Overgroups of regular unipotent elements, finite and algebraic

Lecture by Donna Testerman Notes by Dustan Levenstein

Let G be a simple linear algebraic group over $k = \overline{k}$ algebraically closed, $char(k) = p \ge 0$, adjoint. Recall an element $u \in G$ is unipotent if u - 1 is nilpotent when you embed G in GL. The element $x \in G$ is regular if dim $C_G(x) = \operatorname{rk} G$.

Theorem 0.1 (Steinberg) Regular unipotent elements exist and they are dense in the variety of unipotent elements. The centralizer $C_G(x)$ is unipotent and abelian.

Question: For $G = G_2, F_4, E_6, E_7, E_8$ (exceptional types), $X = PSL_2(q), q = p^a$. Suppose X < G containing a regular unipotent element of G. Question: Does there exist A < G, A simple of type A_1 with X < A?

Answers: 1990: (G classical) (any unipotent) Sertz-Testerman if X is not contained in any proper parabolic subgroup of G and if p > 19, 43, 43, 67, 113 respectively: yes.

1997: semiregular: If q > p then yes. If q = p and $N_G(X) \ge PGL_2(p)$ then yes. If $G = G_2$, yes.

Guralnick-Malle: List of possible maximal Lie primitive subgroups of G (exceptional) containing a regular unipotent element, $PSL_2(p)$. The order of a regular element being p implies $p \ge 13, 13, 19, 31$. What about $13 \le p \le 43$, $19 \le p \le 43, 19 \le p \le 67, 31 \le p \le 113$ respectively?

More general question: Let $Y = H(p^a) < G(p^b)$ be an embedding of finite groups of Lie type in characteristic p > 0. Let \overline{H} and \overline{G} be algebraic groups over \overline{k} , such that $Y = \overline{H}^{\sigma}$, $G(p^b) = \overline{G}^{\delta}$ for some endomorphisms σ, δ . When does there exist an appropriate embedding of $\overline{H} < \overline{G}$ with $\overline{H} \delta$ -invariant?

Liebeck-Saxl-Testerman showed: If $\operatorname{rank}(\overline{H}) > \frac{1}{2} \operatorname{rank}(\overline{G})$ and $p^a > 2$, then yes, with 4 exceptions from q = 3 or 5.

Liebeck-Seitz 1998: If \overline{G} is exceptional with q > 9, and $Y \neq A_1(q), B_2(q), G_2(q), A_2^{\epsilon}(16)$, then there is a $\overline{Y} < \overline{G}, Y < \overline{Y}$ such that every Y-invariant subspace of Lie(G) is \overline{Y} -invariant. For the remaining groups if q > 24, 134, 248, 776, 2624 respectively, then they get the same statement.

Theorem 0.2 (Burness-Testerman) Let G be a simple exceptional algebraic group of adjoint type over k, char(k) = p > 0. Let $X = PSL_2(p)$, X < G, containing a regular unipotent.

Then exactly one of the following:

- (1) X < A with A < G closed simple A_1 -subgroup of G,
- (2) $G = E_6$, p = 13, $X < D_5$ parabolic subgroup of G, or
- (3) $G = E_7$, p = 19, $X < E_6$ parabolic subgroup of G.

Proposition 0.3 Let G be as above. Let $X = PSL_2(p)$, X < G containing regular unipotent element and A < G closed simple A_1 -subgroup with X < A. Then X does not lie in a proper parabolic subgroup of G.

Craven: Let F be a finite almost simple group defined over a field of characteristic p with socle $F_4(p^b)$, $E_6(p^b)$, $E_7(p^b)$. Let M < F be maximal such that $M = N_F(X)$ with $X = PSL_2(p^a)$.

For F_4 , M is determined unless $p^a = 9$, or $p^a = 13$ and X contains a regular unipotent.

For E_6 , there is no such M.

For E_7 , M is determined unless $p^a = 7, 8, 25$, or $p^a = 19$ and X contains a regular unipotent.

Craven's counterexamples to extension: E_6 for p = 13, $Y = PSL_2(13)$, $k = \overline{k}$. Y has a 9-dimensional irreducible orthogonal representation over k, $Y < B_4 < D_5$.

The spin representation for D_5 restricted to Y, $11 \oplus 5$ where 11 is the simple 11-dimensional irreducible kY-module, dim $H^1(Y, S) = 1$. Look at YS, there is an X < YS complement to S not conjugate to Y.

In E_6 , $P = D_5$ parabolic, P = LQ, $L' = D_5$, Q = spin module for L'. We have $X = PSL_2(13) < LQ$. Then show X contains a regular element.

Contrast with algebraic groups. Take G simple adjoint algebraic group over k. In 1997, Saxl-Seitz classified maximal positive-dimensional subgroups of G containing a regular unipotent.

Either M is a maximal parabolic or M is on a (relatively) short list of reductive groups. For example, for G exceptional,

- $M = A_1 < G, p \ge h \text{ or } p = 0,$
- $M = A_2 \cdot 2 < G_2, p = 2$
- $M = F_4 < E_6$,
- $D_4 \cdot S_3 < F_4, p = 3$
- $(D_4T_2)S_3 < E_6, p = 3,$
- $(E_6T_1) \cdot 2 < E_2, p = 2,$
- $(A_1)^7 PGL_3(2) < E_7, p = 7.$

Theorem 0.4 (*Zalesski-Testerman*) Let G be as above and let H < G be a closed connected reductive (positive dimensional) subgroup of G containing a regular unipotent element. Then H does not lie in a proper parabolic subgroup of G.

As a corollary, we get a list of connected reductive overgroups of regular unipotents.