Characters and Sylow 2-subgroups of maximal class

Lecture by Benjamin Sambale Notes by Dustan Levenstein

Joint with G. Navarro and P. H. Tiep.

1 Introduction

Proposition 1.1. *For a* 2*-group* P *the following are equivalent:*

- *(1)* P *is (semi)dihedral or quaternion, (but non-abelian, so Klein-4 is excluded)*
- *(2)* P *has maximal (nilpotency) class,*
- *(3)* $|P| \ge 8$ *and* $|P : P'| = 4$ *(Taussky-Todd),*
- *(4)* P *has exactly* 5 *rational irreducible characters (Isaacs-Navarro-Sangroniz),*
- *(5) P is non-cyclic and the number of involutions of* P *is* \equiv 1 mod 4 *(Alperin-Feit-Thompson)*,
- *(6)* $P \not\cong C_2 \times C_2$ *and* $\overline{\mathbb{F}}_2P$ *has tame representation type.*

This theorem can be partially expanded to an arbitrary group:

Proposition 1.2. For a finite group G with $P \in \mathrm{Syl}_2(G)$, the following are equivalent:

- *(1)* P *has maximal class,*
- *(2) P is non-cyclic and the number of involutions in* G *is* \equiv 1 mod 4 *(Herzog),*
- *(3)* $P \not\cong C_2 \times C_2$ *and the principal* 2*-block* $B_0(G)$ *has tame representation type,*
- *(4) missing: character table criterion?*

Remark (i) The possible G were classified by Gorenstein-Walter and Alperin-Brauer-Gorenstein.

(ii) The character table does not distinguish the 3 types of $P(D_8 \text{ vs } Q_8)$.

2 Results

Theorem A. *For* $P \in \text{Syl}_2(G)$ *the following are equivalent:*

- (I) $|P: P'| = 4,$
- *(2)* $|P| = 4$ *or there exists* $g \in P$ *such that* $|G : C_G(g)| \equiv 0 \mod 2$ *and* $\mathbb{Q}(g) := \mathbb{Q}(\chi(g) : g \in \text{Irr}(G))$ $\mathbb{Q}(\zeta \pm \zeta^{-1})$ where $\zeta = e^{4\pi i/|P|}$,
- (3) $|\operatorname{Irr}_{2'}(B_0(G))|=4.$

Remark Let $N := N_G(P)$. The Alperin-McKay Conjecture implies

$$
4 = |\operatorname{Irr}_{2'}(B_0(G))|
$$

= |\operatorname{Irr}_{2'}(B_0(N))|
= |\operatorname{Irr}_{2'}(N/O_{2'}(N))|
= |\operatorname{Irr}(N/P'O_{2'}(N))|

holds if and only if $|P : P'| = 4$.

A similar argument applies to $p = 3$. Hence,

Conjecture 2.1. *Let* $P \in \text{Syl}_3(G)$ *. Then* $|P : P'| = 9$ *iff* $|\text{Irr}_{3'}(B_0(G))| \in \{6, 9\}$ *.*

Easier:

Theorem B. $|\operatorname{Irr}_{3'}(B_0(G))|=3$ *iff* $|G|_3=3$ *.*

Remark (i) Theorem B is well-known for $p = 2$. In fact $|\text{Irr}_{2'}(B_0(G))| \equiv 0 \mod 4$ whenever $|G| \equiv 0 \mod 4$.

(ii) In general $|\operatorname{Irr}_{p'}(B_0(G))|$ does not determine $|G|_p$ or $|P : P'|$:

$$
|\operatorname{Irr}(C_{25})| = 25 = |\operatorname{Irr}(C_5^3 \rtimes C_8)|.
$$

3 Proofs

Theorem A [\(2\)](#page-0-0):

- $(1) \Rightarrow (2)$: Let $|P| = 2^n \ge 8$ and $|P: P'| = 4$. Then there exists a $g \in P$ of order 2^{n-1} conjugate to g^{-1} or to $g^{-1+2^{n-2}}$ (if $n \ge 4$). Hence $|G : C_G(g)| \equiv 0 \mod 2$ and $|\mathbb{Q}_{2^{n-1}} : \mathbb{Q}(g)| = N_G(\langle g \rangle) : C_G(g)| = 2$. Since $\mathbb{Q}(g)$ lies in the fixed field of the Galois automorphism $\zeta \mapsto \pm \zeta^{-1}$.
- $(2) \Rightarrow (1)$: Let $g \in P$ s.t. $|G : C_G(g)| \equiv 0 \mod 2$ and $\mathbb{Q}(\zeta \pm \zeta^{-1}) = \mathbb{Q}(g) \subseteq \mathbb{Q}_{|\langle g \rangle|}$. Then P is a non-abelian group and we may assume that $n > 3$ (the case $n = 3$ being easy). Then $Gal(\mathbb{Q}(g) \mid \mathbb{Q})$ is cyclic and therefore $\mathbb{Q}(g)$ is not a cyclotomic field. Therefore $\mathbb{Q}(g) \subsetneq \mathbb{Q}_{|\langle g \rangle|}$. Hence $|\langle g \rangle| = 2^{n-1}$. If P does not have maximal class, then g is conjugate to $g^{1+2^{n-2}}$. This yields the contradiction.

$$
\mathbb{Q}(g) \subseteq \mathbb{Q}(\zeta^2).
$$

 $(1) \Rightarrow (3)$: well-known (Brauer, Olsson)

 $(3) \Rightarrow (1)$: uses the classification of finite simple groups (CFSG).

Easy cases: If $B_0(G)$ is the only block of maximal defect, then the claim follows from Malle-Späth (McKay Conjecture for $p = 2$.)

Remark The proof of Theorem B [\(2\)](#page-1-0) also relies on CFSG.

4 Open problems

Let B be any p-block with defect group D and $k(B) := |\text{Irr}(B)|$, $k_0(B) := |\{\chi \in \text{Irr}(B) : \chi(1)_p = |G : D|_p\}|$. Question 1: If $p = 2$ and $k_0(B) = 4$, then is it true that $|D : D'| = 4$? Question 2: If $p = 3$ and $k_0(B) = 3$, then $|D| = 3$? Question 3: If $p = 2$ and $k(B) =$ then $|D| = 4$? Question 4: If $k(B) = 3$ then $p = |D| = 3$?