Character ratios for finite groups of Lie type

Lecture by Martin Liebeck Notes by Dustan Levenstein

A **Character ratio** for G a finite group is $\frac{\chi(g)}{\chi(1)}$ for $\chi \in \text{Irr}(G)$ or $\text{IBr}(G)$.

Applications of character ratios come via: If C_1, \ldots, C_d are conjugacy classes in G, the number of solutions (x_1, \ldots, x_d) to $x_1 \cdots x_d = z$ for $x_i \in C_i$ is

$$
\frac{\prod |C_i|}{|G|} \sum_{\chi \in \text{Irr}(G)} \frac{\chi(c_1) \cdots \chi(c_d) \overline{\chi(x)}}{\chi(1)^{d-1}},\tag{1}
$$

where $c_i \in C_i$, a classical result going as far back as Frobenius.

1 Applications

1) Counting points in representation varieties

 $Hom(\Gamma, G),$

for Γ finitely presented.

Example

$$
\Gamma = T_{abc} = \langle x, y, z \mid x^a = y^b = z^c = xyz = 1 \rangle.
$$

Count solutions to equation [\(1\)](#page-0-0) with $z = 1$ over classes of order a, b, and c.

2) Random walks:

$$
G = \langle C \rangle, \quad C = x^G.
$$

We look at a random walk

 $1 \rightarrow c_1 \rightarrow c_1 c_2 \rightarrow \cdots$

This is a Markov chain with eigenvalues given by character ratios $\frac{\chi(x)}{\chi(1)}$ for $\chi \in \text{Irr}(G)$.

$$
P_k(g) =
$$
 probability at g after k steps.

Usually $P_k \to U$. How fast?

Diaconis-Shahshahani:

$$
||P_{k} - U||^{2} = \left(\sum_{g \in G} |P_{k}(g) - U(g)|\right)^{2} \le \sum_{\chi \neq 1} \left|\frac{\chi(x)}{\chi(1)}\right|^{2k} \chi(1)^{2}.
$$

3) McKay graphs:

For G a finite group, α a character, we define a graph

 $\Gamma(G, \alpha)$

with vertices given by $\mathrm{Irr}(G),$ and directed edges $\chi \to$ constituents of $\chi \otimes \alpha.$

Example 1) $G = C_n$, α linear character generator:

2) $G = SL₂(5)$, α having degree 2:

3) $G = SL_2(p)$, $\alpha = 2$ -dimensional \mathbb{F}_p^2 natural module:

These are called McKay graphs due to the McKay correspondence: For G a finite subgroup of $SU_2(\mathbb{C})$, and α a 2-dimensional representation, we have

$$
\Gamma(G, \alpha) = A, D, E.
$$

Theorem 1.1 *(Burnside-Brauer)* If α *is faithful, then every* $\chi \in \text{Irr}(G)$ *appears in* $\alpha^{\otimes n}$ for some

$$
n \le \underbrace{\# {\alpha(g) : g \in G}}_{N}.
$$

Define $\text{diam}(G, \alpha) = \text{diam}(\Gamma(G, \alpha)) \leq 2N$. Clearly

$$
diam(G, \alpha) \ge \frac{\log(\text{maximal degree})}{\log \alpha(1)}.
$$

Example For $G = S_n$, $\alpha = \chi^{(n-1,1)}$: we have $n \geq \text{diam } \geq \frac{n}{2}$.

For $G = G(q)$, $\alpha = St$ Steinberg character: diam(G, St) = 2 with one exception when $G = U_n(q)$ (Heide-Saxl-Tiep-Zalesski).

2 Results

Theorem 2.1 *(Gluck) For* $G = G(q)$ *,* $\chi \in \text{Irr}(G)$ *,*

$$
\frac{|\chi(g)|}{\chi(1)} < \frac{3}{\sqrt{q}}.
$$

The setting for the next result by Bezrukavnikov-Liebeck-Shalev-Tiep (2016) is: If $G = G(q) = \overline{G}^F$ for \overline{G} a simple algebraic group, and a Levi \overrightarrow{L} of \overrightarrow{G} , define

$$
\alpha(L) = \max\left(\frac{\dim u^L}{\dim u^{\overline{G}}}: u \neq 1 \text{ unipotent}\right)
$$

where u^L denotes the conjugacy class of L , etc.

Example If $\overline{G} = SL_3$ and

$$
L = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix} = GL_2,
$$

then $\alpha(L) = \frac{2}{4} = \frac{1}{2}$.

We have $\alpha(T) = 0$ for T a torus.

