Character ratios for finite groups of Lie type

Lecture by Martin Liebeck Notes by Dustan Levenstein

A Character ratio for G a finite group is $\frac{\chi(g)}{\chi(1)}$ for $\chi \in Irr(G)$ or IBr(G). Applications of character ratios come via: If C_1, \ldots, C_d are conjugacy classes in G, the number of solutions (x_1, \ldots, x_d) to $x_1 \cdots x_d = z$ for $x_i \in C_i$ is

$$\frac{\prod |C_i|}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(c_1) \cdots \chi(c_d) \overline{\chi(x)}}{\chi(1)^{d-1}},\tag{1}$$

where $c_i \in C_i$, a classical result going as far back as Frobenius.

Applications 1

1) Counting points in representation varieties

Hom (Γ, G) ,

for Γ finitely presented.

Example

$$\Gamma = T_{abc} = \langle x, y, z \mid x^a = y^b = z^c = xyz = 1 \rangle.$$

Count solutions to equation (1) with z = 1 over classes of order a, b, and c.

2) Random walks:

$$G = \langle C \rangle, \quad C = x^G.$$

We look at a random walk

 $1 \rightarrow c_1 \rightarrow c_1 c_2 \rightarrow \cdots$

This is a Markov chain with eigenvalues given by character ratios $\frac{\chi(x)}{\chi(1)}$ for $\chi \in Irr(G)$.

$$P_k(g) =$$
 probability at g after k steps.

Usually $P_k \rightarrow U$. How fast? **Diaconis-Shahshahani**:

$$\|P_k - U\|^2 = \left(\sum_{g \in G} |P_k(g) - U(g)|\right)^2 \le \sum_{\chi \neq 1} \left|\frac{\chi(x)}{\chi(1)}\right|^{2k} \chi(1)^2.$$

3) McKay graphs:

For G a finite group, α a character, we define a graph

 $\Gamma(G, \alpha)$

with vertices given by Irr(G), and directed edges $\chi \to constituents$ of $\chi \otimes \alpha$.

Example 1) $G = C_n$, α linear character generator:

2) $G = SL_2(5), \alpha$ having degree 2:

3) $G = SL_2(p), \alpha = 2$ -dimensional \mathbb{F}_p^2 natural module:

These are called McKay graphs due to the **McKay correspondence**: For G a finite subgroup of $SU_2(\mathbb{C})$, and α a 2-dimensional representation, we have

$$\Gamma(G,\alpha) = A, D, E.$$

Theorem 1.1 (Burnside-Brauer) If α is faithful, then every $\chi \in Irr(G)$ appears in $\alpha^{\otimes n}$ for some

$$n \leq \underbrace{\#\{\alpha(g): g \in G\}}_N$$

Define diam $(G, \alpha) =$ diam $(\Gamma(G, \alpha)) \leq 2N$. Clearly

$$\operatorname{diam}(G, \alpha) \ge \frac{\log(\operatorname{maximal degree})}{\log \alpha(1)}.$$

Example For $G = S_n$, $\alpha = \chi^{(n-1,1)}$: we have $n \ge \text{diam} \ge \frac{n}{2}$.

For G = G(q), $\alpha = St$ Steinberg character: diam(G, St) = 2 with one exception when $G = U_n(q)$ (Heide-Saxl-Tiep-Zalesski).

2 **Results**

Theorem 2.1 (Gluck) For G = G(q), $\chi \in Irr(G)$,

$$\frac{|\chi(g)|}{\chi(1)} < \frac{3}{\sqrt{q}}.$$

The setting for the next result by Bezrukavnikov-Liebeck-Shalev-Tiep (2016) is: If $G = G(q) = \overline{G}^F$ for \overline{G} a simple algebraic group, and a Levi L of \overline{G} , define

$$\alpha(L) = \max\left(\frac{\dim u^L}{\dim u^{\overline{G}}}: u \neq 1 \text{ unipotent}\right)$$

where u^L denotes the conjugacy class of L, etc.

Example If $\overline{G} = SL_3$ and

$$L = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix} = GL_2,$$

then $\alpha(L) = \frac{2}{4} = \frac{1}{2}$. We have $\alpha(T) = 0$ for T a torus.

