Character ratios for finite groups of Lie type

Lecture by Martin Liebeck
Notes by Dustan Levenstein

A Character ratio for G a finite group is XE‘{; for x € Irr(G) or IBr(G).

Applications of character ratios come via: If C4,...,Cy are conjugacy classes in G, the number of solutions
(x1,...,z4)tox1 - xq = zforz; € C;is
IT1Gi| x(en) -+ x(ca)x(x)
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where ¢; € C;, a classical result going as far back as Frobenius.

1 Applications

1) Counting points in representation varieties
Hom(T, G),

for I finitely presented.

Example
I'=T,. = (x,y,z\x“:ybzzczmyz:w.

Count solutions to equation with z = 1 over classes of order a, b, and c.

2) Random walks:

‘We look at a random walk
1%01*)61024)"’

This is a Markov chain with eigenvalues given by character ratios i‘(g; for x € Irr(G).

Pi(g) = probability at g after k steps.

Usually P, — U. How fast?

Diaconis-Shahshahani:
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3) McKay graphs:

For G a finite group, « a character, we define a graph

I'G,a)

with vertices given by Irr(G), and directed edges x — constituents of x ® a.

Example 1) G = C,,, « linear character generator:

2) G = SLy(5), « having degree 2:

These are called McKay graphs due to the McKay correspondence: For G a finite subgroup of SU;(C), and «
a 2-dimensional representation, we have
I'(G,a) = A,D,E.

Theorem 1.1 (Burnside-Brauer) If « is faithful, then every x € Irr(G) appears in a®™ for some

n < #{alg) : g € G}.
N

Define diam(G, o) = diam(I'(G, «)) < 2N. Clearly

log(maximal degree)
log a(1)

diam (G, ) >

Example For G = S, a« = x("~11): we have n > diam > Z.

For G = G(gq), @ = St Steinberg character: diam(G, St) = 2 with one exception when G = U, (q) (Heide-
Saxl-Tiep-Zalesski).

2 Results

Theorem 2.1 (Gluck) For G = G(q), x € Irt(G),
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The setting for the next result by Bezrukavnikov-Liebeck-Shalev-Tiep (2016) is: If G = G(q) = G forGa
simple algebraic group, and a Levi L of G, define

dim u®
a(L) = max ( me Ly #1 unipotent)
dim u¢
where u” denotes the conjugacy class of L, etc.
Example If G = SL3 and
x* % 0
L=|x %« 0] = GLQ,
0 0 =

then (L) = 2 = 3.
We have «(T") = 0 for T a torus.

Say L is split Levi if L¥ < PF, with P parabolic.

Theorem 2.2 (Bezrukavnikov-Liebeck-Shalev-Tiep 2016)
Suppose G = G(q) (p a good prime) is simply connected. Let v € G and suppose Cg(x) < LY, split Levi. Then

forall x € Irr(G)
xX(@) < x(1)*")- f(r)
where 1 = tk(G).
For G = SL,, f ~nl

Example 1) G = SLs(q), the theorem applies to all x except unipotent elements and regular semisimple elements
with centralizer order ¢® + ¢ + 1.

For the remaining elements, we have

2) For G = GL,(q):

we have )
n1— <a(l) < n1
n—1 n
3) G = Ex(q)
L ‘ E; D most
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3 Random Walk on E8(q)

For G = FEg(q), for z € G, Cg(x) contained in a split Levi
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For o« = @, k = 3, this equals

Z x(1)72/22 5 0.

x7#1
Liebeck-Shalev:

dox) =1, s>

X€G(q)

For Eg, h is equal to 30, hence
MiX(ES(q)v‘TG) <3.
4 Remaining results

Liebeck-Shalev-Tiep: G = SL,(q), = € G. B
Define s = codimension of largest eigenspace of x over [F,,.

Example Say x is unipotent, a sum of ¢ Jordan blocks,

Theorem 4.1 For all x € Irr(G),

with v ~ é.

Recall G simple, a € Irr(G),

diam(G, &) = min(k : Irr(G) C aU - - -

We define
D(G) = max diam(G, ).

Theorem 4.2 (Liebeck-Shalev)

log |G
For C a conjugacy class of G, diam(G,C) < 8 0 |G

log |C

Conjecture 4.3
log |G|

i < .
diam(G, a) < 610g (1)
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Theorem 4.4 For G = SL,(q), D(G) < cn provided q > f(n) (here ¢ ~ 50).

Proof Know Irr(G) C St2.
So we aim to show St C x°" for all x € Irr(G).
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Now use the bound for the character ratios () .
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