Say L is split Levi if $L^F \le P^F$, with P parabolic.

Theorem 2.2 *(Bezrukavnikov-Liebeck-Shalev-Tiep 2016)*

Suppose $G = G(q)$ (p a good prime) is simply connected. Let $x \in G$ and suppose $C_G(x) \leq L^F$, split Levi. Then *for all* $\chi \in \text{Irr}(G)$

$$
\chi(x) < \chi(1)^{\alpha(L)} \cdot f(r)
$$

where $r = \text{rk}(\overline{G})$ *.*

For $G = SL_n$, $f \sim n!$.

Example 1) $G = SL_3(q)$, the theorem applies to all x except unipotent elements and regular semisimple elements with centralizer order $q^2 + q + 1$.

For the remaining elements, we have

$$
\left|\frac{\chi(x)}{\chi(1)}\right| < \chi(1)^{-\frac{1}{2}} \cdot c.
$$

2) For $G = GL_n(q)$:

$$
L = \prod_{i=1}^{t} GL_{n_i}(q) \qquad n_1 \geq n_2 \geq \cdots
$$

we have

$$
\frac{n_1 - 1}{n - 1} \le \alpha(L) \le \frac{n_1}{n}
$$

3) $G = E_8(q)$

$$
\begin{array}{c|ccccc}\nL & E_7 & D_7 & \cdots & \text{most} \\
\hline\n\alpha(L) & \frac{17}{29} & \frac{9}{23} & & \leq \frac{1}{4}\n\end{array}
$$

3 Random Walk on E8(q)

For $G = E_8(q)$, for $x \in G$, $C_G(x)$ contained in a split Levi

$$
||P_k - U||^2 \le \sum_{x \ne 1} \left| \frac{\chi(x)}{\chi(1)} \right|^{2k} \chi(1)^2 \le \sum \chi(1)^{2k(-1+\alpha)+2}
$$

For $\alpha = \frac{17}{29}$, $k = 3$, this equals

$$
\sum_{\chi \neq 1} \chi(1)^{-2/29} \to 0.
$$

Liebeck-Shalev:

$$
\sum_{\chi \in G(q)} \chi(1)^{-s} \to 1, \quad s > \frac{2}{h}.
$$

For E_8 , h is equal to 30, hence

$$
Mix(E_8(q), x^G) \le 3.
$$

4 Remaining results

Liebeck-Shalev-Tiep: $G = SL_n(q), x \in G$.

Define $s =$ codimension of largest eigenspace of x over $\overline{\mathbb{F}}_p$.

Example Say x is unipotent, a sum of t Jordan blocks,

$$
x = \sum_{i=1}^{t} J_{n_i}, \quad s = n - t.
$$

Theorem 4.1 *For all* $\chi \in \text{Irr}(G)$ *,*

$$
\frac{|\chi(x)|}{\chi(1)} < \frac{1}{q^{\gamma s}} f(n),
$$

with $\gamma \approx \frac{1}{9}$.

Recall G simple, $\alpha \in \text{Irr}(G)$,

$$
diam(G, \alpha) = min(k : Irr(G) \subset \alpha \cup \cdots \cup \alpha^{k}).
$$

We define

$$
D(G) = \max_{\alpha} \text{diam}(G, \alpha).
$$

Theorem 4.2 *(Liebeck-Shalev)*

For C a conjugacy class of G, $\text{diam}(G, C) \leq \beta \frac{\log |G|}{1 - |G|}$ $\frac{\log |\mathcal{C}|}{\log |C|}.$

Conjecture 4.3

$$
diam(G, \alpha) \leq \delta \frac{\log |G|}{\log \alpha(1)}.
$$

Theorem 4.4 *For* $G = SL_n(q)$, $D(G) \leq cn$ *provided* $q > f(n)$ *(here* $c \sim 50$ *).*

Proof Know $\mathrm{Irr}(G) \subset St^2$.

So we aim to show $St \subseteq \chi^{cn}$ for all $\chi \in \text{Irr}(G)$.

$$
\langle \chi^{\ell}, St \rangle = \frac{1}{|G|} \sum_{g \in G_{ss}} \pm \chi^{\ell}(g) |C_G(g)|_p = \frac{\chi^{\ell}(1)}{|G|} \sum \left(|G|_p + \sum_{g \neq 1} \left(\frac{\chi^{\ell}(g)}{\chi^{\ell}(1)} \right) |C_G(g)|_p \right).
$$

Now use the bound for the character ratios $\frac{\chi(g)}{\chi(1)}$.