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1 Introduction
Proposition 1.1. For a 2-group P the following are equivalent:

(1) P is (semi)dihedral or quaternion, (but non-abelian, so Klein-4 is excluded)

(2) P has maximal (nilpotency) class,

(3) |P | ≥ 8 and |P : P ′| = 4 (Taussky-Todd),

(4) P has exactly 5 rational irreducible characters (Isaacs-Navarro-Sangroniz),

(5) P is non-cyclic and the number of involutions of P is ≡ 1 mod 4 (Alperin-Feit-Thompson),

(6) P 6∼= C2 × C2 and F2P has tame representation type.

This theorem can be partially expanded to an arbitrary group:

Proposition 1.2. For a finite group G with P ∈ Syl2(G), the following are equivalent:

(1) P has maximal class,

(2) P is non-cyclic and the number of involutions in G is ≡ 1 mod 4 (Herzog),

(3) P 6∼= C2 × C2 and the principal 2-block B0(G) has tame representation type,

(4) missing: character table criterion?

Remark (i) The possible G were classified by Gorenstein-Walter and Alperin-Brauer-Gorenstein.

(ii) The character table does not distinguish the 3 types of P (D8 vs Q8).

2 Results
Theorem A. For P ∈ Syl2(G) the following are equivalent:

(1) |P : P ′| = 4,

(2) |P | = 4 or there exists g ∈ P such that |G : CG(g)| ≡ 0 mod 2 and Q(g) := Q(χ(g) : g ∈ Irr(G)) =
Q(ζ ± ζ−1) where ζ = e4πi/|P |,

(3) | Irr2′(B0(G))| = 4.
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Remark Let N := NG(P ). The Alperin-McKay Conjecture implies

4 = | Irr2′(B0(G))|
= | Irr2′(B0(N))|
= | Irr2′(N/O2′(N))|
= | Irr(N/P ′O2′(N))|

holds if and only if |P : P ′| = 4.

A similar argument applies to p = 3. Hence,

Conjecture 2.1. Let P ∈ Syl3(G). Then |P : P ′| = 9 iff | Irr3′(B0(G))| ∈ {6, 9}.

Easier:

Theorem B. | Irr3′(B0(G))| = 3 iff |G|3 = 3.

Remark (i) Theorem B is well-known for p = 2. In fact | Irr2′(B0(G))| ≡ 0 mod 4 whenever |G| ≡ 0 mod 4.

(ii) In general | Irrp′(B0(G))| does not determine |G|p or |P : P ′|:

| Irr(C25)| = 25 = | Irr(C3
5 o C8)|.

3 Proofs
Theorem A (2):

(1)⇒ (2) : Let |P | = 2n ≥ 8 and |P : P ′| = 4. Then there exists a g ∈ P of order 2n−1 conjugate to g−1 or to g−1+2n−2

(if n ≥ 4). Hence |G : CG(g)| ≡ 0 mod 2 and |Q2n−1 : Q(g)| = NG(〈g〉) : CG(g)| = 2.

Since Q(g) lies in the fixed field of the Galois automorphism ζ 7→ ±ζ−1.

(2)⇒ (1) : Let g ∈ P s.t. |G : CG(g)| ≡ 0 mod 2 and Q(ζ ± ζ−1) = Q(g) ⊆ Q|〈g〉|. Then P is a non-abelian group and
we may assume that n > 3 (the case n = 3 being easy). Then Gal(Q(g) | Q) is cyclic and therefore Q(g) is
not a cyclotomic field. Therefore Q(g) ( Q|〈g〉|. Hence |〈g〉| = 2n−1. If P does not have maximal class, then
g is conjugate to g1+2n−2

. This yields the contradiction.

Q(g) ⊆ Q(ζ2).

(1)⇒ (3) : well-known (Brauer, Olsson)

(3)⇒ (1) : uses the classification of finite simple groups (CFSG).

Easy cases: If B0(G) is the only block of maximal defect, then the claim follows from Malle-Späth (McKay
Conjecture for p = 2.)

Remark The proof of Theorem B (2) also relies on CFSG.

4 Open problems
Let B be any p-block with defect group D and k(B) := | Irr(B)|, k0(B) := |{χ ∈ Irr(B) : χ(1)p = |G : D|p}|.

Question 1: If p = 2 and k0(B) = 4, then is it true that|D : D′| = 4?
Question 2: If p = 3 and k0(B) = 3, then |D| = 3?
Question 3: If p = 2 and k(B) = then |D| = 4?
Question 4: If k(B) = 3 then p = |D| = 3?
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