Say L is split Levi if $L^F \leq P^F$, with P parabolic.

Theorem 2.2 (Bezrukavnikov-Liebeck-Shalev-Tiep 2016)

Suppose G = G(q) (p a good prime) is simply connected. Let $x \in G$ and suppose $C_G(x) \leq L^F$, split Levi. Then for all $\chi \in Irr(G)$

$$\chi(x) < \chi(1)^{\alpha(L)} \cdot f(r)$$

where $r = \operatorname{rk}(\overline{G})$.

For $G = SL_n$, $f \sim n!$.

1) $G = SL_3(q)$, the theorem applies to all x except unipotent elements and regular semisimple elements Example with centralizer order $q^2 + q + 1$.

For the remaining elements, we have

$$\left|\frac{\chi(x)}{\chi(1)}\right| < \chi(1)^{-\frac{1}{2}} \cdot c$$

2) For $G = GL_n(q)$:

$$L = \prod_{i=1}^{t} GL_{n_i}(q) \qquad n_1 \ge n_2 \ge \cdots$$

we have

$$\frac{n_1 - 1}{n - 1} \le \alpha(L) \le \frac{n_1}{n}$$

3) $G = E_8(q)$

Random Walk on E8(q) 3

For $G = E_8(q)$, for $x \in G$, $C_G(x)$ contained in a split Levi

$$||P_k - U||^2 \le \sum_{x \ne 1} \left| \frac{\chi(x)}{\chi(1)} \right|^{2k} \chi(1)^2 \le \sum \chi(1)^{2k(-1+\alpha)+2}$$

For $\alpha = \frac{17}{29}$, k = 3, this equals

$$\sum_{\chi \neq 1} \chi(1)^{-2/29} \to 0.$$

Liebeck-Shalev:

$$\sum_{\chi \in G(q)} \chi(1)^{-s} \to 1, \quad s > \frac{2}{h}.$$

For E_8 , h is equal to 30, hence

$$\operatorname{Mix}(E_8(q), x^G) \le 3.$$

4 Remaining results

Liebeck-Shalev-Tiep: $G = SL_n(q), x \in G$.

Define $s = \text{codimension of largest eigenspace of } x \text{ over } \overline{\mathbb{F}}_p.$

Example Say x is unipotent, a sum of t Jordan blocks,

$$x = \sum_{i=1}^{t} J_{n_i}, \quad s = n - t.$$

Theorem 4.1 For all $\chi \in Irr(G)$,

$$\frac{|\chi(x)|}{\chi(1)} < \frac{1}{q^{\gamma s}} f(n).$$

with $\gamma \approx \frac{1}{9}$.

Recall G simple, $\alpha \in Irr(G)$,

$$\operatorname{diam}(G,\alpha) = \min(k : \operatorname{Irr}(G) \subset \alpha \cup \cdots \cup \alpha^k).$$

We define

$$D(G) = \max_{\alpha} \operatorname{diam}(G, \alpha).$$

Theorem 4.2 (Liebeck-Shalev)

For C a conjugacy class of G, diam $(G, C) \leq \beta \frac{\log |G|}{\log |C|}$.

Conjecture 4.3

diam
$$(G, \alpha) \le \delta \frac{\log |G|}{\log \alpha(1)}.$$

Theorem 4.4 For $G = SL_n(q)$, $D(G) \leq cn$ provided q > f(n) (here $c \sim 50$).

Proof Know $Irr(G) \subset St^2$.

So we aim to show $St \subseteq \chi^{cn}$ for all $\chi \in Irr(G)$.

$$\langle \chi^{\ell}, St \rangle = \frac{1}{|G|} \sum_{g \in G_{ss}} \pm \chi^{\ell}(g) |C_G(g)|_p = \frac{\chi^{\ell}(1)}{|G|} \sum \left(|G|_p + \sum_{g \neq 1} \left(\frac{\chi^{\ell}(g)}{\chi^{\ell}(1)} \right) |C_G(g)|_p \right)$$

Now use the bound for the character ratios $\frac{\chi(g)}{\chi(1)}$.