
Applications of representation theory to statistical problems

Lecture by Persi Diaconis
Notes by Dustan Levenstein

Examples of how statisticians could use representation theory.

(1) Spectral analysis of Time series (babies in New York City)

(2) Ranked data (election data)

(3) Representations of the unitary group Un (relating to zeroes of the Riemann zeta function)

(4) Monster group

1 Time Series
Suppose we have numbers f0, . . . , fN−1 ∈ R which we think of as a signal. We look for patterns using the discrete
Fourier transform

f̂(j) =

N−1∑
k=0

f(k)e2πijk/N .

We can recover the signal by the Fourier inversion theorem,

f(k) =
1

N

N−1∑
j=0

f̂(j)e2πijk/N .

Suppose one f̂(j) is bigger than the rest: then to a good approximation, f(k) is a simple periodic signal.
For example there was a blackout in New York City. The New York Times said there was a big spike in births 9

months after the blackout. There were about 400 kids born every day, and there was a 7 day periodicity to birth rates
(fewer kids born on weekends), as well as a 3 year periodicity. Once these factors were removed there was no evidence
of a spike.

2 Ranked Data
Suppose we have a study where you taste four chocolates, and rank them from 1 to 4.

Elections: You rank the candidates.
Card shuffling machine: Generates lots of permutations.
In all of these examples, the data is σ1, . . . , σN ∈ Sn. We have the associated function

f(σ) = #n{σn = σ}.

Applying the Fourier transform associated to the group Sn gives

f̂(λ) =
∑
σ

f(σ)ρλ(σ),

1



where
ρ : Sn → GLdλ(V )

is the corresponding irreducible representation and λ runs over all partitions of n. We can recover

f(σ) =
1

|G|
∑
t

dλTn(f̂(ρλ)ρλ(σ)).

Example In the American Psychological Association election data, we have 5 candidates being ranked from 1 to 5,
and we can see how many people voted for each permutation of 5.

We can look at what percentage of people ranked person i in position j — it looks pretty flat. Candidate 3 appears
to be the favorite, but there is significant vote against candidate 3. This summarizes the original data by 16 numbers.
Is it a good summary?

We have the isotypic decomposition
Q(Sn) =

⊕
λ

Vλ.

In the case n = 5 there are 7 irreducible representations, and we can project the data into these 7 irreducible
representations. What we see is the projection on V3 is pretty large.
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Consider the representation
ρ(σ)i,j = σσ(i),j .

The Fourier transform at this subrepresentation is

f̂(`) =
∑
σ

f(σ)ρ(σ)i,j .

This Fourier transform is exactly the candidate i in position j table. This next table shows the candidate i in position
j table with V1 removed, and we can see it’s the same set of numbers normalized so that they add up to zero.

Finally we can project the representation on pairs onto V3, using the fact that V3 is the representation on un-ordered
pairs minus the occurrences of V1 and V2.

This data can be explained by observing a huge preference for candidates 1, 3 together among one group of voters,
witnessed by the number 476, and a not-as-big preference for candidates 4 and 5 witnessed by the 296. It turns out that
1 and 3 are “clinicians” and 4 and 5 are “academicians”, two groups within the American Psychological Association
which don’t get along. Here Fourier analysis provides a clear picture of the data, where classical statistical analysis
failed.

3 Unitary Group
Data: zeroes of the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
, for re s > 1

It is well known that the zeroes lie within the critical strip {0 ≤ re s ≤ 1}.
If N(T ) is defined as the number of zeroes of height T , Riemann showed

N(T ) =
T

2π
log

T

2π`
+O(log T ).
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We can rescale the spacings so that they are, on average, spaced 1 apart.
The data in question here is 50000 zeroes from 1022 and up.
Hilbert and Polya hypothesized that the zeroes ‘look like’ the eigenvalues of the unitary matrices.
Pick M ∈ Un, which has a Haar measure, eigenvalues {eiθ1 , . . . , eiθn}. We can see the distribution of eigenvalues

on a circle:

Here’s what uniform randomness looks like:

Here’s what they would look like equally spaced:

The eigenvalues are about 1
n apart. The zeta zeroes are about 1

log T apart. So we set

1

n
=

1

log T
.

For us n = 42 — the zeroes of the zeta functions are supposed to look similar to the eigenvalues of 42×42 unitary
matrices. In order to translate the Riemann zeta zeroes from a line into a circle, we take the first 42 zeroes among
our 50000 zeta zeroes, and wrap them around the circle, then the next 42, etc. So we have around 1150 circles. (The
orientations of each circle were chosen at random.)

The Haar density of of a vector θ of length 42 is given by

f(θ) =
1

n!2n

∏
j<k

|eiθj − eiθk |2,

a classical formula due to Hurwitz.
So we have X1, . . . , X1150 circles.
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Does this match the Haar measure model from Un?
One thing we can try is taking the trace: the sum of 42 random eigenvalues is well approximated by a Gaussian

bell shaped curve (by the central limit theorem).

Theorem 3.1 Pick M ∈ Un Haar measure.

sup
A

∣∣∣∣∣P (Tn(M) ∈ A)−
∫
a

e−|z|
2

π
dz

∣∣∣∣∣ ≤ c

n!
.

Here n = 42, so c
n! should be a very tiny number.

We can compare the norm-squared “traces” to the expected exponential distribution,

so for this test, the data matches the model.
This is, however, an ad-hoc test. Other tests might reject the model.
For a more systematic test: The characters of Un are the Schur functions sλ(x1, . . . , xn), where

s0 = 1, s1 =
∑

xj , s2 =
∑

x2j ,

s1,1 =
∑
j<k

xjxk,

etc. We have orthogonality
〈sλ | sµ〉Un = δλ,µ.

µN (A) =
1

N
#{i : xi ∈ A}.

If {xi} is given by Haar measure, define

µ̂N (λ) =

∫
sλ(m)µN (ds),
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and |µ̂N (λ)|, as the approximate inner product of sλ and the zeta data, should be small, so

TN =
∑
λ

z|λ||µ̂N (λ)|

gives a statistic.
So VN converges to Haar ⇐⇒ V̂N (λ)→ 0.
We can compare these models:

Here we see that the data fits the model quite closely.
The character theory of µn comes in when we rewrite Tn:

TN =

∫ ∫ ∏
j,k

(
1− zei(θj−iθk)

)−1
µN (dθ)µN (dθ′).

Similar considerations arise for L-functions and involve other groups: On, Sp2n, . . .
Similar problems arise for data on homogeneous spaces, e.g., in US lotteries, one picks a subset of {1, . . . , n},

giving rise to data on Sn/(Sk × Sn−k). This is significant for understanding lottery roll-overs — the lottery wants to
understand how often these roll-overs happen, which has to do with how people choose their numbers.

4 Monster
All kinds of computational group theory uses random numbers — question, take a group you’re interested in, take
some random elements, and use the character theory to test whether the data matches the model.

See [3] for a general introduction to this topic. Section 2 is from [4]. The discrete Fourier transform is computed
efficiently in [5].

Remark The Fourier transform computed naively takesO(N2) times, and the fast Fourier transform takesO(N logN)
times, which is a significant improvement.

Section 3 comes from [1]. And to see an example of how one can do this analysis in a Bayesian manner, see [2].
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