2) \rtimes S_3.$ Contrast: $k = \mathcal{O}/J(\mathcal{O}) \operatorname{Pic}(kP) \supset GL(2,k).$

Example $G = M_{11}$, P = 3, $Pic(B) = \{1\}$ is trivial for B the principal block of OG (this example is due to Charles Eaton).

Now let H be a finite group, X an indecomposable $\mathcal{O}H$ -module, finitely generated \mathcal{O} -free.

Definition A vertex of X is a subgroup $R \leq H$ minimal wrt the property that X is a direct summand of

$$\operatorname{Ind}_{R}^{H}\operatorname{Res}_{R}^{H}X,$$

and R is a p-subgroup.

A source is an indecomposable $\mathcal{O}R$ -module such that X is a summand of $\operatorname{Ind}_R^H V$, R vertex. We refer to (R, V) as a vertex source pair.

We say that X is **trivial source** (ts) if V = O, **linear source** (ls) if rank_O V = 1, and **endopermutation source** (eps) if V is an endopermutation OR-module, that is, $V \otimes_O V^*$ is a permutation OR-module.

Let B be a block of $\mathcal{O}G$, G a finite group, then B is indecomposable as an $\mathcal{O}[G \times G]$ -module, has a vertex and a source.

We have

$$\tau(B) \subseteq \mathcal{L}(B) \subseteq \mathcal{E}(B) \subseteq \operatorname{Pic}(B),$$

where

- $\tau(B) = \{[M] \in \operatorname{Pic}(B) : M \text{ is ts as an } \mathcal{O}[G \times G]\text{-module}\},\$ $\mathcal{L}(B) = \{[M] \in \operatorname{Pic}(B) : M \text{ is ls as an } \mathcal{O}[G \times G]\text{-module}\},\$
- $\mathcal{E}(B) = \{ [M] \in \operatorname{Pic}(B) : M \text{ is eps as an } \mathcal{O}[G \times G] \text{-module} \}.$

Example $\operatorname{Pic}(\mathcal{O}P) = \mathcal{L}(\mathcal{O}P)$ in the conditions of Theorem 0.4.

Let B be a block of $\mathcal{O}G$. We associate to B the **defect group** $P \leq G$, a p-subgroup, and **Inertial quotient** E, a p'-group, $E \subseteq \text{Out}(P)$.

Example If B is the principal block, then P is a Sylow-p-subgroup and $E \cong N_G(P)/PC_G(P)$.

Theorem 0.5 (*BLK* '18)

Assume $\mathcal{O}/J(\mathcal{O}) = \overline{\mathbb{F}_p}$. Suppose that B has abelian defect group P and abelian inertial quotient E acting fixed-point-freely on $P \setminus \{1\}$.

Then $\mathcal{E}(B) = \operatorname{Pic}(B) \hookrightarrow \operatorname{Hom}(P \rtimes E, \mathcal{O}^{\times}) \rtimes N_{\operatorname{Aut}(P)}(E).$

Ingredients of proof:

- Stable equivalence (Puig 1999),
- Structure of Stable Picard group (Carlson-Rouquier 2000),
- Structure of $Pic(\mathcal{OP} \rtimes E)$ (Hertweck-Kimmerle '02, Zhou 2005). This step utilizes the Weiss criterion.

Let B be a block of $\mathcal{O}G$, P defect group, E inertial quotient. Let $\mathcal{F} : \mathcal{F}_P(B)$ be the fusion system (category with objects subgroups of P, morphisms given by certain injective group homomorphisms).

Let

$$\operatorname{Aut}(P,\mathcal{F}) \leq \operatorname{Aut}(P)$$

be "those automorphisms which stabilize \mathcal{F} ",

$$\operatorname{Out}(P, \mathcal{F}) = \operatorname{Aut}(P, \mathcal{F}) / \operatorname{Inn}(P).$$

 $\mathcal{D}_{\mathcal{O}}(P)$ the Dade group of endopermutation $\mathcal{O}P$ -modules, $\mathcal{D}_{\mathcal{O}}(P, \mathcal{F}) \leq \mathcal{D}_{\mathcal{O}}(P)$ the \mathcal{F} -stable Dade group of P. We have an action of $Out(P, \mathcal{F})$ on $\mathcal{D}_{\mathcal{O}}(P, \mathcal{F})$.

Theorem 0.6 (BLK) $\mathcal{O}/J(\mathcal{O}) = \overline{\mathbb{F}_p}$. There is a group homomorphism

$$\Phi: \mathcal{E}(B) \to \mathcal{D}_{\mathcal{O}}(P, \mathcal{F}) \rtimes \operatorname{Out}(P, \mathcal{F})$$

with kernel isomorphic to a subgroup of $\operatorname{Hom}(E, \mathcal{O}^{\times})$. Also $\mathcal{E}(B)$ is finite.

•
$$\Phi(\mathcal{L}(B)) \subseteq Hom(P/Foc(\mathcal{F}), \mathcal{O}^{\times}) \rtimes \operatorname{Out}(P, \mathcal{F}).$$
 •

$$\Phi(T(B)) \subseteq \operatorname{Out}(P, \mathcal{F}).$$

The proof of this theorem utilized results of Scott and Puig.